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Chapter 1

Introduction

This document contains an overview of the Maths Summer School, each topic will appear as a separate
chapter. A full set of notes in PDF format can be obtained here: PDF version. This PDF version will
not contain certain embedded elements (videos and interactives). The PDF should hopefully indicate where
content such as this has been omitted.

To help draw your attention to various key elements in the notes you will find some colour-coded boxes.
Everything in boxes is likely to be particularly useful to read.

Though if interested you will find the content is approximately:

Laws and Rules

Examples

Warnings

Comments

Definitions

Practice questions

The notes also contain superscripts like this one1. Their purpose is generally to provide further information
which while strictly not necessary2 might prove useful if you want a further explanation of a particular point.
Mostly they provide a little more context or example to clarify something in a sentence.

It is strongly recommended that you attempt the questions embedded in the notes as you go along,
there are also specific sections at the end of the notes with many more examples to try later for revision
purposes (see Sections 6, 7 and 8).

1you found it!
2hence it’s hidden away
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Chapter 2

Summary of chapters

These notes contain three chapters: Algebra, Vectors and Matrices. Certain elements in the vectors chapter
are useful for understanding the matrix chapter, and the general algebra rules apply to most areas of maths.

2.1 Algebra
This chapter will introduce you to a range of standard topics in Algebra, from working with mathematical
operations, to solving a variety of different types of standard equations. It will no doubt start at a level you
have seen before, but will hopefully also provide some more in depth discussions about topics you have seen
before, and help build up your toolkit for tackling algebra.

2.2 Vectors
This chapter will introduce you to what may be a new type of mathematical object, a vector. They provide a
way to store more than just a single number behind an object we might algebraically just call 𝑣. Vectors will
be a way to store both length and direction inside one object. This chapter will introduce you to the standard
algebra possible on such objects, a variety of different (but equivalent) notations along with applications of
their usage in two and three dimensions.

2.3 Introduction to Matrices
Matrices1 are another new type of mathematical object, this time grids of numbers. You will again check how
to do basic algebra on matrices, before learning how matrix multiplication works. A wide range of adjectives
used with matrices will be discussed, before introducing the idea of a matrix determinant and inverse. The
chapter ends with direct applications of inverses to solving systems of linear equations.

1the singular is matrix
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Chapter 3

Algebra

Algebra is all about manipulating formulae, moving terms around, adding or subtracting things from both
sides of an equation, and other related techniques.

However, the key feature of algebra is the use of letters to represent unknown values. This makes it more
advanced than just standard arithmetic.

3.1 Operations and expressions
This section is designed as a reminder of certain basic techniques; namely using the basic operators (+, −, ÷, ×)
and a reminder of powers (also called indices).

3.1.1 Basic Operations of Arithmetic
We might talk of the addition operator +, subtraction operator −, division operator ÷ or /, and multiplication
operator ×. By operation all that is meant is an agreed procedure (in our cases they will all involve two
numbers). We also sometimes need brackets to help clarify unambiguously the order in which the operations
should be performed. There is a fifth operator which doesn’t have a symbol, namely exponentiation (just a
fancy word for ‘taking powers’). On most calculators this fifth operator is represented by a button that says
𝑥𝑦 or 𝑥□ or □□.

An expression is the name we will give to any collection of maths symbols intended to have a value or represent
something.

The order in which we perform a calculation is very important, otherwise we may achieve a different answer
to someone else.

A point we will keep returning to is the importance of agreed conventions and meanings so that our
written maths, equations and solutions are unambiguous.

Take, for example,
9 + 4 × 3. (3.1)

The agreed convention for such an expression is to perform the multiplication (×) before the addition (+).
Many of you will have seen an acronym like BODMAS or BIDMAS to help learn this ordering (First to Last).

BODMAS stands for…
Brackets Orders Division Multiplication Addition Subtraction
where Orders refers to powers (i.e. exponentiation)

5



CHAPTER 3. ALGEBRA 6

So for the above expression, (3.1), we need to calculate 4 × 3 = 12 and add this to 9, resulting in an answer
of 21.1

Beware, however, that it isn’t quite as easy as just learning this one sequence. Luckily you can always
just insert brackets to make it obvious.

Unfortunately it’s not always exactly this simple when an expression contains multiple similar or opposite
symbols. Division and Multiplication come as a pair and are opposites of each other2, as do Addition and
Subtraction which are also opposites of each other3. If we have an expression made of just + and − signs
then we should work left-to-right (but still do brackets or powers first as usual). The same applies for × and
÷ though this is rarer and we often just use brackets.

Here are a few examples of these complicated cases:

• 3 ÷ 6 × 4 means 0.5 × 4 = 2 (left-to-right)
• 20 ÷ (5 × 2) means 20 ÷ 10 = 2 (brackets first)
• 2 − 6 − (4 − 3) means 2 − 6 − 1 = −5 (brackets first)
• −4 + 3 − 6 + 8 = 1 (left-to-right)

All of these could be made abundantly clear with the addition of extra brackets (sometimes inside each other)
but people are often lazy. For example, the first case above could have been written (3 ÷ 6) × 4 to remove
any confusion. Or the final one could have been written ((−4 + 3) − 6) + 8.
#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

3.1.2 Expanding brackets
The correct procedure for expanding brackets becomes more complicated the more brackets which are mul-
tiplied by each other. At its most simple just one number appears outside a bracket, and you just multiply
that one number sequentially by every number inside the bracket, i.e.

7 (3 − 𝑥 + 2𝑦) = 7 × 3 − 7 × 𝑥 + 7 × 2𝑦 = 21 − 7𝑥 + 14𝑦
Notice that if the factor on the outside is negative then we sometimes will get two minus signs, −− which
equals +. For example,

−4 (−2 + 3𝑥 − 7𝑦) = −4 × (−2) − 4 × 3 − 4 × (−7𝑦)
= − − 8 − 12𝑥 − −28𝑦
= 8 − 12𝑥 + 28𝑦

When a bracket is multiplied by a bracket then every combination product of one term from each needs to
be calculated and then all combined. So in general,

(𝐴 + 𝐵) (𝐶 + 𝐷) = 𝐴 × 𝐶 + 𝐴 × 𝐷 + 𝐵 × 𝐶 + 𝐵 × 𝐷,

or for larger brackets

(𝐴 + 𝐵 + 𝐶) (𝐷 + 𝐸) = 𝐴𝐷 + 𝐴𝐸 + 𝐵𝐷 + 𝐵𝐸 + 𝐶𝐷 + 𝐶𝐸.

(where all terms on the right are products, 𝐴𝐷 = 𝐴 × 𝐷 etc…)

There are a few ways to learn a systematic procedure to ensure no terms are missed, a demonstration video
appears below for a specific typical example. However, the main point to remember is that every combination

1You may want to check for yourself that the incorrect left-to-right reading gives a different answer.
2multiplying by 2 and dividing by 2 are opposites
3adding 3 and subtracting 3 are opposites

https://numbas.mathcentre.ac.uk/question/113776/bodmas-exercise/embed/?token=09b2fdb5-ec9e-4ec8-8e8b-08d29cf01a66


CHAPTER 3. ALGEBRA 7

of one term from one bracket with one term from the other bracket must be included in the answer4. A method
known as the grid method for expanding brackets is particularly worth looking into for anyone who wants to
read further.

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=3449~4u~vz7dULN7

3.1.3 Powers
Powers are also called Indices, or (occasionally) Exponentiation. Powers are fundamentally just a time-saving
notation used to save writing out repeated products.

So we write

• 𝑎2 instead of 𝑎 × 𝑎,
• 𝑎3 instead of 𝑎 × 𝑎 × 𝑎,
• 𝑎8 instead of 𝑎 × 𝑎 × 𝑎 × 𝑎 × 𝑎 × 𝑎 × 𝑎 × 𝑎,

This notation is frequently used when performing algebra to re-arrange equations, or to solve for some
unknown variable. To help with these manipulations there are a few useful ‘rules’ or ‘laws’ to learn (really
they’re just common patterns you can use to simplify quickly).

From this basic definition the three main laws of powers are actually fairly straightforward:

Law 1: For all 𝑥 and all 𝑎, 𝑏, even negative or decimal values…

𝑥𝑎 × 𝑥𝑏 = 𝑥𝑎+𝑏 (3.2)

Law 2: For all 𝑥 and all 𝑎, 𝑏, even negative or decimal values…

𝑥𝑎 ÷ 𝑥𝑏 = 𝑥𝑎−𝑏 (3.3)

Law 3: For all 𝑥 and all 𝑚, 𝑛, even negative or decimal values…

(𝑥𝑚)𝑛 = 𝑥𝑚×𝑛 (3.4)

You will have seen these laws before and with repeated use you will no doubt become familiar with them.
The intermediate step for anyone not fully familiar with these rules is to at least know that these laws exist,
and be able to re-discover them for yourself with a small example.

Here’s a very useful example which uses the powers of 3 and 2 to work out all three laws!

𝑥3 × 𝑥2 = (𝑥 × 𝑥 × 𝑥) × (𝑥 × 𝑥) = (𝑥 × 𝑥 × 𝑥 × 𝑥 × 𝑥) = 𝑥5 (3.5)

So, 𝑥3 × 𝑥2 = 𝑥5 tells us the rule for a product must be to add the powers. Since the only way to get 5 from
2 and 3 is to add them.

The same idea can be used to work out the other laws too:

𝑦3 ÷ 𝑦2 = (𝑦 × 𝑦 × 𝑦) ÷ (𝑦 × 𝑦) = 𝑦 × 𝑦 × 𝑦
𝑦 × 𝑦 = 𝑦

1 = 𝑦 (3.6)

4terms are blobs of letters/numbers separated by plus or minus signs

https://gcu.planetestream.com/View.aspx?id=3449~4u~vz7dULN7


CHAPTER 3. ALGEBRA 8

We used unknown letter 𝑦 here just to illustrate that the name of the unknown isn’t relevant. We see that
𝑦3 ÷ 𝑦2 = 𝑦3−2 = 𝑦1 so the rule for division is to subtract the second power from the first. It is perhaps
worthy of note that the ÷ symbol is just a shorthand for writing out a fraction, so 𝑦3 ÷ 𝑦2 is just another
way of writing 𝑦3

𝑦2 .

Finally, we can again use 3 and 2 as powers to illustrate the third law.

(𝑥3)2 = (𝑥 × 𝑥 × 𝑥) × (𝑥 × 𝑥 × 𝑥) = 𝑥6 (3.7)

So we notice that (𝑥3)2 = 𝑥3×2 = 𝑥6 and the rule is that powers raised to powers means we multiply the
powers.

There are other patterns, sometimes also called rules or laws, for performing algebra with powers which you
will also come across and use at different times. The two main ones are:

• (𝑥𝑦)𝑛 = 𝑥𝑛𝑦𝑛, for example (2𝑎)3 = 8𝑎3, and
• ( 𝑥

𝑦 )𝑛 = 𝑥𝑛
𝑦𝑛 , for example ( 𝑥

7 )2 = 𝑥2
49 .

