
9. DEVELOPING, TESTING AND DOCUMENTING CLASSES

Increment 2: Interaction between rooms and items ... 1
The Item class in Java .. 2
Implementing the interaction ... 3
Static, final and constants .. 6
Adding an Item to a Room – the addItem method ... 8
Designing a search algorithm .. 9
Unit testing .. 11
Exceptions ... 14
Documentation .. 16
The Player class - using the Item and Room classes ... 18
The enhanced for loop .. 20
Testing the Player class ... 20
Wrap up .. 21

Increment 2: Interaction between rooms and items
In this increment we will develop the GCU adventure game further to meet the
following additional requirement:

• The player should be able to use any items which are located in a room

To do this we need to create Java code to implement the Room and Item classes
and make it possible for a room to contain items. The link between a room and its
items is similar in some ways to that between the game and the player. Each room
can hold several items, and there is a “has-a” relationship between Room and Item.

However, the main difference is that while a game has a single player, a room can
have several items.

We also need to note that:

• There will be more than one room in the game world
• Each room may have a different number of items
• We would like to be able to add and remove items from a room as the game

progresses

The interaction will need to be a bit different too. The Player object has a behaviour
takeTurn. The Game object sends messages to the Player object to tell it to
perform this behaviour. The Item class will have a behaviour called use, which will
perform whatever action the item is used for. Another object can then send a
message to an item by calling the use method. However, it would not make sense
for the room to use the item. What kind of object do you think should use an item?

The room simply has the job of holding the items, and providing these items to other
objects to use. It can either provide one item (getItem) or its whole set of items
(getItems).

 M1I322909: PROGRAMMING 1

 2

We can now add some more detail to the model for these classes. The figure shows
the class diagram for these classes with some additional features based on the
description above.

+addItem()
+getItem()
+getItems()
+removeItem()

-description
Room

+use()
-description

Item

-items1

*

The Item class in Java
The code for the Item class is shown below. Note that there is one field,
description, which is accessed publicly through getter and setter methods.

/**
 * Class Item
 * Represents an item, in the game
 *
 * @version 1.0
 */
public class Item
{
 // a description of the item
 private String description;

 /**
 * Constructor for objects of type Item
 *
 * @param description value for the description property
 */
 public Item(String description)
 {
 this.description = description;
 }

 /**
 * gets the value of description
 *
 * @return the value of description
 */

room can add an item, get
an item, get all its items
and remove an item

one (1) room, many (*) items

item can be used

no arrow, neither type of
object will send a
message to the other

 M1I322909: PROGRAMMING 1

 3

 public String getDescription()
 {
 return description;
 }

 /**
 * sets the value of description
 *
 * @param description the new value of description
 */
 public void setDescription(String description)
 {
 this.description = description;
 }

 /**
 * use the item by asking it to perform some action
 */
 public void use()
 {
 System.out.format(
 "You are using item: %1$s\n", description);
 }
}

Testing the Item class
You can try testing this class for yourself in BlueJ in the same way as you tested the
Player class previously. You can find the classes for this increment in the
adventure project for lecture 8 on GCULearn.

Implementing the interaction
If you look through the code for the Item class, there is no mention of the Room
class. That is because an Item object does not need to communicate with the Room
it is in.

As we said before, the Room does not need to communicate with its items. However,
it will need to have the ability to store its items. This interaction can be implemented
using the same “HAS-A” pattern that we used for Game and Player. Remember that
the solution for that pattern was:

“the class which needs to send the message has a field whose type is the name of
the other class.”

However, as you have seen, the relationship between Room and Item is a little
different as it is a one-to-many relationship. So how do we implement this? We could
have several fields, each of type Item. This might not be a very good solution,
however:

• If we allow a large number of items in a room, then we would need many
similar fields in the Room class

• What if we decide later to change the number of items allowed – then we
would have to add a new field or fields to the class

 M1I322909: PROGRAMMING 1

 4

This is a situation where we want to work with many objects of the same type. As you
saw in Lecture 6, arrays are useful when we want to do this. With an array, we can
have one field that refers to an array of Item objects. If we want to change the
number of items allowed we just have to change the size of the array.

