3. DEFINING CLASSES

Code for Bicycle class

/**

* class Bicycle models the behaviour of a bicycle when pedal
* RPM and gear are changed

*

* @author JP

* @version 1.0

*

/

public class Bicycle

{

int pedalRpm;

int gear;

double wheelDiameter;
int numberOfGears;

/**
* Constructor for objects of class Bicycle
*
* @oparam wheelDiameter in meters
* @param numberOfGears
*/
public Bicycle (double wheelDiameter, int numberOfGears)
{
// initialise instance variables
this.pedalRpm = 300;
this.gear = 1;

this.wheelDiameter = wheelDiameter;
this.numberOfGears = numberOfGears;
}
/**
* Constructor for objects of class Bicycle
*/

public Bicycle ()

{
// initialise instance variables
this.pedalRpm = 300;
this.gear = 1;
this.wheelDiameter = 0.5;

this.numberOfGears = 3;

M11322909: PROGRAMMING |

3.1 Purpose of the Bicycle class

Before we look at that code, let's consider why we want to have this
class. Remember how we thought this class could be used in a program. A Bicycle
class should allow objects to be created that model the way that the road speed of a
real bike responds to change in pedalling speed and gear selection.

This would be important in some program where the speed of a bicycle is important.
For example, it could be a game that involves characters racing or chasing each
other on bicycles, and the pedalling speed and gear are set by the players’ controls. If
the Bicycle class models the bicycles’ behaviour correctly, then the game will
make sense to the players. Or, it could be a program that is built in to a computerised
exercise bike, where rider wants to see a display of the speed he or she would be
achieving for the amount of effort being put in.

For now it doesn’t matter, we are just looking at the Bicycle class itself, not a whole
program.

3.2 Code blocks

In Java, lines of code that belong together are grouped as code blocks. The start and
end of a code block are marked by curly braces:
{

line or lines of code
inside code block

M11322909: PROGRAMMING |

Code inside a block is often indented as shown in the example above. This makes
the organisation of the code much easier to understand while reading it. Actually the
compiler doesn’t care about indenting, but it is good practice to indent your code
carefully so that other programmers (and yourself) can read it easily. The compiler
does care, very much, about code blocks, though. Putting braces in the wrong place
or missing them out is a common source of compiler errors.

Code blocks can be nested inside other blocks — you will see shortly why this is
useful. Nested blocks are usually further indented for readability.

{
line or lines of code
inside code block
{
line or lines of code
inside nested code block

}

The way Java uses blocks is an important part of its syntax, and is very similar to the
syntax of a range of other popular programming languages.

3.3 Creating a class

The most important kind of code block is a class. The code for a whole class is
enclosed in a single block. In order to define any useful behaviour, this code will
almost always include other blocks nested inside it. The only part of the class outside
the block is the class header, which needs to come just before the opening brace.

public class Bicycle
{
code for class

}

The header’s main job is to specify the name of the class, which, by convention
should start with an upper case (capital) letter. The case matters — as far as Java
is concerned, Bicycle is definitely not the same thing as bicycle. Using names
with the wrong case is another common source of compiler errors. A further widely
followed convention is that names which consist of more than one word are written
with an upper case character starting each subsequent word — look out for examples
of that as you study the code.

Good programmers follow conventions when writing code, and naming classes is
a good example. Like indentation, the compiler doesn’t care (as long as you are
consistent), but if you follow naming conventions it is much easier for other
programmers to read your code and see at a glance what is the name of a class
and what isn’t. It works the other way, too, making it easier for you to read
someone else’s code.

M11322909: PROGRAMMING |

Key words

The words public and class in the Bicycle class header are examples of key
words. A key word has a special meaning in Java and is not the name of something.
In fact, you should never try to use a key word as the name of anything in a program.
Blued helpfully colour codes key words differently from other words to make them
obvious when you read the code.

The meaning of the key word class is probably fairly obvious — it indicates that the
following code block contains a class. You will learn something about the meaning of
public, and see more key words, later.

Comments

When you look at the code you will see some lines which begin with // or /*. Blued
usually highlights these in grey. These lines are comments, which are not part of the
code. They are intended for other programmers, and should explain the purpose
of parts of the code and details of how certain parts work. You will learn later how
you can write comments that are really useful. The compiler ignores comments
completely when checking the code, so you can write anything you like in a comment
(although it is good practice to make them relevant to the code!).

