
11. COMPLETING THE PROGRAM

Increment 4: Completing the game ...1
Introducing interactivity - handling commands ...1
The Command class ..2
The Parser class ...4
Processing a Command...6
The switch statement ...7
The modified game loop ..9
Interfaces ..9
Running the game .. 13
Compiling and running Java programs without an IDE ... 14
Wrap up ... 17

Increment 4: Completing the game
In this final increment we will complete the GCU adventure game. This means we have
to meet the following requirements that were not met in the previous increments:

• The sequence of turns should repeat until a command is given to quit
• At each turn, the player can type a command to specify the action which he or

she wants to take during that turn
• The player should be able to ask for help during any turn instead of navigating

Meeting these requirements will give a program that behaves like a game and allows the
player to engage and interact with the game. It is worth noting that although the game is
a very simple one which is not really fun to play, the model we have built, using sound
object oriented principles and practices, would provide a solid basis for the development
of a more complex and interesting version of the game.

Introducing interactivity - handling commands
Up to this point the adventure game is lacking in interactivity. There is no way for
someone who is playing the game to control what happens. In a text-based adventure
game, players interact with the game by typing commands. There is usually a limited set
of commands that the game understands and which may cause some change in the
game state. The user can type anything at all, but only valid commands will be
understood.

An example of a command might be:

go west

The result of this command would be that the Player object would go to another room,
using the exit from the current room marked west. The first command word (go) indicates
the type of action to take, while the second command word (west) gives additional
information about how to perform the action.

Some commands may have only one command word, for example:

 M1I322909: PROGRAMMING 1

 2

help

This command would simply list the valid (first) command words in the game.

The design of the Player class will change now so that instead of simply using the
objects in the current room, the takeTurn method will have a wider range of possible
actions. This will be achieved by having the takeTurn method process a command.

The Command class
A command is fairly simple –just one, or possibly two, strings. It will be useful, though, to
have a class that represents a command. The Player object will then process a
Command object within its takeTurn method, and perform the requested action. It will be
easier to write the new code in Player to do this if it can get a command as a single
object rather than two separate strings.

We can also put some additional methods into Command to make it more convenient to
use. A method hasSecondWord will provide an easy way to check whether a one-word
or two-word command has been entered. Another method isUnknown will provide an
easy way to check whether a command with an invalid first word has been entered.

Here is the code for the Command class:

public class Command
{
 private String commandWord;
 private String secondWord;

 public Command(String commandWord, String secondWord)
 {
 this.commandWord = commandWord;
 this.secondWord = secondWord;
 }

 public String getCommandWord()
 {
 return commandWord;
 }

 public String getSecondWord()
 {
 return secondWord;
 }

 public boolean isUnknown()
 {
 return (commandWord.equals("?"));
 }

 public boolean hasSecondWord()

 M1I322909: PROGRAMMING 1

 3

 {
 return (secondWord != null);
 }
}

Relationship between Player and Command
There needs to be a relationship between Player and Command because a Player
object will need to be able to send messages to a Command object to, for example, get
the command words.

The Player object does not need to own the Command, it simply uses it in order to get
information about what action to perform. This is another example of the “uses-a” pattern.

CODE PATTERN: “USES-A”

Problem: how do you implement a “uses-a” relationship, where an object needs to send a
message to another object

Solution: the class which needs to send the message has a method parameter or local
variable whose type is the name of the other class.

There is an interesting difference between the Player-Item relationship that you saw
previously and the Player-Command relationship. An Item exists as part of the game
world - it belongs to a Room and stays there ready to be used by any Player who enters
the Room. However, a Command object only needs to exist while it is being
processed. As soon as it has been processed, and the player’s turn in complete, that
Command object is no longer needed and ceases to exist. The next turn will create a
completely new Command object to be processed. Command objects are temporary
objects.

The code pattern is similar, though. The revised version of the takeTurn method of
Player now has a local variable of type Command.

 public boolean takeTurn()
 {
 Command command = ??
 return processCommand(command);
 }

processCommand will be a new method in Player which will contain the code which
performs the action indicated by the Command. Note that we haven’t yet decided how the
Command will be created (hence the ?? which needs to be replaced at some point with
some actual code), so this method is still not complete.

Note that the takeTurn method now returns a boolean value, which will be used in the
game loop to decide whether to exit the loop after this turn.