Using an array is a common solution when a “has-a” relationship is also a one-to-
many relationship. This leads to a new pattern that is really just a slight variation on
the one you have seen before:

CODE PATTERN: “HAS-A (ARRAY)”

Problem: how do you implement a “has-a” relationship, where a “whole” object needs
to send messages to its “part” objects?

Solution: the class which needs to send the message has a field which is an array of
objects whose type is the name of the other class.

Room class implementation
The outline of the Room class looks like this. Note that The Room class has a field
items which is an array of objects of type Item.

public class Room
{
 // a description of the room
 private String description;

 // the maximum number of ITEMS
 private static final int MAX_ITEMS = 20;

 // the number of items currently in the room
 private int numberOfItems;

 // the items in the room
 private Item[] items;

 public Room(String description)
 {
 this.description = description;
 items = new Item[MAX_ITEMS];
 numberOfItems = 0;
 }

 public String getDescription()
 {
 return description;
 }

 public void addItem(Item newItem)
 {
 ...
 }

 M1I322909: PROGRAMMING 1

 5

 public Item[] getItems()
 {
 return items;
 }

 public Item getItem(String description)
 {
 ...
 }

 public boolean removeItem(String description)
 {
 ...
 }
}

Defining the number of items allowed in a room
We need to specify a size for the array, which is the constant MAX_ITEMS. Like a
variable, a constant allows you to specify name that refers to a value, but unlike a
variable its value will never change while the program is running. By convention
constants are given names that are all capitals.

In this code MAX_ITEMS is assigned the value 20, so that a room can contain at most
20 items. Note that the line of code that defines MAX_ITEMS contains a couple of
unfamiliar key words which we will look at in more detail shortly.

It is useful to use a named constant instead of the value itself in your code because
you can assign a value to the constant once in class and refer to it by name
anywhere it is used in the class code. That means that if you want to change the
code to use a different value you only need to make the change once, and don’t have
to change every place in the code that the value is used. In the Room class, if you
want to change the design so that more items can be contained all you need to do is
change the value assigned to MAX_ITEMS.

So, we have specified the maximum number of items in a room using the array size.
However, rooms will not all have the same number of items. The array may hold any
number of objects up to the maximum, so we also need to keep track of the number
of items that have been added, using the field numberOfItems. This will let us
make sure that when we add a new item, it goes into the right place in the array.

Null references
Note that the array items is an array of objects. The array is created in the
constructor of Room. However, the constructor does not actually create any Item
objects. The array when it is first created contains null references. A null reference
is a reference that can refer to an object but no object has been assigned to it yet. It
points to “nothing”. So, each element in the items array can point to an Item object,
but no Item objects have been created yet.

Instead of being created when the room is created, the items can be created later
and added to the room. When the first Item is added, the first element of the items
array will point to it, while the remaining elements are still null references.

 M1I322909: PROGRAMMING 1

 6

What objects do we have?
An object diagram for a room and its items might look like this (the array contains two
items here and the remaining array elements are null references). Note that the
items field refers to the array, which itself is an object that contains references to
Item objects.

Static, final and constants
Look at this line of code from the Room class that defines the value of MAX_ITEMS.
MAX_ITEMS is a constant, and this is how constants are typically defined in Java:

 private static final int MAX_ITEMS = 20;

There are two key words here which may be unfamiliar to you – static and final.
What do these mean, and why are they used here?

Class and instance members and the static key word
When you declare a field in a class, like this example,

public class MyClass {
 int instanceVar;

you declare an instance variable. Every time you create an instance of a class, the
runtime system creates one copy of each the class's instance variables for the
instance. To use the value of the variable (assuming it is not declared private) you
need to have an instance of the class, i.e. an object.