3.4 Fields

Let’s start to look inside the class. The first things you see defined after the class’s
opening brace are the fields.

public class Bicycle
{
int pedalRpm;
int gear;
double wheelDiameter;
int numberOfGears;

Fields are the properties specific to an object created from that class. Each bicycle
object will have its own value for pedalRpm, and so on. These are the values you
see when you inspect an object in the object bench in Blued. Each field has a data
type, e.g int and a name, e.g. pedalRpm.

The field definitions are always:

* inside the class block
* notinside any other code block within the class

They are usually defined at the start of the class, as in this example, but they don’t
have to be as long as they are not inside a nested block. As usual, though, it is a
good idea to follow common convention and put them at the start.

It is sometimes useful to draw a diagram of an object showing the fields and their
values, rather like the window you see when you inspect an object in Blued. Here is
an object diagram of an example bicycle object.

M11322909: PROGRAMMING |

name of object)
type of object

/ (class name)

bicycle1: Bicycle

pedalRpm 300
gear 1
wheelDiameter 0.5
numberOfGears 5
field name field value
Variables

The value of a field can change after the object is created. The value of pedalRpm
changes to model the rider speeding up or slowing down the rate of pedalling. A field
can in some cases change many times during the lifetime of an object.

In fact, a field is an example of a variable. You have seen that a variable is a piece
of information, with a name and a value, which is stored and the value of which can
change. You have also seen that you need to declare a variable in order to use it.

The field definitions in the Bicycle class are also examples of variable declaration.
Once the field has been declared, code anywhere else in the class can refer to the
field by its name.

A field is a variable that contains information which belongs to an instance of a class
(that is, an object), and for that reason is also known as an instance variable.

3.5 Constructors

When you create an object, you want to make sure that the object is ready to use.
This usually means that you want the fields to have sensible values. You may want
the actual values to be decided at the time of the object creation, for example by the
program code that actually creates the object.

In the previous lecture you saw that when you create a bicycle object in BluedJ you
are prompted to enter some information that is used to assign values t the fields, and
you saw also how this information can be written as parameter values when creating
an object using code.

The part of the class which sets up, or initialises, the instances of that class is called
the constructor. The constructor is a code block with a header that contains the
name of the class (Bicycle) and a list of parameters. It also contains in this
example the key word public, which we will look at later.

M11322909: PROGRAMMING |

public Bicycle (double wheelDiameter, int numberOfGears)
{
// initialise instance variables
this.pedalRpm = 300;
this.gear = 1;
this.wheelDiameter = wheelDiameter;
this.numberOfGears = numberOfGears;

}

The code in the constructor runs only once, when an object is created. In this
example, the constructor assigns values to the fields of the object (although
constructors can do far more than this). The pedalRpm and gear fields are assigned
default values. The other fields are initialised using values passed in as parameters.

The parameter list for this constructor is in round brackets () after the constructor
name. Each parameter is listed as a data type and a name. That sounds familiar — in
fact parameters are another kind of variable. The parameter list actually declares
the parameters.

There is another key word lurking in this code — this. Here, it just means “the object
which is being created”. So, this.numberOfGears means ‘the field
numberOfGears of the object which is being created”. It's used here because we
gave the parameters, e.g. numberOfGears, the same names as the fields that their
values initialise. So

numberOfGears = numberOfGears;

would assign the parameter’s value to the parameter itself, which is not very useful,
but

this.numberOfGears = numberOfGears;

assigns the parameter’s value to the field, which is what we want. Could there be a
different way to tell parameters from fields? How would this change the code?

Note the dot notation in the example — to refer to a field of an object you write object
name.field name. This notation is used widely when programming in Java.

3.6 Creating objects

You saw how to create objects using Blued in lecture 1, and you saw that objects can
also be created by a Java program using code. Note that to make a useful Java
program you need to write both of the following:

* Code that defines classes, and so defines what kind of objects can be
created and what they can do
* Code that creates objects and uses the capabilities of those objects

For now we will look at those separately, but you will soon find that they are not
always different things.

M11322909: PROGRAMMING |

Let’s look again at some code that creates Bicycle objects and see how it relates
to the constructor of the Bicycle class. Here is the code that BluedJ showed in the
terminal window when creating an object.

Bicycle bicyclel = new Bicycle (0.5, 5);
There’s quite a lot going on here, so let’s break it down a bit:

What is bicyclel? That is the name of the object that is being created. In fact,
bicyclel is the name of a variable. This variable is little bit different from the
instance variables you saw earlier - it exists in the program code that creates the
object. It is an example of another kind of variable — a local variable. A local variable
is a variable that is declared and used within a block of code.

