
8. CASE STUDY: CREATING AN OBJECT ORIENTED PROGRAM

Creating a program ... 1
The GCU adventure game - requirements ... 1
Objects in the adventure game .. 2
Modelling the adventure game ... 3
Incremental development ... 4
Increment 1: interaction between game and players .. 4
The Player class in Java ... 5
Implementing the interaction ... 7
The game loop ... 8
The Game class in Java .. 9
Wrap up .. 12

Creating a program
As you have learned, an object oriented program works by creating objects that
model the important entities (“things” or concepts) that are relevant to the purpose of
the program. Much of the work of the program is done by the objects as they
collaborate with each other by sending messages that result in other objects
performing the actions defined in their methods. You have learned how to create
Java classes that define templates to allow objects to be created, and how to write
code to create objects and call methods. You have also learned that in order to be
executable, the program needs an entry point, the main method, which runs first
when the user commands the program to execute. The main method creates one or
more objects that are needed to get started. The program may also need a user
interface that allows the user to interact with it while it is executing.

To create a program you need to:

• Find out exactly what the program has to do – the requirements
• Decide what types of objects are needed to meet those requirements
• Design and write code for the classes to allow those objects to be created

Sounds simple! Actually it isn’t. It takes experience to do it well, and you will learn
more about program design in this and other modules. In the next few lectures you
will see an example of a program being developed.

This program will require more different kinds of objects than the simple examples
you have seen so far. You will also see some new Java programming features and
techniques that are needed to create the classes for the program. The example
program is a simple game, but the way it is created would be similar for any kind of
program.

The GCU adventure game - requirements
The GCU adventure game is a text adventure game (sometimes known as
interactive fiction). Text adventure games are a legacy from a time when computing
power was small, when terminal access was commonplace, and when monochrome
graphics was "state of the art". Players used imagination, fired by descriptions of old

 M1I322909: PROGRAMMING 1

 2

abandoned caves, dungeons, and even futuristic spaceships populated by Vogons.
For example, the screenshot shows the opening screen of the classic Hitchhiker’s
Guide to the Galaxy text adventure.

OK, our own game is really not very adventurous. In fact it’s based loosely on the
“World of Zuul” game in Barnes and Kölling’s book Objects First (highly
recommended as additional reading), which the authors describe as the “world’s
most boring adventure game”. Ours is not any more exciting, but it will do fine for our
purposes, though. It has a text-based user interface, which means we can create a
fully-working interactive game without having to learn just yet about how to create
graphical user interfaces.

The game centres around a character travelling through a world which consists of
rooms within a university campus. Each room has a description. Rooms have exits
which lead to other rooms. Each room can contain several items which may be used
by a character when in that room. An item will also have a description. The player
navigates through a world by typing commands (go north, go south, quit, and so on).

The main program requirements are as follows:

• The game world consisting of connected rooms should be created when the
program starts

• The game should allow the player to take one turn after another
• The sequence of turns should repeat until a command is given to quit
• At each turn, the player can type a command to specify the action which he or

she wants to take during that turn
• The player should be able to navigate from one room to another
• The player should be able to use any items which are located in a room
• The player should be able to ask for help during any turn

Objects in the adventure game
We can use the description and requirements above to make a first attempt at
designing an object-oriented program that will implement the game. What kind of

 M1I322909: PROGRAMMING 1

 3

objects will we need? The words highlighted in bold may help. These are all nouns,
and name some ‘things’ that may be objects in the game. Let’s look at these:

• game – this will be an object which sets up the game world and controls the
game play. There will be only one game object.

• room – this will be an object which represents a room in the game world.

There may be many rooms.

• item – this will be an object which represents an item in a room. There may
be several items in each room.

• description – this simply describes a room or item, and should probably

be a property rather than an object in its own right

• exit – if you think about it, an exit from a room is really just a way into
another room, so an exit is actually a way of referring to a room object, not
another type of object

• player – this will be an object which represents a player. A player will be in

one room at any point in the game. There will be only one player in the
game. The player should have a name, which will be a property of the object.