MyClass anObject = new MyClass();
int i = anObject.instanceVar;

If a variable is declared with the static keyword, it is a class variable. There is one
copy of each class variable shared between all instances of the class.

static int classVar;

To use the value of the class variable, you do not need an instance – you simply use
the class name:

int i = MyClass.classVar;

Room1:Room

items

items[0]: Item

description

items[1]: Item

Items:Item[]

 [0]

 [1

 [2]

 [3]

description

...up to [20] description

null references

numberOfItems

 M1I322909: PROGRAMMING 1

 7

In BlueJ you can inspect class variables but you need to click the Show static fields
button in the object inspector window to see them. This is what you can see when
inspecting a Room object:

Methods are similar. Your classes can have instance methods and class methods.
Instance methods operate on the current object's instance variables but also have
access to the class variables.

 public void instanceMethod()
 {
 // do some action using instance var
 instanceVar = instanceVar * 2;
 }

Class methods, on the other hand, cannot access the instance variables declared
within the class (unless they create a new object and access them through the
object). Class methods can access class variables.

 public static void classMethod()
 {
 // do some action using class var
 classVar = classVar * 2;
 }

To use a class method, you do not need an instance – you simply use the class
name:

MyClass.classMethod();

In BlueJ you can call a class method from the class in the main window area without
having to have an object on the object bench. Note that you have already been using
a (rather special) class method – the main method is always defined as a class
method in one of the classes in a project:

Class methods provide a way of providing specific functionality without the need to
create an object. One common usage of class methods is as factory methods,
which can allow objects to be instantiated without using constructors.

 M1I322909: PROGRAMMING 1

 8

Note that you can, although there is usually no point in doing so, access class
variables and methods through an instance:

Constants and the final key word
To create a named constant in Java you use the final type modifier. A field declared
final cannot be changed in the program.

public class CircleStuff {
 public final float PI = 3.1416;
 ...
}

Class constants
The static modifier makes these constants class constants. They belong to their
classes, not to the objects derived from these classes. This means that there is only
one copy of the constant in memory. Without the static modifier, each object derived
from the class would have its own copy of the constant

Static and final – a summary
Don’t confuse the effect of the key words static and final!

• static

o Class variable (or method)
o Shared by all instances of a class

• final
o Constant value
o Can’t be changed after it is assigned

We often use the combination static final to define a class constant.

Adding an Item to a Room – the addItem method
Now we need to fill in the details of the methods of the Room class. First, the
addItem method. This simply takes an Item object and sets the next available
array element in items to refer to that object.

 public void addItem(Item newItem)
 {
 if(numberOfItems < MAX_ITEMS) // check array not full
 {
 items[numberOfItems] = newItem;
 numberOfItems++; // increment by one
 }
 }

 M1I322909: PROGRAMMING 1

 9

The object diagram would look like this after this method runs:

An example of the use of this method will be within the setup method of the Game,
which might have code like this:

Item newItem = new Item(“torch”); // creates a new Item object
startingRoom.addItem(newItem); // sets next available array
 // element in startingRoom
 // .items to refer to new
 // Item

The getItem and removeItem methods are a little bit more complicated, and will
require a bit of thought to work out the algorithms which are needed to implement
them. We will look at getItem here, and leave removeItem as an exercise.

Designing a search algorithm
As you learned previously, an algorithm is a list of well-defined steps for completing a
task. We need to work out what steps are required to search for a particular item and
to remove a particular item.

The getItem method must take a string as a parameter, and return the Item in the
items array which has that value of description. How do we find a particular element
in an array? The simplest way to do this is to start at the beginning of the array, and
check each element in turn to see if it is the one we want. This is called a linear
search.

We can write the algorithm for the search using pseudocode. The search needs to
repeatedly check items until the required one is found or we run out of items, and a
while loop is ideal for this. Here’s a first attempt:

Room1:Room

items

items[0]: Item

description

items[1]: Item

items:Item[]

 [0]

 [1

 [2]

 [3]

description

...up to [20]
description numberOfItems

items[2]: Item

description newItem

reference to new Item object, passed
to Room as a method parameter –
note that more than one reference
can refer to the same object!