Like any other variables, local variables need to be declared by specifying also the
data type of the variable. The data type here is not a simple type such as int or
boolean (these are known in Java as primitive types). It is the type of the object,
which is the name of the class which the object will be created from, Bicycle.

The code
Bicycle bicyclel

declares a variable called bicyclel which refers, not to a simple value, but to an
object which is an instance of the class Bicycle.

VARIABLE TYPES IN jAVA

The example here emphasises something very important about Java
variables. The type of a variable can be either a primitive type (a single
piece of information such as an int) or an object type. Primitive types are
limited to those defined as part of the Java language, but object types
can include any Java classes that are included your project.

The key word new is very important in Java - it creates a new object. The type of
object to be created is specified after the key word.

The code

new Bicycle

creates a new object which is an instance of the class Bicycle. We call the
process of creating an instance instantiation.

When an object is instantiated, the code in the constructor of the class is run, and the
parameter values are passed in to that code.

The code

Bicycle (0.5, 5)

M11322909: PROGRAMMING |

passes parameter values into the constructor of Bicycle. These are actual values
of numbers here, but parameters can also be the names of variables that have
already been assigned values. Note that we don'’t specify the data type here. The
parameter values are used in the constructor to initialise the new object. Look at the
code for the constructor above — what will the values of all its fields be after
initialisation?

So, the whole line of code

Declares a variable of type Bicycle

Instantiates an object of type Bicycle

Initialises the object

Assigns the object to the variable which has been declared

hon =

Bicycle bicyclel = new Bicycle (0.5, 5);
declare assign instantiate initialise

This doesn’t all have to be done in one line of code. It is quite common to declare an
object variable

bicycle1 is a variable which is a

Bicycle bicyclel; null reference

then create the actual object later and assign it

bicycle1 is now a variable which

bicyclel = new Bicycle (0.5, 5);)
Y Y (is a reference to an object

In this case, bicyclel initially does not refer to an object, because no object has
been assigned to it — it is a null reference until an object is assigned.

3.7 Accessing fields of an object

When a Bicycle object is created the code in the constructor assigns values to the
fields. We can now write code that reads the field values, or changes them by
assigning new values. Assuming that we have run the code in the previous section,
and have a variable bicyclel that is a reference to a Bicycle object, the following
code expression represents the gear field of the object:

bicyclel.gear

Similarly, bicyclel.numberOfGears represents the numberOfGears field.
Note the dot notation as mentioned above — object name.field name. Here, the object
name is the name of the variable that is a reference to the object. The name we use

to refer to the object also gives a way to work with that object.

This line of code declares a new int variable x and assigns to it the current value of
the gear field of bicyclel.

int x = bicyclel.gear;

M11322909: PROGRAMMING |

We can also change the field value by assigning a new value to it:

bicyclel.gear = 4;

3.8 Constructor parameters

What would happen if you tried to create an object with this code?
bicyclel = new Bicycle(0.5);

What about this?

bicyclel = new Bicycle (0.5, “5”7);

The code for the constructor declares two parameters, the first of type double, the
second of type int. These two lines supply parameters that don’t match the
constructor. The first supplies only one parameter; the second supplies a second
parameter that is a string, not an int.

These lines are not valid ways of creating a bicycle object. The supplied parameters
must match the number and types of the parameters declared in the
constructor. In either case, the compiler will find the mistake and report it as a
compiler error. The compiler does a very important job of checking code and finding
mistakes like this.
What about this?

bicyclel = new Bicycle();

This is actually valid! A class can have more than one constructor — as many as you
like, as long as the parameter list is different for each one. This is called constructor
overloading. If you look at the code for the whole Bicycle class, you will see that
there is a second constructor that takes no parameters at all, which matches the line
of code above. This constructor sets sensible default values when no actual values
are specified, and is known as a default constructor.

So, when the compiler finds code which creates a new object it:
1. Checks the class to see if there is a constructor that has a matching
parameter list
2. Reports an error if not (and the program doesn’t compile successfully)
3. Selects the constructor with the matching parameter list

M11322909: PROGRAMMING |

Summary

You’ve been introduced in this lecture to the following concepts:

Code blocks, Code for classes, Fields, Variables, Constructors, Creating
Objects

In the next lecture you will start learn how to write methods in your classes that allow
objects to perform actions.