Turning user input into a Command
There is something missing here. We need something that will do the job of taking the
players’ keyboard input and turning it into commands that can be processed. The player
could potentially type anything at all – one word, two words or more; valid or invalid
commands; complete or partial commands.

 M1I322909: PROGRAMMING 1

 4

This “something” needs to:

• Read in a line of text typed at the command prompt
• Split the input text into individual words
• Check that the first word is a valid command word
• Construct a Command object using the first word and the second word (if there is

one), ignoring any additional words

The Parser class
In an object-oriented program, “something” is usually an object. We will need an object or
objects that can do this job, and so we will need a class to allow these objects to be
created. We didn’t identify this class at the start of the development process – the need
for it has only become clear when looking in more detail at the implementation of one of
the requirements.

The class will be called Parser. A Parser object will not represent an entity or
concept in the game. Instead, Parser is class that performs a specific role in the
program.

Parser is related to both Player and Command. Here is the class diagram for these
classes:

+takeTurn()

-name
-commands

Player

+hasSecondWord()
+isUnknown()

-commandWord
-secondWord

Command

+getCommand()
-commands

Parseruses

uses

creates

The relationship between Player and Parser is very similar to that between Player
and Command – a Player object uses a Parser object. The Parser only needs to exist
while it is doing its job.

Relationship between Parser and Command
A key part of the job of a Parser object is to create a new Command. The relationship
between Parser and Command is an example of a new pattern:

Player can use a Command

Player can use a Parser

Parser can create a
Command

 M1I322909: PROGRAMMING 1

 5

CODE PATTERN: “CREATES-A”

Problem: how do you implement a “creates” relationship, where an object creates an
instance of another class?

Solution: the class which creates the instance has a method which returns a value whose
type is the name of the other class. The instance is newly constructed within this method.

Note that these three classes work together as follows:

• A Player uses a Parser to read input and create a Command
• The Player then uses that Command to decide what action to perform

The following listing shows some key features of the code for the Parser class. You can
download the full code from GCULearn if you want to look at the details of the compete
class.

public class Parser
{
 private String[] commands; // holds all valid command words
 private Scanner reader; // source of command input

 public Parser(String[] commands)
 {
 this.commands = commands;
 reader = new Scanner(System.in);
 }

 public Command getCommand()
 {
 String inputLine; // will hold the full input line
 String word1 = null;
 String word2 = null;

 System.out.print("> "); // print prompt
 inputLine = reader.nextLine();

 // Find up to two words on the line
 ...

 // replace any invalid command word with ?
 if(!isValidCommand(word1))
 {
 word1 = "?";
 }

 // construct and returns Command
 return new Command(word1, word2);
 }

 M1I322909: PROGRAMMING 1

 6

 private boolean isValidCommand(String commandWord)
 {
 // checks whether commandWord is in array of valid commands
 ...
 }

 public String showCommands()
 {
 // returns a list of valid commands
 ...
 }
}

We can now fill in the rest of the takeTurn method in Player:

 public boolean takeTurn()
 {
 Parser parser = new Parser(commands);
 Command command = parser.getCommand();
 return processCommand(command);
 }

The variable commands is an array of type String which contains a list of all the valid
command words which the Player can process. The command list is defined as a field
in Player, which is then passed into the constructor of Parser.

 // valid command words
 private String[] commands = {"go","quit","help"};

The Parser and Command classes have no knowledge in advance of the actual list of
valid commands, and will work with any list supplied by Player (or indeed by any other
class which may use them). If we decide to add more commands later, then the only
class that needs to be changed is the Player class.

Note that we are giving the Player class the responsibility of knowing what commands
are valid. As you will see shortly this makes sense as we also give the Player class the
responsibility for processing the command, so it will have to know what commands it can
process. It is not completely obvious that these responsibilities belong to Player – we could
probably have come up with an equally satisfactory design where these are the
responsibilities of the Game itself. In object oriented programming there is not always just
one possible way to solve a problem.

Processing a Command
The Player class has a method processCommand that uses the command word of a
Command to decide what action to take. It can do one of the following:

• print a message if the command word is “?” (the value set if the user input is not
recognised)

• print a help message if the command word is “help”
• go to another room if the command word is “go”

 M1I322909: PROGRAMMING 1

 7

• return true if the command word is “quit” – this will act as a flag to stop the game
loop

This method is private – it is not intended to be used by a call from another object. The
method will only be called from methods within the Player class. In fact, it will only be
called when the takeTurn method runs. It is defined as a separate method to make the
code in the Player class more readable and cohesive.