 M1I322909: PROGRAMMING 1

 10

1. while (target not found and end of array not reached)
2. check next item
3. return target item

The step in line 2 looks as if it needs a bit more thought. How do we check the item
and what do we do when the item is the target item? We’ll need to keep count of how
far through the array we get so that the correct item can be returned. We’ll also need
to set a flag that will signal that the target item has been found.

Let’s refine this algorithm to put a bit more detail in it. The numbering here helps us
keep track of how the lines from the first version have been refined:

1.1 count = 0
1.2 set target not found
1.3. while (not found and end of array not reached)
2.1 if item is target
2.2 set target found
2.3 increment count
3.1 return item from array with index = count

As you have seen earlier, this process of adding more detail to an algorithm is called
stepwise refinement. We have done two steps here, and we’re pretty much ready to
write the real Java code. A more complicated algorithm might require more
refinement steps.

These lines look as though they can be translated directly into Java. Here is the code
for getItem:

 public Item getItem(String description)
 {
 int i = 0;
 boolean found = false;
 while(!found && i<numberOfItems)
 {
 if(items[i].getDescription().equals(description))
 {
 found = true;
 }
 i++;
 }
 return items[i];
 }

This code looks OK, and it will compile. However, it has at least two serious flaws.
Can you see what they are?1

Before we try to write any more code, we really need to do some testing of the Room
class to check that the methods really do what they are supposed to do.

1 Variable i will have wrong value as it is incremented after target found ; shouldn’t try to return an array
element if the target is not found

 M1I322909: PROGRAMMING 1

 11

Unit testing
The process of testing an individual class is known as unit testing. This contrasts
with testing the complete program. Unit testing is vitally important in object oriented
programming. Unit tests can be repeated as we continue to develop a class to make
sure that we don’t inadvertently break a part of a class which was already working
correctly.

We’ve already done a little bit of unit testing. We used BlueJ to run some tests on the
first versions of the Player and Game classes. Good unit tests actually need some
careful thought to make sure that they test a class thoroughly in all possible
circumstances.

So far, the Room class has methods to add an item and to get a specified item. Here
are some test cases that we should run. If any of these actions do not produce the
desired result, we will need to revise the code and try again.

• Add items to the array
• Add sufficient items to fill the array
• Try to add an item when the array is full (the desired result is that this should

not work)
• Get an item which is in the array
• Try to get an item which is not in the array when the array is not full, and

when it is full

Creating a test class
The best way to perform unit testing on a class is to use a test class. A test class is a
special kind of class which defines the way a specific model class will be tested.
BlueJ can help you create test classes. It makes use of a popular unit test framework
called JUnit to do so.

If you right-click on the Room class in the BlueJ class diagram you can select Create
Test Class from the popup menu. A new class called RoomTest will be added to the
project – it will be coloured green in the diagram to show that it is a test class.

Open the RoomTest class for editing. You will see that it has a method called
setup. This method can be edited so that it sets up some test objects. Add instance
variables and code in the setup method as follows. This will create some test objects
– a Room and three Items. It then adds the Items to the Room.

 private Room room1;
 private Item item1;
 private Item item2;
 private Item item3;
 ...

 M1I322909: PROGRAMMING 1

 12

 protected void setUp()
 {
 room1 = new Room("kitchen");
 item1 = new Item("cooker");
 item2 = new Item("fridge");
 item3 = new Item("knife");
 room1.addItem(item1);
 room1.addItem(item2);
 room1.addItem(item3);
 }

This saves us from creating these objects manually every time a test is run. If we
now right-click on the RoomTest class in the class diagram, we can select the Test
Fixture to Object Bench option. The Room and three Item objects now appear in the
Object Bench. You can inspect the Room to see that the items are there in the items
array.

Running a test
Let’s run one of our tests – Get an item which is in the array.

Right click on the Room object and select getItem(string description) . Enter the text
“fridge” in the method call dialog and click OK. Click Inspect to have a look at the
item that is returned in the Method Result dialog.

Wait a minute! That’s the wrong item. Our Room class has failed this test rather
dismally. The getItem method does return an item, but it is the wrong one.