Finally these two facts you’ll come across for powers are less rules and more mathematical notation choices:

For all 𝑥,

𝑥0 = 1,
except when 𝑥 = 0, in which case 00 is mathematical nonsense.

For all 𝑥 and all 𝑛,

𝑥−𝑛 = 1
𝑥𝑛 .

This can be thought of as a definition of negative powers if you wish.

Example 1
Simplify

(𝑥𝑦2)3 ÷ 𝑦
Answer: First we need to expand the bracket (BODMAS), remembering that every term in the
bracket needs to be cubed. So we get

(𝑥)3(𝑦2)3 ÷ 𝑦
the next step is to use our third power law to rewrite (𝑦2)3 as 𝑦6. Then finally we use the second
power law (about division) to replace 𝑦6 ÷ 𝑦 with 𝑦6−1 = 𝑦5 giving our final answer of

𝑥3𝑦5.

Note that the 𝑥 and 𝑦 terms are different letters and so are not combinable using the power laws.
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Example 2
Simplify

3𝑥2𝑦3𝑧−2

(𝑥𝑦−3𝑧)2

Answer: Again we begin by expanding the bracket on the bottom, we are using the fact that

(𝑎𝑏𝑐)2 = 𝑎2𝑏2𝑐2

to give us
3𝑥2𝑦3𝑧−2

(𝑥)2(𝑦−3)2(𝑧)2

On the bottom we now need to replace (𝑦−3)2 with 𝑦−6, using our third law again. So we have reached:

3𝑥2𝑦3𝑧−2

𝑥2𝑦−6𝑧2

Now we can treat the 𝑥, 𝑦 and 𝑧 parts separately.
Our overall 𝑥 terms looks like:

𝑥2 ÷ 𝑥2 = 𝑥2−2 = 𝑥0 = 1
Our overall 𝑦 term looks like:

𝑦3 ÷ 𝑦−6 = 𝑦3−−6 = 𝑦3+6 = 𝑦9

note we were careful here to subtract (not add) −6, so two negative signs gave a +.
Finally our overall 𝑧 term will be:

𝑧−2 ÷ 𝑧2 = 𝑧−2−2 = 𝑧−4.

So overall (not forgetting the initial factor of 3) we obtain:

3𝑥2𝑦3𝑧−2

(𝑥𝑦−3𝑧)2 = 3𝑦9𝑧−4 = 3𝑦9

𝑧4

and the 𝑥 term disappeared as it was identical on top and bottom (and so cancelled perfectly).

Practice
Simplify these 8 formulae and then put them into 4 matching pairs.

i. 𝑥 × 𝑥 × 𝑦 × 𝑦 × 𝑦2 × 1
𝑧2

ii. (𝑥𝑦𝑧)3𝑥−1𝑧−5

iii. 𝑥𝑦4𝑧 ÷ 𝑦2

iv. 𝑥3𝑥−5𝑦2𝑦−3𝑧−2𝑧1

v. 𝑥2𝑦3 ÷ 𝑧2

vi. 𝑥−2𝑦
𝑦2𝑧

vii. (𝑥𝑦𝑧)2

𝑥𝑧
viii. (𝑥𝑦)2 (𝑦𝑧−1)2

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

3.1.4 Grouping ‘like’ terms
This is one of the key early skills required to perform algebra. We all know that for a sum like 3−4+8−16+7,
arithmetic can be used to simplify this into a single number (−2 in this example). This is because all the

https://numbas.mathcentre.ac.uk/question/113880/simplifying-powers/embed/?token=a943f496-6057-4e34-8372-7d2c6a5851ec
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terms are just constants.

If, however, you are presented with the formula 3 − 𝑥 + 8 + 5𝑥 − 7 then the simplification will not be just a
number. You need to identify terms which are ‘like’ (or ‘alike’) because they contain unknown variables in
exactly the same format as each other. In this example the 3, 8 and −7 are alike as they are all just constants
and don’t mention 𝑥. Similarly the −𝑥 and 5𝑥 are alike because they are both of the format ‘constant×𝑥’.
We can combine terms when they will look the same if you overlook different constants on the front. The
constant on the front of an unknown variable is called the coefficient, e.g. the coefficient of 7𝑥 is 7 and the
coefficient of −4𝑦 is −4. Terms which have different powers of an unknown variable are regarded as in a
different format.

More generally, all of the following are different formats to each other

𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥1.5, 𝑥−7, 𝑥𝑦, 𝑥𝑧, 𝑥𝑦2, …

The list of different formats could go on forever, but the key idea is as follows.

Two terms are of the same format if when they are added together you get another object of exactly
the same format. When dealing with variables and their powers, they are the same format if they
have identical variables and powers.
So 𝑥2 and 𝑦2 are not alike, but 3𝑥𝑧2 and −9𝑥𝑧2 are alike.

It’s almost always a good idea, before diving into performing algebra and re-arranging an equation, to first
group like terms together and combine their coefficients.

Some quick practice
• 5 + 𝑥 − 8 + 𝑥 = −3 + 2𝑥
• 𝑥2 − 4𝑥 + 3 + 7𝑥 = 𝑥2 + 3𝑥 + 3
• 8 − 𝑥2 + 2 (𝑥2 + 5) = 𝑥2 + 18
• 𝑥(𝑥 − 𝑦) + 𝑦(𝑧 + 𝑥) = 𝑥2 + 𝑦𝑧
• 7𝑥2 − 4𝑥𝑦2 + 𝑥2𝑦 + 3𝑥𝑦 − 8𝑦2 + 𝑥𝑧 − 𝑥𝑦𝑧 + 3𝑦2𝑥 =

7𝑥2 − 𝑥𝑦2 + 𝑥2𝑦 + 3𝑥𝑦 − 8𝑦2 + 𝑥𝑧 − 𝑥𝑦𝑧
In all these examples the second version is fully simplified, all presented terms are of different formats.
You should check them carefully to see that you agree.

When progressing to more advanced algebra, with formulae that include functions like sin(𝑥), and log(𝑦)
we will need to expand our definition of like terms. The good news is that once functions are involved,
only different constants on the front of the function mean terms are alike, otherwise they are different. So
3 sin(4𝑥) + 7 sin(4𝑥) can be combined into 10 sin(4𝑥) but 3 sin(𝑥) + 4 sin(2𝑥) cannot be combined.

3.2 Common algebra mistakes
It’s always slightly dangerous to show incorrect algebra, as it might make some poor quality memories for
you. However, some errors are so common when working with brackets, powers and fractions that it can still
be worthwhile to show you them in action. Make sure to spend longer looking at the ‘Correct algebra’ side
of this table. Perhaps even start with the right-hand-side and then look at the left to see how not to do it.

Common mistake (i.e wrong!) Correct algebra

(2𝑥)3 = 2𝑥3 � (2𝑥)3 = 8𝑥3 �

(𝑥 + 𝑦)2 = 𝑥2 + 𝑦2 � (𝑥 + 𝑦)2 = 𝑥2 + 𝑦2 + 2𝑥𝑦 �
𝑎+𝑏
𝑐+𝑑 = 𝑎

𝑐 + 𝑏
𝑑 � 𝑎+𝑏

𝑐+𝑑 = 𝑎
𝑐+𝑑 + 𝑏

𝑐+𝑑 �

𝑎𝑚+𝑛 = 𝑎𝑚 + 𝑎𝑛 � 𝑎𝑚+𝑛 = 𝑎𝑚 × 𝑎𝑛 �
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Common mistake (i.e wrong!) Correct algebra

1
2𝑥3 = 2𝑥−3 � 1

2𝑥3 = 1
2 × 1

𝑥3 = 1
2 𝑥−3 �

3.3 Division of algebraic expressions
The main idea to remember here is that if you break up a fraction which contains multiple terms on the top
(often called the numerator) separated by + and − signs, the bottom (also called the denominator) remains
the same.

For example,

5𝑥3 − 3𝑥2 + 7
𝑥2 = 5𝑥3

𝑥2 − 3𝑥2

𝑥2 + 7
𝑥2

= 5𝑥 − 3 + 7
𝑥2

Or if we’re trying to be a little cleverer, an example like this:

𝑥 + 7
𝑥 + 2 = 𝑥 + 2 + 5

𝑥 + 2
= 𝑥 + 2

𝑥 + 2 + 5
𝑥 + 2

= 1 + 5
𝑥 + 2

More complicated expressions like this second example, where the bottom (denominator) isn’t just one term,
can also be tackled via what is called ‘long division’.

This is normally required if the denominator contains at least one + or − sign. Such as trying to simplify

𝑥3 + 7𝑥 + 3
𝑥 + 2

Trying to divide 𝑥 + 2 into 𝑥3 + 7𝑥 + 3 can be done, with a remainder but it’s a fairly tedious procedure that
can be looked up if required. The main method used for this is called synthetic division, it is an efficient
way of performing divisions without too many algebraic letters, especially then the starting coefficients on
the higher powers are both 1. However, we won’t go into details here.

The final answer here 5 is:

𝑥3 + 7𝑥 + 3
𝑥 + 2 = 𝑥2 − 2𝑥 + 11 − 19

𝑥 + 2

3.4 Exponential Functions and Logarithms
The topics of exponentials and logarithms go together because they are essentially each others’ reverse
procedure. We shall look at them separately but then exploit this idea to solve equations.

5which you would need to go and look up the procedure to calculate
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3.4.1 Exponential functions
As mentioned earlier exponentiation, powers, indices and orders are all terms referring to the same mathe-
matical procedure. This procedure can be used to create a number of interesting functions and graphs that
appear in many real world applications of mathematics. The grand family of such functions are exponential
functions.

Exponential functions all have this general structure:

𝑦 = 𝑏𝑥

where 𝑏 is some chosen constant. The variable 𝑥 is being considered to vary, causing changes in 𝑦.

It is only worth studying such functions when 𝑏 > 0 and 𝑏 ≠ 1 (Can you see why 𝑏 = 1 is very boring?).
We use the letter 𝑏 in our example because the number at the bottom of the exponential structure (i.e. the
bottom of the little tower of symbols) is called the base of the exponential function. This same term will be
used later when discussing logarithms (which will be the reverse of exponentiation).

The most commonly studied members of the exponential family are those with base 10 and base 𝑒 6, though
in Computing base 2 is also very popular.

The Exponential Function
The function with base= 𝑒, as defined above, is called the exponential function because it is so
important in mathematics. The function is written

𝑦 = 𝑒𝑥,
and it has the amazing property that the gradient of its graph is always equal to the graph’s height.

When you later study differentiation you will see this fact again, i.e. that the derivative of 𝑒𝑥 is just itself!

3.4.2 Logarithms
One piece of good news it that logarithm is usually abbreviated to log to save remembering how to spell
it! The logarithm of a number is just another number, normally a never-ending decimal. Much like other
functions you will have come across like sine, cosine, tangent or squaring, the logarithm is just another
function which takes inputs and returns one output per input.

We shall start with assuming base 𝑏 = 10 to save any initial complications. Below are some sample values
from the log function.