In the case of a “go” command, the Command object will be passed to another private
method, goRoom, which will use the second word of the command to decide which exit to
go through. In the case of a “help” command, another private method printHelp will be
called. In the case of a “quit” command, this method will return true, and will return false
otherwise – the return value will be used to decide whether to end to game after this turn.

The code for processCommand is listed here.

 private boolean processCommand(Command command)
 {
 boolean quit = false;

 // get command word and use to select option
 String commandWord = command.getCommandWord();

 if(commandWord.equals("?")) {
 System.out.println("I don't know what you mean...");
 }
 else if (commandWord.equals("help")) {
 printHelp();
 }
 else if (commandWord.equals("go")) {
 goRoom(command);
 }
 else if (commandWord.equals("quit")) {
 System.out.println("the game will
 finish at the end of this round");
 quit = true;
 }
 return quit;
 }

The switch statement
The sequence of if and else statements in the above code is a rather clumsy way of
selecting from a list of choices based on the value of a variable. The switch statement is
a statement that can make this arguably more elegant and readable. In a switch
statement a variable is input as a condition that will determine the choice to be made.
For each choice there is a case, or an action to be carried out. Each case is defined as a
sequence of statements, which should end in a break statement.

The selection statement above can be replaced with the following switch statement. The
condition variable in a switch statement can be an integer, character or string (note that
in older versions of Java, prior to Java 7, strings were not allowed).

 M1I322909: PROGRAMMING 1

 8

// get command word and use to select option
 String commandWord = command.getCommandWord();

 switch(commandWord)
 {
 case "?":
 System.out.println("I don't know what you mean...");
 break;
 case "help":
 printHelp();
 break;
 case "go":
 goRoom(command);
 break;
 case "quit":
 System.out.println("the game will finish
 at the end of this round");
 quit = true;
 break;
 }

The goRoom method
The goRoom method is called if the command word is “go”. Here is part of the code for
this method, giving an outline of how this works.

public void goRoom(Command command)
{
 if(!command.hasSecondWord()) {
 System.out.println("Go where?");
 }
 else
 {
 String direction = command.getSecondWord();

 Room nextRoom = this.getCurrentRoom().getExit(direction);

 if (nextRoom == null) {
 System.out.println("There is no door!");
 }
 else
 {
 this.setCurrentRoom(nextRoom);
 System.out.println(this.getCurrentRoom().
 getDescription());
 // use the items in the room
 ...
 }
 }
}

The first part of the code checks whether the command has a second word – the player
can’t move unless a direction is specified.

 M1I322909: PROGRAMMING 1

 9

If the command has a second word, then we ask the current room for an exit with a label
matching the second word, using the getExit method. If there is an exit with this label,
we change the current room of the player to the room which that exit refers to.

The complete version of this method also loops through the items in the new room and
calls the use method of each one. The code here is based on the code that we used in
the takeTurn method of Player in previous increments before refactoring that method
to process commands. You can download the full code from GCULearn if you want to
look at the compete method.

The modified game loop
We are nearly finished the game. The last thing we will have to do is to modify the game
loop, which is in the play method of Game. The last time we looked at this it simply gave
the player one turn, then stopped. Now, we can make it continue looping until the player
enters a quit command.

Note that the processCommand method returns true if the command is “quit”. The
takeTurn method in turn returns true to the code which calls it, which is the game loop.
The game loop can then use the value returned by takeTurn to set the value of
finished, the boolean variable it uses as a flag to stop the loop executing:

public void play()
{
 printWelcome();

 // Enter the main command loop.
 // Here we repeatedly read commands and execute them until game
 // is over
 boolean finished = false;
 do
 {
 System.out.println("Player: " + player.getName());
 finished = player.takeTurn();
 } while (! finished);
 System.out.println("Thank you for playing. Good bye.");
}

Interfaces
The game is now complete, but before we run it let’s look at an alternative (thought not
necessarily better) approach we could have taken to meet one of the requirements, and
in doing so introduce an object oriented concept that you will find increasingly useful as
you go on to learn more about object oriented programming.

In lecture 9 you saw how to use inheritance to meet the requirement to have different
kinds of items. We could have met this requirement another way, using an interface.
Essentially, inheritance is concerned with types of objects while interfaces are
concerned with what objects can do.