Look at the code for getItem – can you see why this is happening? The following
version of the method fixes the problem:

 public Item getItem(String description)
 {
 int i = 0;
 boolean found = false;
 Item target = null;
 while(!found && i<numberOfItems)
 {
 if(items[i].getDescription().equals(description))
 {
 target = items[i];
 found = true;
 }
 i++;
 }
 return target;
 }

 M1I322909: PROGRAMMING 1

 13

Now we can run the same test on the modified Room class – it should pass this time.

Test methods and automated testing
The RoomTest class we have created helps us by setting up the same test objects in
the object bench each time we want to run a test. The actual test was done manually.
If we want to do a lot of tests, this can become very time-consuming. It is often useful
to have a series of tests which are run automatically. We can add test methods to the
RoomTest class which BlueJ can then run automatically.

Let’s add a test method to run the same test as before, but this time to do it
automatically. Add the following method to RoomTest.

 public void testGetItem()
 {
 Item target = room1.getItem("fridge");
 assertEquals("fridge", target.getDescription());
 }

assertEquals is a special method used by BlueJ to decide whether a test is
passed or failed. It checks that the actual description value of the Item which is
returned (target.getDescription()) is the same as the expected value,
“fridge”. If not, then the wrong item has been returned, and the test should fail.

BlueJ runs tests automatically when you click the Run Tests button. It runs all test
methods in all test classes which have been added to the current project. This is very
useful when you have a large project with many classes. Sometimes making a
change to the code in one class can cause another related class not to work
correctly. Testing the whole project regularly ensures that this kind of problem is
discovered quickly. This is called regression testing.

At the moment we only have one test class with one test method. If we click Run
Tests, the testGetItem test method will run, and the result is shown in the Test
Results window. The solid bar is coloured green to indicate a pass, and changes to
red if any test does not pass.

 M1I322909: PROGRAMMING 1

 14

If we run the test on a version of Room with the first, incorrect, version of the
getItem method, then the test fails and we can see the details of the failure in the
Test Results window:

Exceptions
Testing can assure you that your code works correctly under the conditions that you
test for. However, unexpected things can sometimes happen while a program is
running. Code that normally runs with no problem can cause the program to
terminate unexpectedly, or crash, under certain exceptional circumstances which
you didn’t anticipate when writing or testing the code. Crashes can frustrate users or,
more seriously, cause them to lose work or data.

How does Java respond to exceptional circumstances? As an experiment, open the
Code Pad in BlueJ and enter the following lines:

int x = 0;
1/x

The second line evaluates the expression 1/x, which is fine for any value of x
except zero. Unfortunately, in this case x is in fact zero, so the expression can’t be
evaluated. You will see a message like this:

Exception: java.lang.ArithmeticException (/ by zero)

 M1I322909: PROGRAMMING 1

 15

The Java platform has detected an attempt to divide by zero and has thrown an
exception as a result. An exception is an object that contains information about the
error condition that has occurred. Java can detect many different error conditions,
and can throw the right type of exception in each case. This one is an
ArithmeticException: if you try to read beyond the end of an array it will throw
an IndexOutOfBoundsException; if a disk failure occurs while reading from a file
it will throw an IOException; and so on.

By default, a program will terminate (i.e. it will crash) when an exception is thrown as
it runs. However, the purpose of exceptions is to give a chance to deal with the error
condition and allow the program to continue to run. You can write code to catch an
exception and take some appropriate action, such as informing the user what has
happened. If you have a section of code in which an error condition may occur you
can enclose it in a try-catch statement, which has the simplest form:

try {
 statement(s)
} catch (exceptiontype name) {
 statements(s)
}

For example, the following version of the code inside the addItem method in the
Room class doesn’t check whether the items array is full. The version you saw earlier
makes sure the next array position to be filled, numberOfItems, is not greater than
the array size MAX_ITEMS. Instead, here the code that adds the item in a specified
position is inside a try block. If the user tries to add an item when the array is full
numberOfItems, will be larger than the maximum index of the array and an
IndexOutOfBoundsException will be thrown. However, the program will not
crash, as this exception is caught and the code in the catch block is run – it just
prints a message to the terminal.