Values of log (in base 10) showing first five decimal places only

log(0.2) = −0.69897...
log(0.5) = −0.30103...
log(1) = 0
log(2) = 0.30103...
log(3) = 0.47712...
log(4) = 0.60206...
log(5) = 0.69897...
log(6) = 0.77815...
log(7) = 0.84509...

6a constant equal to 2.71828…
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Values of log (in base 10) showing first five decimal places only

log(8) = 0.90309...
log(9) = 0.95424...
log(10) = 1

Only log(1) = 0 and log(10) = 1 give nice values, the rest appear to be a mess. However, certain patterns
can be spotted which are special cases of general rules you need to learn to be able to use logs well in algebra.
Before moving on see if you can spot any relationships between the log values above.

The formal definition of what the logarithm function calculates is as follows:

Definition of the logarithm

log𝑏(𝑥) = The power you need to raise 𝑏 to, to get 𝑥

i.e. if log𝑏(𝑥) = 4 then
𝑏4 = 𝑥

Note that the base in use is written as a subscript after the word log, as in log𝑏.

This definition generally isn’t very useful, because it’s only useful for certain special values. Sure it’s easy to
now say that log10(1000) = 3 because we know that 103 = 1000 but no-one really knows what power of 10
equals 75, it’s just some disgusting decimal7.

Far more useful is to understand that logarithms (using base 10) perform the opposite procedure to raising
10 to the power of something.

If we begin with 𝑧 = 3.4 and we calculate 10𝑧 = 103.4 = 2511.89... then we now know that log(2511.89) = 3.4.
Taking the logarithm of a number means we are determining what power of the base we need to get that
number.

We have assumed until now that this base is 10, but in fact any positive number8 can be used for the base 𝑏.
This is exactly like our study of the family of exponential functions above, where we also used 𝑏 as the base,
and we considered other values in addition to just 𝑏 = 10. Again the standard bases used are 𝑏 = 10 and
𝑏 = 𝑒 = 2.71828.... The good news is that it is very rare you would ever want to use a mixture of bases in the
same question/problem, so you normally decide up front which base to work in and just write log. However,
technically you will find authors write:

log𝑏(𝑥)

as the standard notation to signify that a base of 𝑏 is being used. Perhaps most annoying of all, when first
studying logarithms, is that when using base 𝑏 = 𝑒 authors often use ln() instead of 𝑙𝑜𝑔𝑒() because log with
a base of 𝑒 has historically been called the natural logarithm and 9 the first authors called it ‘logarithmus
naturalis’ hence the reversal of the letters N and L.

You will find a log button on all scientific calculators, it normally shares a button with the reverse exponen-
tiation procedure. So here are a few questions for you to practice using them both,

7my calculator says it’s 1.875061…
8except 𝑏 = 1, can you see why?
9legend has it
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Practice
Calculate the following on your calculator, giving your answer correct to 4 decimal places (remember
to round up if necessary)
(1) log10(34)
(2) log10(42)
(3) log10(17)
(4) ln(5)
(5) ln(2)

To check your answers, see the next exercise.

Practice
Calculate the following on your calculator, giving your answer correct to 1 decimal place (remember
to round up if necessary)
(1) 101.2304

(2) 101.5315

(3) 101.6232

(4) 𝑒0.6931

(5) 𝑒1.6094

Now go back and match up these answers with your answers to the previous exercise. Note that they
won’t match perfectly as the numbers were rounded to 4 decimal places, but they will be very close.

3.4.3 Log laws
The laws for powers, which we met earlier in equations (3.2), (3.3) and (3.4) have completely equivalent
versions for logarithms, though they are seen as more difficult to memorize than for powers, since it’s less
easy to visualize their meanings. In all the laws the assumption is that all logs present have the same base,
so we shall omit it for clarity.

Law 1: For all 𝑎, 𝑏, both positive…

log(𝑎 × 𝑏) = log(𝑎) + log(𝑏) (3.8)

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=3305~4l~LrqjFeRf

For comparison with the power laws, this is the log version of the 𝑥𝑎 × 𝑥𝑏 = 𝑥𝑎+𝑏 power law, where multipli-
cation becomes addition.

The second log law (much like the second power law) can be worked out using the first and third log laws,
but it can also be learned too.

Law 2: For all 𝑎, 𝑏, both positive…

log(𝑎
𝑏 ) = log(𝑎) − log(𝑏) (3.9)

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=5990~4x~8AS88NtP

https://gcu.planetestream.com/View.aspx?id=3305~4l~LrqjFeRf
https://gcu.planetestream.com/View.aspx?id=5990~4x~8AS88NtP
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This second law is the log version of the 𝑥𝑎 ÷ 𝑥𝑏 = 𝑥𝑎−𝑏 law, where division becomes subtraction.

The third log law concerns the log of a power tower.

Law 3: For all positive 𝑥, and all 𝑛 positive or negative…

log (𝑥𝑛) = 𝑛 log(𝑥) (3.10)

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=3306~4m~m2FUpdbq

This law can also be compared directly with the third power law, although the similarity is less obvious. The
parallel with (𝑥𝑎)𝑏 = 𝑥𝑎𝑏 lies in the fact that a power has become a product.

All three of these laws can prove very useful when manipulating equations with algebra involving logs. The
most useful of the three laws is generally the third one, although the first law gets frequent use too (see
Section 3.4.4).

3.4.4 Solving equations using logs and powers
Most real-world applications of logs and exponentials comes from the real-world providing an example of what
is called a ‘power law’ relationship. The good news is that power law relationships are really just examples of
exponential functions. The mathematical problem is then often to solve an equation for an unknown variable
which appears ‘in the power’ (i.e. at the top of the tower). For example,

𝑦 = 4𝑒−3𝑥 (3.11)

where we know that 𝑦 = 15 and we need to find 𝑥. Or more generally, we might just want to re-arrange to
find 𝑥 in terms of 𝑦.
In all such examples the main idea is to exploit the fact that logarithms and powers are opposite procedures
as long as the same base is used.

Taking logs
Starting with an equation and then equating the log of the left-hand-side with the log of the right-
hand-side is called taking logs and is the standard approach for simplifying powers in algebra.
Specifically if we start with

𝐴 = 𝐵

then by taking logs we reach:

log(𝐴) = log(𝐵) (3.12)

where 𝐴 and 𝐵 can be complicated expressions.

In our example (3.11) we can take logs (using base 𝑒 because that is the base already present on the right-
hand-side) to turn 𝑦 = 4𝑒−𝑥 into

log𝑒(𝑦) = log𝑒(4𝑒−3𝑥)

it would be standard to have written 𝑙𝑛 (for the natural logarithm) here, rather than the long-version log𝑒.

On the right-hand-side we can now use the first log law, and then the third law and this equation becomes

https://gcu.planetestream.com/View.aspx?id=3306~4m~m2FUpdbq
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log𝑒(𝑦) = log𝑒(4) + log𝑒(𝑒−3𝑥)
= log𝑒(4) − 3𝑥 log𝑒(𝑒)
= log𝑒(4) − 3𝑥

using the fact that log𝑒(𝑒) = 110. In fact, this is why we chose the base of our log to match the existing base

If we wish, it wouldn’t be difficult to re-arrange this equation to make 𝑥 the subject.

It’s always true that

log𝑒(𝑒𝑧) = 𝑧, for any value of 𝑧.

So you can almost bypass the third log law if your bases match, and just know that log will just destroy the
tower, and leave only the power.

Here’s a demonstration of the procedure with commentary:

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=3309~4p~QdzxumJx

Practice
Use the three Log Laws to break up / expand each of these five logarithms, and then match them up
with the offered answers below.
(1) log (𝑥3𝑦−2𝑧)
(2) log (𝑥2𝑦3𝑧4)
(3) log (𝑥−1𝑦2𝑧3)
(4) log ( 𝑥2𝑧3

𝑦 )
(5) log ( 𝑥4𝑧

𝑦3 )
Answers: (not in the same order)
(a) − log(𝑥) + 2 log(𝑦) + 3 log(𝑧)
(b) 4 log(𝑥) − 3 log(𝑦) + log(𝑧)
(c) 2 log(𝑥) + 3 log(𝑦) + 4 log(𝑧)
(d) 3 log(𝑥) − 2 log(𝑦) + log(𝑧)
(e) 2 log(𝑥) − log(𝑦) + 3 log(𝑧)

Practice
Now try the reverse process, for each of these formulae try and join the elements together into a single
logarithm (again using the three Log Laws). Then match them to the answers below:
(a) log(𝑥) + log(𝑦) − log(𝑧)
(b) 3 log(𝑥) − 2 log(𝑦) + log(𝑧)
(c) 2 ln(𝑥) + 3 ln(𝑦) + 4 ln(𝑧)
(d) − ln(𝑥) − 2 ln(𝑦) + ln(𝑧)

Answers: (not necessarily in the same order)
(1) log ( 𝑥𝑦

𝑧 ) or log(𝑥𝑦𝑧−1)
(2) log ( 𝑥3𝑧

𝑦2 ) or log(𝑥3𝑦−2𝑧)
(3) ln ( 𝑧

𝑥𝑦2 ) or ln(𝑥−1𝑦−2𝑧)
(4) ln (𝑥2𝑦3𝑧4)

10What power of e equals e? One!

https://gcu.planetestream.com/View.aspx?id=3309~4p~QdzxumJx
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#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

3.5 Operations and their inverses
We have already talked about addition and subtraction as opposite procedures, and the same for multipli-
cation and division. Formally in mathematics we call reverse procedures inverses. An operation and its
inverse, when applied in sequence, effectively cancel each other out as if nothing ever happened. For example,
if we start with 𝑥 and multiply by 7, then divide by 7, we get back to 𝑥.
In fact it doesn’t even matter which way around we perform these two steps, dividing by 7, then multiplying
by 7 also leaves us back where we started. Here is a table of common inverses, which you can and will use
when performing algebra. Columns 1 and 2 can be swapped if desired.

First operation Second operation Demonstration

+𝑎 −𝑎 𝑥 + 4 − 4 = 𝑥
×𝑏 ÷𝑏 𝑥×𝑏

𝑏 = 𝑥
Squaring Square-rooting11

√
𝑥2 = 𝑥

Cubing Cube-rooting12 3√𝑥3 = 𝑥
10□ log10(□) 10log10(𝑥) = 𝑥 or log10(10𝑥) = 𝑥
sin(□) sin−1(□) sin−1(sin(𝑥)) = 𝑥
cos(□) cos−1(□) cos−1(cos(𝑥)) = 𝑥

3.6 Manipulating formulae and solving equations
This section contains the main skill development topic in the chapter of Algebra. It concerns decision-making,
and accurate performance of algebraic manipulations of equations to try and get ‘answers’. Sometimes it may
also not always be obvious what the answer looks like when you start, so this can be part of the challenge
too.

The phrase, to ‘solve an equation’ can have a variety of target outcomes. When asked to ‘solve an equation
for 𝑥’, which is also described as re-arranging the equation in algebra to make 𝑥 the subject of the equation,
we typically get two cases:

• Case 1: There are no other symbols in the formula so we can find exactly the value(s) of 𝑥.
• Case 2: There are other unknown letters in our formula, in which case our answer will be 𝑥 = some

algebra (not mentioning 𝑥).