So what does an Item object actually have to do? It needs to be able to be used – a
Player object calls the use method of an item object. The Player doesn’t really care
what type of object it is as long as this use method is available. As far as the Player is

 M1I322909: PROGRAMMING 1

 10

concerned, an item is simply any object which has a method called use which takes
no parameters and a void return type. As long as an object can guarantee to have this
method, then the Player will be happy to use it.

How does an object give this guarantee? In Java we can define a type that actually
represents the guarantee. This is called an interface. An interface contains a list of
methods that are guaranteed to be available. The guarantee that the Player is
looking for can be written as an interface, which we will call Usable:

public interface Usable
{
 void use();
}

An interface is not a class – you can’t use it to create objects. Therefore an interface
doesn’t have instance variables or constructors. It states what can be done, but not how
this can be done, so the methods (only one in this case) don’t have code blocks to
implement the action that is performed.

Implementing an interface
A guarantee is not much use unless someone agrees to honour that guarantee. Similarly,
an interface is only useful if a class agrees to implement that interface. Implementing an
interface means providing all of the methods listed in the interface – and actually
providing code to allow the methods to perform actions. The class can implement those
methods any way it likes – as long as the method is there then the guarantee is
honoured and the Player can use an object of that type. Here is the Item class (with
some details missed out here for brevity) rewritten to implement Usable:

public class Item implements Usable
{
 private String description;

 public Item(String description)
 {
 this.description = description;
 }

 public void use()
 {
 System.out.format("You are using item: %s\n",
 description);
 }
}

And here is another class, Bonus, which also implements Usable, but provides a
different implementation of the use method:

public class Bonus implements Usable
{
 private String description;
 private String codeWord;

 public Bonus(String description, String codeWord)
 {
 this.description = description;

 M1I322909: PROGRAMMING 1

 11

 this.codeWord = codeWord;
 }

 public void use()
 {
 System.out.format("You are using bonus: %s\n",
 description);
 System.out.format("The secret code word is %s\n",
 codeWord);
 }
}

These two classes are different in the way they work, but both, by implementing the
interface, guarantee to provide a use method, so can be used in the same way.

This is different from inheritance, as each class provides all of its own fields and
methods, but they are linked by the fact that they implement a common interface. The
class diagram looks like this:

+use()
-description

Item

+use()
-description

Bonus

+use()

«interface»
Usable

Interface polymorphism
Interfaces allow us to take advantage of polymorphism rather like inheritance does. We
can use the name of an interface as the type of a variable.

 A variable of type Usable can refer to an object whose type implements Usable, for
example the new version of Item shown in this section.

This means we can do this:

Usable myItem;
myItem = new Item(“my item”);

or

Usable myBonus;
myBonus = new Bonus(“my bonus item”);

To apply this in the game, we can change the design of Room slightly so that its items
collection contains Usable references:

run-time type

reference type

 M1I322909: PROGRAMMING 1

 12

private ArrayList<Usable> items;

and you can add any object of a type which implements Usable.

 public void addItem(Usable newItem)
 {
 items.add(newItem);
 }

Therefore the Room can contain any combination of Item and Bonus objects,
and we can be sure because they implement the interface that a Player can use
them. This needs a small modification to the code in Player that uses the items
in a room (in the completed game version this is now in the goRoom method), so
that it now has Usable as the reference type for items. Room has been modified
to return its items as an array of type Usable[].

 Usable[] items = currentRoom.getItems();
 for(Usable it : items)
 {
 if(it!=null)
 it.use();
 }

Interfaces are very useful when you want one type of object to be able to
collaborate with another, but you don’t actually know what kind of object that will
be. By programming with interfaces you can rely on the guarantee provided by
the interface that as long as that object is of a type that implements the
appropriate interface then it can be used successfully. This idea is widely used
within the Java API classes.

can do this as any object which
implements Usable guarantees to
have method use

 M1I322909: PROGRAMMING 1

 13

Running the game
We can run the game simply by right-clicking on the Game class in the BlueJ class
diagram and selecting the main method. The output appears in the terminal window.

Here is an example of game play

However, you do not expect users of your application to run it in BlueJ. Applications are
usually run by clicking on an icon (for applications with a graphical user interface) or
typing a command at a command prompt. BlueJ can package the game project so
that it can be run at a system command prompt.

We select the Project > Create Jar File... menu option in BlueJ. This will package the
contents of the project into a single, executable file, called a Jar. This is similar to a
Windows .exe file.