 try
 {
 items[numberOfItems] = newItem; // error may happen
 numberOfItems++;
 }
 catch(IndexOutOfBoundsException e)
 {
 System.out.println("Cannot add
 at position " + e.getMessage());
 }

In this case you could deal with the possibility of adding too many items in two
different ways: either by checking before adding is allowed or by always allowing
adding and catching an exception if too many items are added. In some situations,
such as reading from a file, it is impossible to check or predict errors and exceptions
must be used. What about dividing by zero – should you use a try-catch statement
where a calculation might in some circumstances divide by zero?

It is important to note that exceptions are not just about preventing the program
crashing. They are very useful for providing a consistent way of making the user
aware of unexpected situations that arise as the program runs.

 M1I322909: PROGRAMMING 1

 16

Documentation
A Java object in an object-oriented program is likely to be used by other objects. For
example, in the completed game, an Item object will be used by a Player object.
The interface of a class specifies how objects of that class may be used.

The interface of a class consists of:

• Public fields – fields declared with the public key word
• Public methods – methods defined with the public key word

It does not include

• Private fields – if values of private fields need to be accessed or updated
by other objects then there should be public getter and/or setter methods

• Private methods – some methods may be used by the public methods in a
class but are not themselves available for other objects to use

It is helpful to designers of classes which use your class if you take time to carefully
document the interface of your class. Documentation is done by writing Javadoc
comments in your code. An example of documentation for the getItem method in
Room is shown below:

 /**
 * Returns the item with a specified description
 *
 * @param description description of the specified item
 * @return the specified item
 */
 public Item getItem(String description)
 {
 int i = 0;
 boolean found = false; // flag to indicate item found
 Item target = null;

 // loop until found or all items checked
 while(!found && i<numberOfItems)
 {
 if(items[i].getDescription().equals(description))
 {
 target = items[i];
 found = true;
 }
 i++;
 }
 return target;
 }

start of Javadoc comment /**

parameters and return value

code comments – explain
how code works but not
part of documentation

 M1I322909: PROGRAMMING 1

 17

Viewing documentation
Javadoc comments can be used by the Javadoc tool to automatically generate a set
of HTML pages which document a single class or an entire programme. They are
also used by the BlueJ editor when you choose to view a class as Documentation
instead of Source Code.

BlueJ then shows the HTML documentation page for the class.

The Javadoc comment in the listing above produces the following content in the
documentation page:

 M1I322909: PROGRAMMING 1

 18

Code comments
Not all comments in code are used for documentation. Ordinary code comments
like those indicated in the listing (the ones which don’t start with /**) are there to
explain how the code works. Those comments are there to help someone who may,
for example, have to modify the code later on. They are not there to help the
programmer who is writing code which uses the Room class.

To use the Room class it is only necessary to know that it has a getItem method
which takes a description as a parameter and returns an Item – it is not necessary
to know how the getItem method actually does its job. This is a bit like driving a car
– you need to know, for example, that it has a brake pedal which causes the car to
slow down if you press it. You don’t need to know how the brake mechanism works.

Code comments do not appear in the documentation. Private fields are often
described with code comments to explain their purpose.

The Player class - using the Item and Room classes
We have now created and tested initial versions of the Room and Item classes.
These classes exist in the game because a Player needs to be located in a Room
and can use Items in the room. The Player class therefore needs to be able to
interact with Room and Item.

Let’s add the Player class to the class diagram which was shown earlier in this
chapter:

+addItem()
+getItem()
+getItems()
+removeItem()

-description
Room

+use()
-description

Item

-items1

* +takeTurn()
-name

Player

1
-currentRoom*

1
1

Player and Room
A Player object needs to maintain an association with the current room in which the
player is located. This is an example of the “has-a” code pattern which we have
seen before:

player is linked to current
room

player can use an item

 M1I322909: PROGRAMMING 1

 19

What message will a Player object need to send to a Room object? Well, the room
stores an array of items, so the player may need to ask the room for to provide it with
a list of the available items, and a reference to the specific Item object it wants to
use.