• command – it may not be immediately obvious that a command will be an

object, but the job of representing the player’s input may be quite
complicated. For example, we need to check whether the words the player
types are in fact a valid command. Command objects will be useful, and there
will be one object for each input entered by the player.

Modelling the adventure game
So let’s look at a first attempt at a model for the adventure game. A class diagram is
one kind of diagram that you can use to illustrate a model. Here is a class diagram
that shows the classes which will be needed to create these objects.

Game

-name
Player

-description
RoomCommand

-exit

-description
Item

 M1I322909: PROGRAMMING 1

 4

The diagram shows Game, Room, Item, Player and Command classes, with
properties as described above. At this stage we have not decided on the methods
that each class will need, and there may be additional properties needed also.

Unlike the example you saw earlier, this class diagram has many classes. The links,
or associations, between the classes in the class diagram show that objects will
interact in some way. For example, a game object will interact with a player object.
We’ll look at these interactions in more detail as we go along.

Note that the Room class is linked to itself – this is because we noted above that a
room’s exit is actually a reference to another room object, so rooms can be linked
with each other.

While it is not the only part of a model of a system, the class diagram is very
important when you start to build the system as a Java program. The classes
become the Java classes that you need to write.

Incremental development
We now know what kind of objects are required, and so what classes need to be
created. It would not be wise, however, to go ahead and write all the classes at once.
Instead, we will build up the program in smaller stages. Each stage, or increment,
will create a version of the program that runs, but implements only part of the list of
requirements for the program.

The class or classes created in each increment should be tested to make sure they
work as they should. Then, in the following increments we will implement more
requirements by adding further classes and/or adding new capabilities to the classes
that have already been created. At each stage we will take the class in the original
class diagram above and think carefully about what properties and methods need to
be included for that stage. We will also think about any associations between classes
and how they need to be implemented.

Increment 1: interaction between game and players
In the first increment we will meet only the following requirement:

• The game should allow the player to take a turn…

What classes do we need to create for this? It sounds like we just need Game and
Player, so we will start to create Java code to implement the Game and Player
classes. It is important that we write the code so that game and player objects can
interact the way we want them to.

We said that there will be only one game object, and that there will also be one
player. The player will be part of the game. In fact, the game will create its player
object as part of the set up. The game will then need to communicate with the player
during the game play – it will send a message to to tell the player to take a turn.

Since the player is part of the game, we say there is a “has-a” relationship between
Game and Player. We can also describe this as a “whole-part” relationship.

 M1I322909: PROGRAMMING 1

 5

We can now add some more detail to the model for these classes. The figure shows
the class diagram for these classes with some additional features based on the
description above.

+setUp()
+play()

Game

+takeTurn()
-name

Player

-players1

*

The Player class in Java
The code for the player class is shown below. Note that there is one field, name,
which is accessed publicly through getter and setter methods.

/**
 * Class Player
 *
 * Represents a player in the game
 *
 * @version 1.0
 */
public class Player
{

 // the player's name
 private String name;

 /**
 * Constructor for objects of class Player
 */
 public Player(String name)
 {
 this.name = name;
 }

game can setup and play

one (1) game,
one (1) player

player can take turn

arrow direction means
game can send message
to player

1

 M1I322909: PROGRAMMING 1

 6

 /**
 * the player takes a turn in the game
 */
 public void takeTurn()
 {
 System.out.println("Player " + name +
 " taking turn...");
 }
 /**
 * returns the name of this player
 */
 public String getName()
 {
 return name;
 }

 /**
 * set a new name for this player
 */
 public void setName(String name)
 {
 this.name = name;
 }
}

Note that this will not be the final version of the Player class. For now, it has just
enough functionality to meet the requirement for this increment.