Becoming skilled at algebra takes practice. When just reading notes and model solutions to questions
you don’t develop the practical memories and patterns of personally performing the algebra. So
repeated and continuous practice is vital to developing your skills.

11raising to the power 1/2
12raising to the power 1/3

https://numbas.mathcentre.ac.uk/question/113920/make-subject-with-logs/embed/?token=011bdf0b-f9c0-4d09-8d04-6b9354fc48fc
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3.6.1 Fundamental idea: Keeping an equation balanced

The first key rule whenever performing algebra is to always do the same thing to both sides of
an equation. For example, we saw this principle in action earlier when taking logs, in (3.12).

The definition of equation, is a formula on the left-hand-side equalling a formula on the right-hand-side. So
if you were to add 9 to both sides then they will remain equal to each other, as they will both have just
increased by 9.
Here are a sample of typical procedures that keep an equation balanced:

1. Add the same thing to both sides;
2. Subtract the same thing from both sides;
3. Divide both sides by the same thing;
4. Multiply both sides by the same thing;
5. Square both sides;
6. Square root both sides13;
7. Take inverse sine (often written sin−1) of both sides; or cos−1 or tan−1;
8. Take the log on both sides (with the same base);
9. Exponentiate both sides (with the same base).

There are more operations it’s possible to do, but this list covers the main ones you’ll use. Indeed the
first four, using +, −, ÷ and × will make up the vast majority of algebraic steps you ever perform, so
you should get good and confident with performing them. However, skill with all the procedures in
this list is required to become strong at algebra.

I suggest you watch these four short videos in order to see the first four operations in action. Notice that
in the simple examples chosen we generally use more than one of these operations to get our answer for 𝑥.
Generally when dividing or multiplying both sides of an equation by something we later need to also add or
subtract from both sides to clean up our answer.

Adding the same quantity to both sides of an equation

#> [Video appears here in html version
#> the hyperlink is provided below]

In this example, the clever choice is to add 13 to both sides because this turns 𝑥 − 13 into just 𝑥, and we so
get an equation that says 𝑥 = something (which is our target).

Subtracting the same quantity from both sides of an equation

#> [Video appears here in html version
#> the hyperlink is provided below]

In this example, the clever choice is to subtract 12 to both sides because this turns 𝑥 + 12 into just 𝑥, and
we so get an equation that says 𝑥 = something (which is our target).

Dividing both sides of an equation by the same quantity

#> [Video appears here in html version
#> the hyperlink is provided below]

In this example, there were two clever choices made. First we subtract 5 from both sides to get 3𝑥 =
something. Then we choose to divide both sides by 3 which turns the 3𝑥 on the left into just 𝑥. The division
by 3 cancels with the multiplication by 3 visible in 3 × 𝑥.
Multiplying both sides of an equation by the same quantity

#> [Video appears here in html version
#> the hyperlink is provided below]

13Warning: see later
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The clever idea here is to choose to multiply both sides by 𝑥 + 1. The objective is to get our target 𝑥 out
from the bottom of the fraction, and multiplying a fraction by its bottom always simplifies a fraction. In this
case 9

𝑥+1 × (𝑥 + 1) = 9 in a special example of the general rule that 𝐴
𝐵 × 𝐵 = 𝐴 for any 𝐴, 𝐵.

Here are direct links to the four videos:

• Direct Link to Adding Video
• Direct Link to Subtracting Video
• Direct Link to Dividing Video
• Direct Link to Multiplying Video

In all of these examples above we had only one unknown variable 𝑥, there is nothing different in procedure
if other letters are present, they are treated as algebra variables like any other elements.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

Warning 1 When dividing both sides of an equation by something it’s important to note that you’re
never allowed to divide by zero. This scenario is easy to avoid if you are dividing by known values,
but care is needed if the term you divide by contains any unknowns. If this situation does occur you
should consider the case where the term is zero separately.
For example, to make 𝑥 the subject of this equation:

𝑦 = 𝑥(1 − 𝑧) (3.13)

we want to divide by 1 − 𝑧, which is fine unless 1 − 𝑧 = 0. So as long as 1 − 𝑧 ≠ 0

𝑥 = 𝑦
1 − 𝑧 .

However, if we are in the case where 1 − 𝑧 = 0 then we must not try and divide by 1 − 𝑧, instead we
look back at (3.13) which now just says 𝑦 = 0 and we cannot learn the value of 𝑥 from the equation.

Warning 2 When square-rooting both sides of an equation it’s important to remember that there is
always a positive and negative square root of a number.
For example, 𝑥2 = 16 has two solutions, 𝑥 = 4 and 𝑥 = −4. The standard way to write this is
𝑥 = ±4.a

apronounced plus-or-minus 4

3.6.2 Some detailed worked examples:

Example 1 Given the equation 34 = 2 (4 − 5𝑥) we can perform algebra (typically using inverses, see
3.5) to solve for 𝑥: (the steps taken on both sides are written in the margin)

34 = 2 (4 − 5𝑥)
17 = 4 − 5𝑥 (÷2)
13 = −5𝑥 (−4)

−13
5 = 𝑥 (÷ − 5)

and we have solved to find 𝑥 exactly, it’s 𝑥 = − 13
5 = −2.6.

https://gcu.planetestream.com/View.aspx?id=3446~4r~SBdAPBeZ
https://gcu.planetestream.com/View.aspx?id=3443~4o~oqjWKry5
https://gcu.planetestream.com/View.aspx?id=3444~4p~QdzyuqJs
https://gcu.planetestream.com/View.aspx?id=3445~4q~qNPbeqUO
https://numbas.mathcentre.ac.uk/question/113928/make-the-subject-variety/embed/?token=9202f5ac-ff75-43ad-b065-30a80bcb29de
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Example 2 The standard pendulum equation relating the period (𝑇 ), the pendulum length (𝐿) and
gravitational constant 𝑔 is normally written

𝑇 = 2𝜋√𝐿
𝑔 .

Re-arrange this equation to find the pendulum length as a function of the period, i.e. make 𝐿 the
subject.
We need to remove the √ symbol around 𝐿. We could choose to divide through by 2𝜋 before squaring
both sides, but we can also just dive straight in.

𝑇 = 2𝜋√𝐿
𝑔 ,

𝑇 2 = (2𝜋√𝐿
𝑔 )

2

, (square both sides)

𝑇 2 = 4𝜋2 𝐿
𝑔 , (expand bracket)

𝑇 2

4𝜋2 = 𝐿
𝑔 , (÷4𝜋2)

𝑔𝑇 2

4𝜋2 = 𝐿. (×𝑔)

And we are finished.
Extension: The period 𝑇 is actually the reciprocal of frequency, 𝑓 , i.e. 𝑇 = 1/𝑓 . Express 𝐿 in terms
of 𝑓 .
This is straightforward as we can just replace 𝑇 with 1

𝑓 and we don’t need to restart. Noting that
𝑇 2 = 1

𝑓2 we get

𝐿 = 𝑔
4𝜋2𝑓2 .

Example 3 In optics the Lens equation relating object distance (𝑎), image distance (𝑏) and focal
length (𝑓) is written

1
𝑓 = 1

𝑎 + 1
𝑏 .

In fact this same equation also occurs in electronics, for resistors in parallel and for capacitors in
series.
Re-arrange this equation to make 𝑏 the subject.
There are multiple ways to approach this, we shall look at just one way. We shall begin by moving
the terms around (using subtraction) to get one side containing only 𝑏.

1
𝑓 = 1

𝑎 + 1
𝑏 ,

1
𝑓 − 1

𝑎 = 1
𝑏 , (subtracting 1

𝑎)

Quick warning: It might be tempting to try and ‘flip’a everything here, i.e. turn all fractions upside-
down. Such a procedure is permitted if each side is just a single fraction, but that’s not true of the
left here. The ‘flip’ of the right is indeed 𝑏 but the ‘flip’ of the left is 1

1
𝑓 − 1

𝑎
b

One way to proceed if our equation said 𝐴 = 1
𝑏 would be to multiply both sides by 𝑏 (which would

have the effect of moving the 𝑏 to the left hand side), and then dividing both sides by 𝐴 (which would
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have the effect of moving the 𝐴 to the right hand side, on the bottom of a fraction). However, our
object on the left isn’t a simple single object 𝐴 but a difference of two fractions. So we next choose
to combine the left two terms together into one fraction.
For this we need a common bottom (denominator). We can always use the product of the two
denominators as our new denominator, so we choose this, i.e. 𝑓 × 𝑎. We multiply the top and bottom
of each fraction to leave them unchanged in value, but both have denominator of 𝑓 × 𝑎:

1
𝑓 − 1

𝑎 = 𝑎
𝑓𝑎 − 𝑓

𝑓𝑎 = 𝑎 − 𝑓
𝑓𝑎 .

Returning to our original equation we therefore have:

𝑎 − 𝑓
𝑓𝑎 = 1

𝑏 (3.14)

Now we are ready to proceed with our plan, with 𝐴 = 𝑎−𝑓
𝑓𝑎 .

𝑎 − 𝑓
𝑓𝑎 = 1

𝑏 ,

𝑏 × 𝑎 − 𝑓
𝑓𝑎 = 1, (multiplying by 𝑏)

𝑏 = 1 ÷ 𝑎 − 𝑓
𝑓𝑎 , (dividing by 𝐴)

𝑏 = 1 × 𝑓𝑎
𝑎 − 𝑓 , (standard fraction algebra)

𝑏 = 𝑓𝑎
𝑎 − 𝑓

You’ll see how we only needed multiplication and division, after our initial subtraction. However, we
needed some good fraction skills along the way too.
It was possible to shortcut the final steps after Equation (3.14) and instead ‘flip’ both sides of the
equation, jumping straight to the final line. This is permitted when each side contains a single fraction
as it did here, but for illustrative purposes we have taken the long route this time.

aformally called taking the reciprocal
band this is not equal to 𝑓 − 𝑎!
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Example 4 The decay of the radioactive element radium is modelled by the formula

𝐴 = 𝐴0(0.5) 𝑡
1620

where 𝐴0 is the initial amount of radium and 𝐴 is the amount present after 𝑡 years.
(i) How much radium remains in a 1kg sample after 1000 years?
(ii) How long would it take for a 1kg sample to decay to 0.01kg?

Answers:
(i) Set 𝐴0 = 1, and 𝑡 = 1000 in the given formula and evaluate (with calculator):

𝐴 = 1 × (0.5) 1000
1620 = 0.6519kg

(ii) Set 𝐴0 = 1, 𝐴 = 0.01 in the given formula and solve for 𝑡:

0.01 = (0.5) 𝑡
1620

ln(0.01) = ln ((0.5) 𝑡
1620 ) (taking logs)

ln(0.01) = 𝑡
1620 ln(0.5) (using log law 3)

So, (re-arranging for 𝑡 using multiplication and division, then our calculator)

𝑡 = 1620 ln(0.01)
ln(0.5) = 10763 years.
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Example 5 The current, 𝑖, in the branch of an electronic circuit changes with time, 𝑡, in line with
the following formula:

𝑖 = 𝑖0𝑒−𝑘𝑡.
The initial current (i.e. when 𝑡 = 0) is 15mA, and it takes 4.7s for the current to drop to 7.5mA
(i.e. half it’s initial value).