The main method, which is the entry point which the operating system needs to launch
the application, is in the Game class, so you need to specify that this is the main class in
the Create Jar File dialog.

commands entered at prompt (>)

 M1I322909: PROGRAMMING 1

 14

We can then name the jar file and save it in a suitable location, for example
C:\adventure.jar.

The application can then be run by entering the command:

 java –jar c:\adventure.jar

Compiling and running Java programs without an IDE
Throughout this module we have used the BlueJ IDE (Integrated Development
Environment) to help manage the process of editing, compiling, testing, debugging and
deploying Java applications. Most programmers use an IDE because it helps them to do
their job and to be more productive. BlueJ is designed to help you to learn about object-
oriented programming, while more advanced IDEs like NetBeans and Eclipse (for Java)
and Visual Studio (for C#) will provide support as you develop and apply your skills.

It is, however, useful to know how to work “without a tightrope”. The Java JDK provides a
range of command prompt tools which, together with a simple text editor, can be used to
create and run Java programs without an IDE. We have just looked at one example, the
java command, which can be used to execute a JAR file created with BlueJ.

 M1I322909: PROGRAMMING 1

 15

Here, we will look at how the adventure game application can be compiled and run using
command prompt tools. There are also many other tools in the JDK, including the
javadoc tool for creating documentation.

Compiling
The Java compiler is called javac. To compile a Java source file, for example
Game.java, you use the command:

javac Game.java
In the figure below, the Java source files for the game are in a folder called C:\adventure,
and this is the current working directory. The command:

javac *.java

uses the wildcard character * to select all Java source files in the folder and compile
them. A compiled .class file is created for each class in the Java source files.

Setting paths
Note that for this to work, the folder which contains the file javac.exe needs to be in the
current path. Javac.exe is usually in a folder called bin within the JDK installation folder.
You may need to add the Java bin folder to your path.

In Windows, the PATH environment variable contains a list of folders that Windows will
search in when it is asked to execute a file that is not in the current folder. Other
operating systems that support Java have similar environment variables that need to be
set.

Instructions for setting the PATH variable for various operating systems can be found at
http://java.com/en/download/help/path.xml

Running
We can run the program by using the java command, specifying the name of the class
which contains the main method. The command is:

java Game

http://java.com/en/download/help/path.xml

 M1I322909: PROGRAMMING 1

 16

When the Game class executes, it also requires the class files for the other classes in the
game, for example Player.class and Room.class, which are in the current folder.

The java command is the same one we used earlier to execute a JAR file. The –jar
option is required to execute a JAR. Note that the java command can also be used to
create a JAR file. Deploying an application as a single JAR is more convenient than as a
collection of separate class files.

Creating documentation
You saw earlier that BlueJ can generate and show a documentation view of a class,
making use of any javadoc comments you include in your code. The command line
javadoc tool can do the same thing, but is much more powerful. For example, it can
generate documentation for a complete program, as a set of HTML pages similar to the
Java API documentation pages. In fact, Oracle’s Java API documentation is created with
the javadoc tool.

The following command will generate documentation for all the source code files in the
current directory, and place the results in a subfolder called docs.

javadoc –d docs *

A list of messages in the command window shows the progress of the operation. If
documentation comments are incomplete, for example missing @param elements, then
you will see warnings. When the operation is complete you can view the results in a web
browser, and you can browse all the classes.

 M1I322909: PROGRAMMING 1

 17

Wrap up
You’ve been introduced in this lecture to the following concepts:

Switch statement, Interfaces, Jars, Java command-line tools

In the next lecture you will learn about using a more advanced Java IDE and to create
Graphical User Interfaces for Java programs.
.

	11. Completing the Program
	Increment 4: Completing the game
	Introducing interactivity - handling commands
	The Command class
	Relationship between Player and Command
	CODE PATTERN: “USES-A”
	Problem: how do you implement a “uses-a” relationship, where an object needs to send a message to another object
	Solution: the class which needs to send the message has a method parameter or local variable whose type is the name of the other class.

	Turning user input into a Command

	The Parser class
	Relationship between Parser and Command
	CODE PATTERN: “CREATES-A”
	Problem: how do you implement a “creates” relationship, where an object creates an instance of another class?
	Solution: the class which creates the instance has a method which returns a value whose type is the name of the other class. The instance is newly constructed within this method.

	Processing a Command
	The switch statement
	The goRoom method

	The modified game loop
	Interfaces
	Running the game
	Compiling and running Java programs without an IDE
	Compiling
	Setting paths

	Wrap up