Testing the Player class
It is important to test your code during each increment. You can test the (partially)
completed program. You should also test each class individually to ensure that it can
perform its actions correctly – BlueJ makes it easy to test each class.

You can try creating the Player class for yourself. Open the adventure project
which you can download from GCULearn. Add a new class called Player. Open the
Player class for editing and replace the existing code with the code above, and
compile the class.

Create a new Player object in the BlueJ object bench. Choose any name you want.
Test the class as follows:

1. Select Inspect from the object’s right-click menu and check that the name
field has the value you chose

2. Run the getName method and check that it returns the value of the name
field

3. Run the setName method and enter a new value for the name field, then
Inspect the object again to check that the value has been changed

4. Run the takeTurn method and observe the result

The takeTurn method does not do anything useful yet. All it does is print out a
message which shows that the method has been called. We will complete this
method later.

 M1I322909: PROGRAMMING 1

 7

Implementing the interaction
If you look through the code for the Player class, there is no mention of the Game
class. That is because a Player object does not need to communicate with the
Game – it simply takes a turn when it is told.

However, the Game does need to communicate with its players, to tell them to take
their turns. The Game class will therefore need a reference to Player to allow it to
send a message.

KEY POINT

Sending a message to an object is done by calling a method of that
object. The Game tells a Player to take its turn by calling the takeTurn
method of the Player object

Using a code pattern
We now have to solve the problem of how we allow Game to communicate with
Player?

 It is very common for classes to be related with a “has-a” relationship like this.
Common problems often have common solutions that are based on the experience
of people who have solved the problems successfully in the past.

In programming, these solutions are known as patterns. The pattern we will use
here can be described like this:

CODE PATTERN: “HAS-A”

Problem: how do you implement a “has-a” relationship, where a “whole” object needs
to send messages to its “part” objects?

Solution: the class that needs to send the message has a field whose type is the name
of the other class.

So the Game class should have a field declared like this:

public class Game {

 // the player
 private Player player;
 ...

The field, or instance variable, player is a reference to an object of type Player.

 M1I322909: PROGRAMMING 1

 8

We can represent this in an object diagram:

The setup code in Game should then be like this.

 private void setUp()
 {
 player = new Player();
 }

Within the play method of Game, a message should then be sent by calling the
takeTurn method of the player field. Note the method call syntax, which includes
the brackets (empty as there are no parameters for this method).

 public void play()
 {
 ...
 player.takeTurn();
 ...
 }

The Player object will then respond by running its takeTurn method.

The game loop
Game play usually involves a game loop, which repeats until a signal is given to end
the game. In our Game class, the game loop will be part of the play method. We can’t
do very much in the game yet, so we will implement a minimal game loop which
simply tells the player to take a turn and then exits.

 public void play()
 {
 // Enter the main command loop.
 // Here we will repeatedly read commands and execute
 // them until the game is over.

 boolean finished = true; // put this in temporarily
 // so game finishes
 // after one turn
 do
 {
 System.out.println("Player:" + player.getName());
 player.takeTurn();
 } while (! finished);

game1: Game

player

player: Player

name Player 1

 M1I322909: PROGRAMMING 1

 9

 System.out.println(
 "Thank you for playing. Good bye.");
 }

This is a do-while loop, so the code inside it will run at least once. The boolean
variable finished is a flag – setting the value of the flag to true will cause the game to
finish. In the final, playable version of the game, the flag will be set when a player
enters a command to quit. However, we are not ready to handle commands yet, so
we will set this to true immediately, so that the game loop will terminate after one
complete turn.

The Game class in Java
The complete code for the initial version of the Game class is shown below. There are
a few things to note here:

• The setup method is called in the Game constructor, which makes sense as
instantiating a new game object should include setting up the game world.

• The setup method is declared private as it will not be called by any other
object.