(i) From the information given, determine the values of the parameters 𝑖0 and 𝑘.
(ii) Determine the current when 𝑡 = 6.5s.
(iii) Determine 𝑡 when the current is 25% of its initial value.
Answers:
(i) We put 𝑡 = 0 and 𝑖 = 15 into our formula to see what we can learn:

15 = 𝑖0𝑒−𝑘×0.

But 𝑒−𝑘×0 = 𝑒0 = 1, so
15 = 𝑖0 × 1,

so we know that 𝑖0 = 15, and the formula actually is known to look like 𝑖 = 15𝑒−𝑘𝑡.
We also know that when 𝑡 = 4.7 then 𝑖 = 7.5, we can input these values next to find 𝑘:

7.5 = 15𝑒−4.7𝑘

0.5 = 𝑒−4.7𝑘 (÷15)
ln(0.5) = ln(𝑒−4.7𝑘) (taking logs)
ln(0.5) = −4.7𝑘 (ln and 𝑒□ are opposites)

So,
𝑘 = ln(0.5)

−4.7 = 0.147478123.

So our completed formula is
𝑖 = 15𝑒−0.14748𝑡.

(ii) Now we have our formula, this part is easy. We are being asked for 𝑖 when 𝑡 = 6.5 so we just
calculate

𝑖 = 15𝑒−0.14748×6.5 = 5.75 milliamps

(iii) 25% of 15 is 3.75 so we are looking for the value of 𝑡 which makes 𝑖 = 3.75, i.e. to solve

3.75 = 15𝑒−0.14748𝑡

The steps are similar to those above,

0.25 = 𝑒−0.14748𝑡 (÷15)
ln(0.25) = −0.14748𝑡 (taking logs)
ln(0.25)

−0.14748 = 𝑡 (÷ − 0.14748)

So 𝑡 = ln(0.25)
−0.14748 = 9.40 seconds is the time until current is 25% of original current.

3.7 Linear equations: additional tips
The equation of a line looks like 𝑦 = 𝑎 + 𝑏𝑥 or 𝑦 = 𝑚𝑥 + 𝑐, or indeed anything of the following format:

unknown = 𝑥 × constant + constant (3.15)

The unknown variable can be given any name, but often we use 𝑦, so we get examples like 𝑦 = 2𝑥 + 1, or
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𝑦 = −6𝑥 + 5 or even 𝑦 = 0.243𝑥 − 0.946. Similarly if the unknown variable which varies isn’t called 𝑥 that’s
fine too.

The key fact is that the variable, 𝑥, appears by itself (perhaps with a constant factor on the front) and not
inside another function like sin(𝑥) or log(𝑥), and it is not raised to any powers like 𝑥2, 𝑥3 or even 𝑥0.2. Here’s
an informal reminder of what a linear equation is.

If the variable 𝑥 appears only as “constant×𝑥” , not to any powers, and not inside any functions, then
we say a formula is linear in 𝑥.
A linear equation is one where the variables concerned only appear in linear fashion (as above).

Linear equations are some of the easiest equations to re-arrange, and thus solve, for the linear variable,
because you can always use addition and subtraction to move all the terms of the target variable onto one
side. Then with an appropriate division of both sides you can obtain the variable by itself. This approach
even works if the linear variable appears in a few different terms, but it will require some factorizing before
the division.

Example

4𝑦 − 3𝑥 + 9 = 5𝑥 + 𝑥 log(7)

with addition and factorization becomes

4𝑦 + 9 = 𝑥 (8 + log(7))

division then results in our answer:

4𝑦 + 9
8 + log(7) = 𝑥

3.8 Quadratic equations
Re-arranging quadratic equations can be done much like any other equations. However because 𝑥2 terms
and 𝑥 terms cannot be combined (they are not like terms) you won’t end up with an equation that says 𝑥 =
something. Instead you’ll end up with an equation like what is called the standard format for a quadratic
equation:

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0 (3.16)

Here 𝐴, 𝐵 and 𝐶 are constants. For example, beginning with 2𝑥2 − 8𝑥 = 𝑥2 − 7 we can re-arrange to reach
𝑥2 − 8𝑥 + 7 = 0, which is in standard format with 𝐴 = 1, 𝐵 = −8 and 𝐶 = 7. Note also that we have moved
the constant to the left-hand-side too to obtain = 0 on the right.

The ability to match up the 𝐴, 𝐵 and 𝐶 constant values with your specific example is important for using
the quadratic formula (see Section 3.10).

Although the standard format above is fully simplified, it is not the answer to the question ‘solve for 𝑥’. To
find the values of 𝑥 which make the equation true we need to use other techniques. There are three very
popular approaches to solving quadratic equations:

• Factorization
• Completing the square
• The Quadratic formula

First, a quick summary of the advantages and disadvantages of the different methods available.
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Factorization:
Advantages: Very quick, easy to read-off answers
Disadvantages: Not always possiblea, often requires some searching

awithout first solving the problem another way!

Completing the square:
Advantages: Very useful for plotting/graphing, Always works
Disadvantages: Multiple algebraic steps, messy when 𝐴 ≠ 1

The Quadratic Formula:
Advantages: Always works, just one formula to learn, fast (with practice) Disadvantages: One messy
formula to learn, provides no real insights

3.8.1 Factorization of a quadratic
This is the process of re-writing a quadratic formula as a product of two brackets each containing an 𝑥 term.
Generally it looks like this: (or nearby variations)

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 𝐴 (𝑥 + 𝑃) (𝑥 + 𝑄)

where all the capital letters represent constants.

We’ll start by just looking at the easier (but still frequent) case where 𝐴 = 1 above. Here’s an explicit
example:

𝑥2 − 5𝑥 + 6 = (𝑥 − 2)(𝑥 − 3)

The great news is that in this factorized format it becomes easy to find the solutions, for 𝑥, in the equation
equal to zero, i.e.

𝑥2 − 5𝑥 + 6 = 0 becomes (3.17)
(𝑥 − 2)(𝑥 − 3) = 0 (3.18)

The only solutions to an equation that says

(Bracket 1) × (Bracket 2) = 0

occur when (Bracket 1) = 0 or when (Bracket 2) = 0. Since the product of two numbers can
only be zero if (at least) one of them is zero.

This makes it easy to find the solutions for 𝑥 by just looking to see what values of 𝑥 make each bracket equal
to zero. In (3.18) we had (𝑥 − 2)(𝑥 − 3) = 0 so the two solutions are when:

• (𝑥 − 2) = 0, which means 𝑥 = 2, and
• (𝑥 − 3) = 0, which means 𝑥 = 3.

Returning to the specific factorization procedure itself, here are a few more examples to help us spot the
pattern required for factorizing.
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𝑥2 + 2𝑥 − 15 = (𝑥 − 3)(𝑥 + 5)
𝑥2 + 4𝑥 + 3 = (𝑥 + 1)(𝑥 + 3)

𝑥2 − 16 = (𝑥 − 4)(𝑥 + 4)
𝑥2 − 13 + 42 = (𝑥 − 6)(𝑥 − 7)
𝑥2 + 4𝑥 + 4 = (𝑥 + 2)(𝑥 + 2)

It is worthwhile to take a closer look at these factorizations to identify how, in each case, the numbers that
appear on the left are related to the corresponding formula on the right and where the numbers actually
come from. For example, in 𝑥2 + 2𝑥 − 15 = (𝑥 − 3)(𝑥 + 5) the +2𝑥 comes from +5𝑥 − 3𝑥 i.e. from +5 − 3
the sum of the numbers on the right hand side.

Notice that in all these examples (with 1𝑥2 on the front) that the 𝑥 coefficient is the sum of the two
numbers in the brackets.
Notice also that the constant term is always the product of the two numbers in the brackets

You should expand out all of these examples by hand so that these two facts become obvious to you. The
standard method for factorizing involves trying all sensible combinations of two numbers in the brackets to
try and match the two rules above.

In the case that 𝐴 doesn’t equal 1, like in 2𝑥2 − 5𝑥 − 3 it is more difficult to find the factorization, this is
because you first have to choose how to get 𝐴𝑥2 and then the rule involving the sum matching the 𝑥-term
doesn’t work. You can still do it by trial-and-error (as above), but it’s harder.

For example, you start by writing

2𝑥2 − 5𝑥 − 3 = (2𝑥 + 𝑃)(𝑥 + 𝑄)

and then try and find 𝑃 and 𝑄 which work to give the left-hand side when expanded. Noticing that we need
𝑃 × 𝑄 = −3 narrows down the search to pairs of numbers which multiply to give −3, like {1, −3} or {−1, 3},
and then trying the various combinations.

While in this case it does work to choose 𝑃 = 1, 𝑄 = −3 there is a serious warning…

Factorization doesn’t always work so easily. In fact most quadratics cannot be easily factorized
by this method, so to find 𝑥 you need to use a method that always works like “Completing the square”
(Section 3.9) or the “Quadratic formula” (Section 3.10).

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

And now for going beyond the factorized format to actually solving the quadratics:

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

3.9 Completing the square
This method for solving quadratic equations always works, but is often not taught, with the quadratic formula
just presented instead. You can survive solving all quadratics using just one of these two methods, although
completing the square does provide extra insights into graph sketching.

https://numbas.mathcentre.ac.uk/question/114377/factorizing-quadratics/embed/?token=8c0ddf70-38fb-4a48-abfb-0dc4ecbfeffb
https://numbas.mathcentre.ac.uk/question/114396/factorize-solution/embed/?token=0928e3b0-1e01-4d5b-96f7-b622ffd09883
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We shall illustrate the technique through examples which should make the method pretty clear. Before we
start, we should see what it means to say we have completed the square. Once you have completed the square
for a quadratic you have a formula that looks like this:

some quadratic formula = (𝑥 + 𝑎)2 + 𝑏

for some values of 𝑎 and 𝑏 which you will find precisely.14

Our first target is always to start with something in the standard 𝐴𝑥2 + 𝐵𝑥 + 𝐶 format and re-write it as
something completely equivalent but in the completed square format. This is stage one. To solve a quadratic
equation involves then performing some standard algebra to this completed square format to find the solution
values of the unknown variable (we shall use 𝑥 as is typical).

We can learn the two stages separately, first the process of re-writing a quadratic formula in completed square
format. Then later we shall solve a quadratic equation using this format.

3.9.1 Completing the square: learning by example
Question: Complete the square for this quadratic formula: 𝑥2 − 6𝑥 − 7
Answer: We begin by first checking that the coefficient of the 𝑥2 term is 115. If it says 2𝑥2 or −5𝑥2 etc.. then
first divide or take that factor out of an entire bracket (see later examples).

Now we identify what the coefficient is on the 𝑥 term:

𝑥2 − 6𝑥 − 7

here it’s -6. Take half of that value (it might be negative)16 and create a squared-bracket which contains 𝑥
followed by this number we just found (keep the positive or negative sign) as follows.