The association between Player and Room will therefore be implemented by having
a field of type Room in the Player class.

public class Player
{
 // the player's name
 private String name;
 // the room in which the player is currently located
 private Room currentRoom;

Player and Item
A Player object does not need to own any items (these belong to a room, not a
player), but it may need to use an Item object. This is an example of a new coding
pattern:

CODE PATTERN: “USES-A”

Problem: how do you implement a “uses-a” relationship, where an object needs to
send a message to another object with which it has no ongoing relationship.

Solution: the class which needs to send the message has a method parameter or local
variable whose type is the name of the other class.

This type of association is a bit like booking a holiday through a travel agent. You
use the agent to making the booking, and you then own that booking – however, you
have no link to the agent once the booking has been made.

The association is implemented in the takeTurn method of Player:

 public void takeTurn()
 {
 System.out.println("Player " +
 name + " taking turn...");
 Item[] items = currentRoom.getItems();
 for(Item it : items)
 {
 if(it!=null)
 it.use();
 }
 }

Note the following features of this method:

1
2

3

 M1I322909: PROGRAMMING 1

 20

1. A message is sent to the currentRoom object, calling its getItems method
2. An array of Item objects is obtained as a result – this is a local variable, and

each Item in the array is itself accessed individually as a local variable.
3. Each Item object is used in turn, by calling its use method

The enhanced for loop
Note in the above code the simplified version of the for loop which is useful for
stepping through all the elements in an array.

 for(Item it : items)
 {
 // do something with the loop variable, it
 }

In this code, items is the array, and the loop steps through the elements of the
array. The loop variable, it, always refers to the current element of the array each
time round the loop. The loop variable type is the same as the type of the data stored
in the array, Item in this case. There is no need to specify an end condition or to
initialise and increment a counter variable

Testing the Player class
You can test the Player class as follows:

• Create a Room object
• Create some Item objects and add these to the Room you have created
• (these could be the same Room and Item objects as we used to test Room)
• Create a Player object
• Call the setCurrentRoom method of the Player, providing the Room you

have created as its parameter
• Call the takeTurn method of the Player object

The output should be something like the following. Look at the code for Item and
Player to see if you can work out which method produces each line of output.

 M1I322909: PROGRAMMING 1

 21

Wrap up
You’ve been introduced in this lecture to the following concepts:

One-to-many “has-a” relationship, Constants, Linear search, Unit testing,
Exceptions, Class documentation, “uses-a” relationship, Enhanced for loop

In the next lecture you will see the third increment of the game. We will use Java
library classes to improve the implementation of Room, and make it possible for
rooms to be connected together to make a “world”

	9. Developing, Testing and Documenting Classes
	Increment 2: Interaction between rooms and items
	The Item class in Java
	Testing the Item class

	Implementing the interaction
	CODE PATTERN: “HAS-A (ARRAY)”
	Problem: how do you implement a “has-a” relationship, where a “whole” object needs to send messages to its “part” objects?
	Solution: the class which needs to send the message has a field which is an array of objects whose type is the name of the other class.
	Room class implementation
	Defining the number of items allowed in a room
	Null references
	What objects do we have?

	Static, final and constants
	Class and instance members and the static key word
	Constants and the final key word
	Class constants
	Static and final – a summary

	Adding an Item to a Room – the addItem method
	Designing a search algorithm
	Unit testing
	Creating a test class
	Running a test
	Test methods and automated testing

	Exceptions
	Documentation
	Viewing documentation
	Code comments

	The Player class - using the Item and Room classes
	Player and Room
	Player and Item
	CODE PATTERN: “USES-A”
	Problem: how do you implement a “uses-a” relationship, where an object needs to send a message to another object with which it has no ongoing relationship.
	Solution: the class which needs to send the message has a method parameter or local variable whose type is the name of the other class.

	The enhanced for loop
	Testing the Player class
	Wrap up

	2
	1
	3