• The code in the setup method creates the Player object after reading in the
player’s name from the terminal. This is done with the help of a Java library
class called Scanner – we will look at this again in a later lecture

• There is another private method, printWelcome, which is used by the play
method.

• The only public method, then, is play. That means that the only thing that
can be done with a Game object is to tell it to play.

import java.util.Scanner;

/**
 * Class Game
 *
 * Sets up and controls the game

 * @version 1.0
 */

public class Game
{
 // the players in the game
 private Player player;

 /**
 * Create the game and initialise it
 */
 public Game()
 {
 setUp();
 }

 M1I322909: PROGRAMMING 1

 10

 /**
 * Initialize the game world
 */
 private void setUp()
 {
 printWelcome();
 System.out.print("Please enter your name\n>");
 Scanner in = new Scanner(System.in);
 String playerName = in.nextLine();
 player = new Player(playerName);
 }

 /**
 * Main play routine. Loops until end of play.
 */
 public void play()
 {
 // Enter the main command loop.
 // Here we will repeatedly read commands and execute
 // them until the game is over.

 boolean finished = true; // put this in temporarily
 // so game finishes
 // after one turn
 do
 {
 System.out.println("Player:" + player.getName());
 player.takeTurn();
 } while (! finished);

 System.out.println(
 "Thank you for playing. Good bye.");
 }

 /**
 * Print out the opening message
 */
 private void printWelcome()
 {
 String welcome = "\n";
 welcome += "Welcome to the World of GCU!" + "\n";
 welcome += "World of GCU is a new, incredibly boring
 adventure game." + "\n";
 welcome += "\n";
 System.out.print(welcome);
 }

 /**
 * Create and play a game.
 */
 public static void main(String[] args)
 {
 Game game = new Game();
 game.play();
 }
}

 M1I322909: PROGRAMMING 1

 11

Testing the Game class
You can try creating this class for yourself using the adventure project. Open the
project, which should contain Player and Game classes, and compile the classes.
Test the Game class as follows:

1. Create a new Game object in the BlueJ object bench, accepting the default
name for the instance. As the setup method requires the input of a player
name the terminal window should open and you should be prompted to enter
a name. Once you have done so a Game object should appear in the object
bench.

2. Select Inspect from the object’s right-click menu and check that there is a

field that is a reference of type Player.

3. Click the Inspect button beside the player field and check that the field
refers to a Player object with a name field containing the value you entered
when creating the Game object. This shows that the Game object has correctly
created a Player object.

4. Call the play method of the Game object. Check that the welcome message
is printed, and that the takeTurn method is called for the Player object.
Look at the lines which appear in the terminal window – which method, in
which class, do you think caused each one of these lines to be printed?

These tests show that a Game object does what we want it to. Finally, we can actually
run the program using the main method.

5. Right-click the Game class in the BlueJ class diagram, and select main.
Remember that main is a static method, so you call it using the class, not
using an object. Click OK in the Method Call box. Remember that the main
method simply creates a Game object and calls its play method. Check that
you see the output from the play method.

 M1I322909: PROGRAMMING 1

 12

Wrap up
You’ve been introduced in this lecture to the following concepts:

Modelling, Incremental development, “has-a” relationship, Code patterns

In the next lecture you will see the next increment of the game. We will add some
rooms to the game and put some items in the rooms for the players to use.

	8. Case Study: Creating an Object Oriented program
	Creating a program
	The GCU adventure game - requirements
	Objects in the adventure game
	Modelling the adventure game
	Incremental development
	Increment 1: interaction between game and players
	The Player class in Java
	Testing the Player class

	Implementing the interaction
	Using a code pattern
	CODE PATTERN: “HAS-A”
	Problem: how do you implement a “has-a” relationship, where a “whole” object needs to send messages to its “part” objects?
	Solution: the class that needs to send the message has a field whose type is the name of the other class.

	The game loop
	The Game class in Java
	Testing the Game class

	Wrap up

	key point