(𝑥 − 3)2

You will find that if you expand out this bracket you almost get the same as your starting quadratic formula.
The only part that will be wrong17 is the constant on the end.

Let’s see it on our case above: the target was 𝑥2 − 6𝑥 − 7 and if we expand our bracket we get

(𝑥 − 3)2 = (𝑥 − 3) (𝑥 − 3)
= 𝑥2 + (−3)𝑥 + (−3)𝑥 + (−3)2

= 𝑥2 − 6𝑥 + 9

So it’s not quite true that 𝑥2 − 6𝑥 − 7 equals (𝑥 − 3)2 but it’s close. We then just need to find the difference
between the two constants18 and add or subtract the right value to make them match.

In our case we get
𝑥2 − 6𝑥 − 7 = (𝑥 − 3)2 − 16 (3.19)

it was −16 because to change +9 into −7 we need to subtract 16.
This (3.19) is the final completed square format.

This format is fantastic for all kinds of mathematical uses. For example,
• The graph of (𝑥 − 3)2 − 16 is a standard 𝑦 = 𝑥2 graph shifted right by 3 and down by 16
• Because (𝑥 − 3)2 is never negative we know the lowest value of 𝑥2 − 6𝑥 − 7 is 02 − 16 = −16 and

this minimum value occurs when the bracket is zero, i.e. when 𝑥 = 3

14the signs could be negative rather than positive if a or b were negative
15Remember we normally write 1𝑥2 as just 𝑥2
16in this case we take half of -6 and get -3
17If you’re really lucky this part will match and you are finished already.
18-7 and +9 in this case
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In the graph presented below you can see the plot of 𝑦 = (𝑥 − 3)2 − 16. It is literally just the standard base
graph of 𝑦 = 𝑥2 shifted right by 3 and down by 16.

Figure 3.1: See the trough of the graph has been shifted right, and down
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As seen in the graph above, the Completed Square format provided an easy way to find the minimum
of a quadratic graph. It is in fact always true that the Completed Square format provides an easy
way to find the minimum (or maximuma) of the graph.
This is often extremely useful information when studying a real-world problem containing a quadratic
formula.
Suppose we want to study the graph of 𝑦 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶. If we begin by completing the square and
are able to write it in the format:

𝐴 (𝑥 + 𝑀)2 + 𝑁
where 𝑀 and 𝑁 are numbers we have calculated then…
the minimum (or maximum) of the graph will occur at 𝑥 = −𝑀 and the value when 𝑥 = −𝑀 will be
𝑦 = 𝑁 .
In words, the minimum (or maximum) of the graph always occurs at the value of 𝑥 which makes the
bracket equal to zero.
Hence,

• horizontally, the graph’s trough (or peak) occurs when 𝑥 + 𝑀 = 0, i.e. 𝑥 = −𝑀 ,
• vertically, the height of the graph at its trough (or peak) is 02 + 𝑁 , i.e. 𝑦 = 𝑁 .

aif the graph is ∩-shaped

However, our real aim was to solve a quadratic equation19, i.e. 𝑥2 − 6𝑥 − 7 = 0 for this we still need to do a
few short steps of algebra still.

𝑥2 − 6𝑥 − 7 = 0 became...
(𝑥 − 3)2 − 16 = 0 which becomes...

(𝑥 − 3)2 = 16

So our first step is to move the constant to the other side so that it says bracket squared equals constant.

Now we square root both sides… remembering that there are two square roots of every positive number, in
this case +4 and −4 both square into 16.
So we get

(𝑥 − 3) = +4 or − 4, so...
𝑥 = + 7 or − 1

These general steps of algebra used here are the same every time you use completing the square.

Standard steps for the final equation solving part of completing the square:
• Move the constant to the right (i.e. add/subtract from both sides).
• Square-root both sidesa (remembering there are two answers).
• Move the constant next to 𝑥 to the right (i.e. add/subtract from both sides).
• You should be left with 𝑥 as the subject.

asee Solubility Section 3.11 for when this is impossible

In comparison to factorization, which only worked some of the time, this method works all the time. The
times that factorization works are when the answers are nice and neat (generally integer) answers for 𝑥. In
general, however, you should expect your answers to a quadratic to contain surds (square root symbols). If
the answer does involve surds, then factorization wasn’t the right approach to take. This completing the

19solving our quadratic equal to zero
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square method does get a little trickier if the starting equation doesn’t begin with 1𝑥2, so here’s a full typical
example.

3.9.2 Completing the square: a typical difficult example
We are asked to solve

3𝑥2 + 2𝑥 − 7 = 0 (3.20)

We first need to get rid of the factor of 3, so we divide through by 3 (because we need 1𝑥2 on the front not
3𝑥2) and get

𝑥2 + 2
3𝑥 − 7

3 = 0

Now we need to find half of the 𝑥-term, i.e. half of 2
3 , which is 1

3 and form the squaring bracket. We want
these two sides to balance:

(𝑥 + 1
3)

2
+ Y = 𝑥2 + 2

3𝑥 − 7
3

where we need to work out what value to place in for 𝑌 . The 𝑥2 and 𝑥 terms already match, by our clever
construction, so it’s only the constant parts that need to be matched still20.

The easiest way to find 𝑌 is just to copy the existing constant term down, and subtract off the extra
final term you’ve introduced with your brackets expansion. i.e.

(𝑥 + 1
3)

2
− 7

3 − (1
3)

2
.

We have copied out the − 7
3 from the original, but we have introduced a ( 1

3 )2 with our bracket, so we
just subtract it off again.
The reason this works is because

(𝑥 + 1
3)

2
− (1

3)
2

= 𝑥2 + 2
3𝑥,

by subtracting off the square of the constant term in our bracket we just get the 𝑥2 and 𝑥 terms.

So,

𝑥2 + 2
3𝑥 − 7

3 = (𝑥 + 1
3)

2
− (1

3)
2

− 7
3

= (𝑥 + 1
3)

2
− 22

9 ,

since − 1
9 − 7

3 = − 1
9 − 21

9 = − 22
9 .

So we’ve turned our original equation (3.20) into

(𝑥 + 1
3)

2
− 22

9 = 0 (3.21)

The final steps are to make 𝑥 the subject.

• We shall add 22
9 to be both sides, then

• Square root both sides (remember there are two answers)
• Subtract 1

3 from both sides to turn the left from 𝑥 + 1
3 into just 𝑥

20by choosing Y
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Let’s see these steps in action:

(𝑥 + 1
3)

2
− 22

9 = 0

(𝑥 + 1
3)

2
= 22

9

𝑥 + 1
3 = +√22

9 or − √22
9

𝑥 = +√22
9 − 1

3 or − √22
9 − 1

3
These are our two answers for 𝑥.
As mentioned at the start of this section, this method is a little more work than using the formula (see 3.10).
In the long term it is worth knowing this method too, but do expect to make some algebraic errors when
first trying to use it.

Here is a video demonstration of the method, for you to watch before attempting your own examples:

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=5991~4y~AogxJYFc

Practice Complete the square for these six quadratic equations:

𝑥2 + 4𝑥 + 9 = 0

𝑥2 + 4𝑥 − 12 = 0

𝑥2 − 5𝑥 + 1
4 = 0

𝑥2 − 5𝑥 + 3 = 0
2𝑥2 − 2𝑥 + 1 = 0
𝑥2 − 𝑥 − 1 = 0

Here are the six correct answers, in random order. Match your six answers up with these six formulae:

(𝑥 − 1
2)

2
+ 1

4 = 0

(𝑥 + 2)2 + 5 = 0

(𝑥 − 5
2)

2
− 13

4 = 0

(𝑥 − 1
2)

2
− 5

4 = 0

(𝑥 − 5
2)

2
− 6 = 0

(𝑥 + 2)2 − 16 = 0
Bonus question: Which of these problems has solutions of 𝑥 = 5

2 +
√

6, and 𝑥 = 5
2 −

√
6?

https://gcu.planetestream.com/View.aspx?id=5991~4y~AogxJYFc
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3.10 The Quadratic formula
As explained in the Completing the Square section (3.9), the quadratic formula also always works. It has the
advantage of being slightly faster, assuming you can remember the formula, and don’t mess up any of the
algebra.

To use the quadratic formula you first need to put your problem into the standard format:

The standard quadratic equation format is

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0 (3.22)

where 𝐴, 𝐵 and 𝐶 are constants to be identified.

Here are some examples for you to do and check your answers:

Quadratic equation 𝐴 𝐵 𝐶

𝑥2 − 3𝑥 + 2 = 0 1 -3 2

−𝑥2 + 𝑥 + 7 = 0 -1 1 7

3𝑥2 − 𝑥 + 1 = 0 3 -1 1

−5𝑥2 + 13 = 0 -5 0 13

𝑥2 + 4𝑥 = 0 1 4 0

Once you’re comfortable with identifying 𝐴, 𝐵 and 𝐶 you can use the quadratic formula.

The Quadratic Formula says that the solutions to a standard format quadratic are:

𝑥 = −𝐵 ±
√

𝐵2 − 4𝐴𝐶
2𝐴 (3.23)

where ± means two answers, one with a + and the other with a −.

Key points to note:

• It’s −𝐵 not +𝐵 at the start of the top of the fraction.
• The entire top of the fraction is divided by 2𝐴 not just one of the parts.
• Take care with negative signs, especially in the −4𝐴𝐶 part. If 𝐴𝐶 is negative then −4𝐴𝐶 is positive.
• If 𝐵2 − 4𝐴𝐶 is negative, there will be no real solutions.21 See Solubility Section 3.11 for further

explanation.
• If 𝐵2 − 4𝐴𝐶 = 0 then both the ± answers give the same answer, so there’s only one distinct answer for

𝑥. It’s sometimes called a repeated solution.
• Many authors call the quantity 𝐵2 − 4𝐴𝐶 the discriminant of the quadratic equation.

So the full version of the two solutions are:

𝑥 = −𝐵 +
√

𝐵2 − 4𝐴𝐶
2𝐴 , and 𝑥 = −𝐵 −

√
𝐵2 − 4𝐴𝐶
2𝐴

21The word real is used since there will be solutions in complex numbers.
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3.10.1 A simple example

Solve 3𝑥2 − 𝑥 − 1 = 0 using the quadratic formula.
Answer: We identify 𝐴 = 3, 𝐵 = −1 and 𝐶 = −1. So we substitute to get:

𝑥 = − − 1 + √(−1)2 − 4 × 3 × −1
6 ,

and also,

𝑥 = − − 1 − √(−1)2 − 4 × 3 × −1
6

which simplify into:

𝑥 = 1 + √1 + 12
6 , and 𝑥 = 1 − √1 + 12

6
and finally into

𝑥 = 1 +
√

13
6 , and 𝑥 = 1 −

√
13

6

3.10.2 A video demonstration
Finally in this section, a short video demonstration of the use of the formula, with commentary.

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link: https://gcu.planetestream.com/View.aspx?id=3616~4q~qNPdenUP

Rather than provide more examples here, I suggest you search online for one of the many quadratic solving
websites. It is good to get practice in how to search for ways to check your work, and many of them will also
contain automated examples for you to try. At time of writing this link is a good example MathsIsFun.com

3.11 Solubility of quadratic equations
We discussed above that the method of factorization doesn’t always work, but that the other two methods
do always work. However, what we mean by work is only that they will find the solutions if they exist.

When we attempt to solve a quadratic equation, we are trying to solve an equation that can first be re-
arranged into our standard format as:

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0.
However, it’s quite easy to construct an example with no solutions at all. Just select 𝐴 = 1, 𝐵 = 0 and 𝐶 = 1
and we get

𝑥2 + 1 = 0.
There are at least two ways to see that this equation has no solutions:

• 𝑥2, as a square, is never negative, so after adding 1 to it means the left-hand side of the equation cannot
equal zero;

• The graph of 𝑦 = 𝑥2 + 1 is U-shaped but never touches the 𝑥-axis. But the 𝑥-axis is where 𝑦 = 0,
i.e. 𝑥2 + 1 = 0

https://gcu.planetestream.com/View.aspx?id=3616~4q~qNPdenUP
http://www.mathisfun.com/quadratic-equation-solver.html
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Warning:
Not all quadratic equations have solutions. If the graph of 𝑦 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶 lies entirely above, or
entirely below, the 𝑥-axis and never touches it, then there will be no values of 𝑥 where 𝐴𝑥2+𝐵𝑥+𝐶 = 0.
There are actually only three cases:

• The graph passes through the 𝑥-axis twice (this is typical);
• The trough/peak of the u-shaped/n-shaped graph exactly touches the 𝑥-axis (this is rare);
• The graph never goes through the 𝑥-axis (this is also fairly typical).

The first case, we get two solutions, and will be very typical of problems where you are asked to Solve
or Find the solutions of.
The second case, you get onea solution. This may also occur in examples you are given, an example
would be (𝑥 − 1)2 = 0.
The third case, where there are no solutionsb, is not that unusual but if you’re asked to find the
solutions to a quadratic there is often an implicit implication that there are solutions to find. Similarly
if the problem is derived from a real-life problem where solutions must exist, then this won’t happen.

atechnically we say repeated
bwithout learning about, and using, complex numbers

The good news, is that it’s fairly easy to notice that you’re working with one of these cases with no solutions,
as long as you are completing the square or using the quadratic formula.

When completing the square, you will know this no solutions case has occurred if at the late stage of square-
rooting both sides the right hand side is negative and so cannot be square-rooted.

When using the quadratic formula, the quantity you square root is 𝐵2 − 4𝐴𝐶 (also called the discriminant
in many notes). If this quantity is negative, then there will be no solutions.

If you know you’re being expected to find actual solutions, but your completing the square requires
square-rooting a negative number; or your 𝐵2 − 4𝐴𝐶 is negative… then you have probably already
made an algebraic mistake. Go back and carefully check your algebra.

3.12 Simultaneous linear equations
We have already seen linear equations, these were generally written in the format 𝑦 = 𝐴 + 𝐵𝑥, for some
constants 𝐴 and 𝐵. The word simultaneous refers to there being more than one equation, each of which
needs to simultaneously 22 be true for a solution to be valid.

When solving simultaneous linear equations we generally start with a slightly different (but completely
equivalent) display format, we move the unknown variables onto one side and put the constant on the other
side. So rather than writing 𝑦 = 2𝑥 + 1 we write −2𝑥 + 𝑦 = 1 or 2𝑥 − 𝑦 = −1 both of which are the same
and are just re-arrangements of the first. Two simultaneous equations might then look like this:

2𝑥 − 𝑦 = −1 (3.24)

𝑥 + 3𝑦 = 24 (3.25)

To solve this pair of equations, we are looking for a pair of values 𝑥, 𝑦 which simultaneously make both
equations true. For example, 𝑥 = 2, 𝑦 = 5, which we write (𝑥, 𝑦) = (2, 5) solves (3.24) perfectly, because
2 × 2 − 5 = −1. However, this pair doesn’t solve (3.25) because 2 + 3 × 5 = 17 ≠ 24. Trial-and-error is almost
never a good idea for trying to solve such equations, because there are so many possibilities.

The solution which works for both (3.24) and (3.25) at the same time is (𝑥, 𝑦) = (3, 7) but to find it will
normally involve the use of one of the two standard techniques below:

22i.e. at the same time
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• Elimination (Section 3.12.2), or
• Substitution (Section 3.12.3)

Before demonstrating the methods, we should first be totally clear what we mean by simultaneous equations.

The general format for a pair of simultaneous equations is written:

𝐴𝑥 + 𝐵𝑦 = 𝐸
𝐶𝑥 + 𝐷𝑦 = 𝐹

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are all constants.

The unknown variables don’t need to be 𝑥 and 𝑦, but we just choose them as convenient letters. Similarly,
although there are positive signs in the equations above, any variables could be negative which would override
those signs. Furthermore, you can also generalize this problem to solve more than two simultaneous equations.
However, with three (or more) unknowns both of these methods begin to take a long time and other more
advanced techniques which use matrices are highly recommended.

Though beyond the scope of this chapter, you can (try and) solve any number of simultaneous equa-
tions as long as

The number of equations = The number of unknown variables

For example, here are two problems with 3 and 4 unknowns respectively:

𝑥 + 2𝑦 + 5𝑧 = 8
3𝑥 − 𝑦 + 𝑧 = 3

3𝑥 + 𝑦 − 7𝑧 = 12

and

𝑤 + 𝑥 + 𝑦 + 𝑧 = 5
2𝑤 − 𝑥 + 3𝑦 − 𝑧 = −6

−3𝑤 + 𝑥 + 2𝑦 − 𝑧 = −1
0.5𝑤 − 2𝑥 + 3𝑦 + 4𝑧 = 6

Much like when solving quadratic equations the answers in real-life are generally not nice round integers,
although practice examples often are chosen in order to make the algebra fairly clean and so they do have
integer answers. The example presented in (3.24) and (3.25) above was chosen to have a nice integer answer.

Warning: We shall solve this example by the two standard methods below, and the answers will be
nice round integers. However, the ‘normal’ situation with solving simultaneous equations with real-life
numbers results in answers which are just boring decimal numbers (or fractions) and not nice integers.

3.12.1 The geometrical intepretation
Returning now to two unknowns, which we’ll call 𝑥 and 𝑦… before we dive into the main methods, a short
geometrical interpretation.
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Geometrical interpretation A linear equation in 𝑥 and 𝑦 actually describes all the points that
make up a straight line on the standard 𝑥 and 𝑦 axes (i.e a graph).
So finding a pair of numbers (𝑥, 𝑦) which simultaneously solve two linear equations, means you’re
finding co-ordinates (𝑥, 𝑦) which lie on both lines. So you’re actually finding the intersection of two
lines.

3.12.2 The method of elimination
As the name suggests, the idea here is to eliminate something while solving the equations. The way this is
done is by taking the two equations and adding or subtracting one from the other in a clever way to make
one of the unknown letters cancel – and thus be eliminated.

We shall try and solve:

2𝑥 − 𝑦 = −1 (3.26)

𝑥 + 3𝑦 = 24 (3.27)

It will be important to have labelled the equations so we can reference them in what follows.

There are two ways to do do this method,

• Either we choose to eliminate 𝑥, or
• We choose to eliminate 𝑦.

Either choice is fine, you normally just choose the one that will be easier to do, algebraically.

The idea is to add (or subtract) two equations together (adding the lefts and the rights) to form a new
equation. If we do it immediately then both 𝑥 and 𝑦 will survive the process, on the left-hand-side. However,
if we start by multiplying both sides of (3.26) by 3 then it turns into:

6𝑥 − 3𝑦 = −3 (3.28)

This equation is just an equivalent re-written version of (3.26)23. However, we carefully chose to multiply
by 3 because we can see it creates a −3𝑦 in (3.28) which will cancel with the +3𝑦 visible inside the other
equation, (equation (3.27)).

So now we add together equations (3.27) and (3.28). This involves adding the left-hand-sides together and
setting the answer equal to the sum of the right-hand-sides. We get:

(𝑥 + 3𝑦) + (6𝑥 − 3𝑦) = (24) + (−3) (3.29)
7𝑥 = 21 (3.30)

Notice that the +3𝑦 − 3𝑦 = 0 and 24 + (−3) = 21.
And we have reached a linear equation that mentions only 𝑥 which can be solved by usual algebraic methods.
In this case it’s very easy as we start with 7𝑥 = 21 and dividing both sides by 7 immediately yields that
𝑥 = 3.
This tell us that we need 𝑥 = 3 to be true for both our original equations to be simultaneously true. But
what about 𝑦? We can just use any of the equations to find the 𝑦 which works with 𝑥 = 3. All equations we
use should give the same accompanying 𝑦, which in this case yields 𝑦 = 7 and our only solution is

(𝑥, 𝑦) = (3, 7) .
23which could be recovered by dividing both sides by 3
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Alternatively, we could have chosen to eliminate 𝑥 rather than 𝑦. In this case we notice that it appears
as +2𝑥 in (3.26) and as 𝑥 in (3.27).
The clever step here would be to take the second equation, (3.27), and multiply both sides by 2 to
create a new equation that also contains 2𝑥.
However, now since both 𝑥 terms are the same (and not the negative of each other as with the
𝑦 example above) we should then subtract one equation from the other. Then the 𝑥 terms will
disappear from the next equation. You should try this yourself and see if you discover that 𝑦 = 7
immediately.

In both these examples it was possible to leave one equation alone and multiply the other to get ready
for the addition/subtraction. In more complicated examples you might need to multiply both equations by
something to get two equations with matching 𝑥 or 𝑦 terms.

3.12.3 The method of substitution
This method requires less thinking than the elimination method. In the elimination method we needed to
make a clever choice for the multiplication of one equation, to ensure one of the variables cancelled when we
then added or subtracted our equations.

In contrast, with substitution, such thought isn’t required. However, the resulting calculations normally
involve fractions or messier algebra.

With substitution the idea is as follows:

• Start with two equations as usual.
• Select one unknown variable, and one equation (which mentions it).
• Re-arrange the chosen equation to make the chosen variable the subject.
• Substitute the formula for your chosen variable into the other equation.
• Re-arrange and solve the for the variable you didn’t select.

The first couple of steps above, do involve a choice, and with practice you might develop the skills to select
the easier route24. But which variable and equation works most easily will depend upon the question and
can be hard to predict.

We shall use the method to solve the same problem again:

2𝑥 − 𝑦 = −1 (3.31)

𝑥 + 3𝑦 = 24 (3.32)

An easy choice is not difficult to spot here. We want to pick a variable and an equation then make our chosen
variable the subject of our equation.

We choose the second equation ((3.32)) and the variable 𝑥. This is easy because it requires very little algebra
to make 𝑥 the subject. We begin with 𝑥 + 3𝑦 = 24 and just need to subtract 3𝑦 from both sides to move the
3𝑦 to the other side and reach:

𝑥 = 24 − 3𝑦 (3.33)

We now have a formula for our chosen variable, 𝑥, which we substitute into the other equation ((3.31)). By
substitute we mean to use our known value of 𝑥 (we just read the right-hand-side of (3.33)) inside the first
equation.

Here is the result of the substitution and simplifying algebra:
24if one exists
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2𝑥 − 𝑦 = −1
2 (24 − 3𝑦) − 𝑦 = −1

48 − 7𝑦 = −1
48 = −1 + 7𝑦
49 = 7𝑦
7 = 𝑦

We replaced/substituted 𝑥 with 24 − 3𝑦 because we know they are equal. Then proceeded with standard
algebra steps to make 𝑦 the subject. Resulting in the discovery that 𝑦 = 7 is the answer.

As in the method of elimination this gives us the value of one unknown variable, and we can use any of our
equations to find the value of the other variable. In this case you can quickly discover when 𝑦 = 7 that 𝑥 = 3
and we obtain the same answer as previously.

Alternatively, a messier route tries to make 𝑦 the subject of (3.32). The re-arrangement gives

𝑦 = 24 − 𝑥
3 .

This can be substituted into the other equation: with 2𝑥 − 𝑦 = −1 becoming

2𝑥 − (24 − 𝑥
3 ) = −1

but then the algebra required here to re-arrange and discover 𝑥 = 3 is a fair bit messier. If you can
avoid introducing fractions then it’s definitely recommended, but not always possible.

There are two other combinations of subject variable and equation we could have made.
You could of course make 𝑦 the subject of (3.31) and the calculation would be straightforward.
However, making 𝑥 the subject of (3.31) leads to another messy calculation.

3.12.4 Special cases
This isn’t quite the end of the story for simultaneous equations. When following either of the methods above
there are two unexpected things that can happen. When you are re-arranging an equation to make a variable,
say 𝑥, the subject either of these events could happen:

1. All the 𝑥-terms might cancel, and you reach a totally factual equation like 4 = 4 or 0 = 0,
2. All the 𝑥-terms might cancel, and you reach a totally incorrect equation like 4 = 2 or 1 = 0.

Both of these can occur25.

In Case 1 above, you’ve reached an equation that works for any and all 𝑥 so there are solutions for every
𝑥! There will be infinitely many answers. Geometrically (see Section 3.12.1) you will have started with two
equations describing exactly the same line, so all points on the line solve both equations!

In Case 2 above, you’ve reached an equation for which there are no 𝑥 values that can make it true. So there
are no answers that work for 𝑥! Geometrically (see Section 3.12.1) you will have started with two parallel
lines which never meet each other. There will be no simultaneous solutions to your two equations.

Here’s a video to illustrate Case 1 (above) occurring:

#> [Video appears here in html version
#> the hyperlink is provided below]

25though not at the same time!
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Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=5992~4z~aYw9tYQz

Here’s a very similar video, but this time it’s Case 2 that occurs:

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=5993~4A~CLLKdXaJ

Here’s is a random example to test yourself, you can click to try another different question after answering.
I suggest you try both methods separately to see which one you prefer.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

In addition I recommend you look online for nice simultaneous equations solvers which can show you worked
solutions to problems you try. At time of writing, this is a nice example: equationcalc.com

Finally some advanced examples, again you can randomize and get a new question via the link.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

[Link to Numbas on the web](https://numbas.mathcentre.ac.uk/question/114447/advanced-simultaneous/e
mbed/?token=0578e3c1-2599-47a3-9b3d-ae0b5cafd7df

3.13 Further practice exercises
For most topics in algebra the best way to learn and improve is through practice. So you are recommended
to seek out your own further exercises.

However, there is also a specific further exercises section at the end of the notes here: Section 6.

3.14 Summary of chapter
Having worked through this chapter and attempted the exercises you should now have understanding of the
following topics:

• Develop confidence working with basic operations, brackets, powers and grouping terms;
• Work with exponential and logarithm functions, including knowledge of the log laws;
• Develop confidence using algebra to simplify and solve equations, including the use of operation inverses;
• Be able to identify a quadratic equation and be able to use:

– Factorization,
– Completing the square, or
– The Quadratic Formula to solve them; and

• Be able to solve simultaneous linear equations by elimination and substitution methods.

https://gcu.planetestream.com/View.aspx?id=5992~4z~aYw9tYQz
https://gcu.planetestream.com/View.aspx?id=5993~4A~CLLKdXaJ
https://numbas.mathcentre.ac.uk/question/114443/simultaneous/embed/?token=baaed354-2c09-410e-8b53-ee0109487446
https://www.equationcalc.com/simultaneous-equations-solver
https://numbas.mathcentre.ac.uk/question/114447/advanced-simultaneous/embed/?token=0578e3c1-2599-47a3-9b3d-ae0b5cafd7df
https://numbas.mathcentre.ac.uk/question/114447/advanced-simultaneous/embed/?token=0578e3c1-2599-47a3-9b3d-ae0b5cafd7df


Chapter 4

Vectors

Vectors are useful mathematical objects for describing, simultaneously, a real-world quantity with length
and accompanying direction. For travel purposes, a vector might describe moving North for 3 kilometres
– the direction being North, and the length1 being 3 kilometres. This scenario is an example of what is
called a displacement vector: a vector which describes a physical displacement (a ‘movement’). Vectors can
also describe other real-world phenomena, especially in the area of mechanics, such as forces, velocity and
even momentum. A proper description of a force involves the size or strength 2 of the force, together with
a direction in which the force is acting. For example, when studying a mechanics problem with gravity the
force of gravity will have a strength (in Newtons) and a direction (downwards).

Given their description, vectors can always be described geometrically by a line segment with an arrowhead.
The length of the segment describes the length of the vector, and the way the line points (with the arrowhead)
gives the direction. Here are some 2-dimensional examples, in Figure 4.1:

Figure 4.1: Some examples of vectors

Where a vector is drawn is not important, only its length and direction, so two vectors can be identical and
just drawn in different locations. In Figure 4.2 are five vectors, they are all the same vector, just drawn in
different places:

1also called distance, or magnitude
2or magnitude

40
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Figure 4.2: Five identical vectors

4.1 Scalars and vectors
Vectors differ from what are called scalars in one specific way, a scalar is just single number used to describe
a length/size/strength/magnitude3 and doesn’t include a direction. Scalars are therefore nothing special at
all, and just another name for any quantified physical quantity, like temperature, voltage, distance, height,
mass, volume, density and many many more. All of these quantities are describable with a single value (and
accompanying units) such as a voltage of 9 volts, a temperature of 21.4∘C, a density of 450 kg m-3, or mass
of 74 kg. When performing algebra and calculations we often neglect the units (re-inserting them at the end)
and so a scalar is just a number like 9 or 21.4.
Vectors, on the other hand additionally always include a direction, such as the example ‘3km North’ earlier, a
velocity like ‘45ms-1 East’, or ‘a force of 10N acting at an angle 30 degrees anticlockwise from the horizontal’.

Beware: when talking about vectors there a few quantities that have specific mathematical meanings,
which can differ from how they are sometimes used in common English language.
The first common example concerns speed and velocity:

• Speed – this is a scalar and refers purely to how fast something is travelling.
• Velocity – this is a vector and tells you both speed and direction.

So it is mathematically wrong to say someone has velocity of 20 miles per hour, that is their speed.
The second common example concerns distance and displacement:

• Distance – this is a scalar and refers purely to how far apart two places are.
• Displacement – this is a vector and refers to the movement required between two places, so

includes a distance and direction.
So it is mathematically wrong to say an object has experienced a displacement of 10 metres. You
need to also specify in what direction it moved if you want to call it a displacement. Alternatively it
would be fine to just say it has moved a distance of 10 metres, but this is less descriptive.

4.2 Notation for vectors
4.2.1 Fonts for vectors
Mathematically it’s very tedious, not very productive, and pretty imprecise to have to refer to directions of
vectors in terms of compass points like we have done above. It makes a lot more sense to agree some good
notation instead.

We begin with the first good notation. If we are talking about a vector and want to give it an algebraic name
like 𝑣 (note this is the English letter v in italic maths font4) then we underline the letter, so we in fact write
𝑣 which signifies that it represents a vector not a scalar.

This approach can make it easier to read equations which contain vectors and scalars. The bad news for
students is that it’s not universally agreed as a notation, and some authors just use bold, and so write v
instead. Yet more authors instead place a tiny arrow on top of the letter, and write ⃗𝑣.
For consistency we shall try and use just the underline notation in these notes, so we’ll write 𝑎, 𝑏, 𝑢, 𝑣 etc…

3other words exist too
4one common problem when first working with vectors is similarity of the letters u and v in maths fonts
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4.2.2 Mathematical representation
The more interesting question is how to actually describe the length and direction in a clean, and easy way.
The answer is that a number of good methods have been invented, and the best way generally depends upon
the context of what you wish to do with your vector. Consequently there are a few totally equivalent but
different-looking ways to represent a vector. We shall discuss the different representations or formats in later
sections.

For now we just introduce them by name:

• Polar format – here you describe the length and then the direction (as an angle from the horizontal).
• Rectangular/Cartesian format – here you use the good old standard (𝑥, 𝑦) axes as your basis.
• Geometric format – here you draw an arrow of a particular length (not very useful except in hand-

drawings).

In addition, inside the rectangular format we shall see there is a very convenient bracket notation used too,
sometimes called matrix format.

4.3 Cartesian/Rectangular notation
We begin with probably the easiest to understand notation. We start with a vector like this one, which has
length

√
13 ≈ 3.606 and makes an angle of 33.69 degrees, measured in the anticlockwise direction, with the

horizontal (see Figure 4.3):
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Figure 4.3: A vector of length
√

13 ≈ 3.606 at an angle of 33.69∘.

The choice of
√

13 was special so that our vector represents a horizontal movement of +3 and vertical
movement of +2. It is very typical for the length to be a surd5, in fact it is to be expected if the horizontal and
vertical lengths are both integers. You can use trigonometry (SOH-CAH-TOA) to check that tan(33.69∘) =
2
3

6.

This vector can be described, rather than by the length and direction, by its horizontal and vertical movements.
Note that it didn’t need to be drawn starting at the origin, but it just made it easier to see the movements.
The way we write this vector in rectangular format is as (3, 2).

5the square root of an integer
6I rounded the angle for convenience
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Rectangular (also called Cartesiana) format for a vector involves working out the horizontal and
vertical movement represented by the vector’s arrow. Then placing them in a bracket of format

(𝑥, 𝑦)
where the first component, 𝑥, represents the horizontal movement, and the second component, 𝑦,
represents the vertical component.

anamed after the famous mathematician and philosopher Descartes, who is credited with inventing the 𝑥-𝑦 axis
pictures

How to remember which way around to write the components?
A common way to remember which component is which is via this alphabet-based memory aid…
fiRst = Rows
seCond = Columns
Where Rows refers to horizontal movements, and Columns refers to vertical movements.

Let’s see a worked example:

Identify in the picture below the following five vectors: (1, 2), (−3, −1), (2, 1), (−1, 3), (−3, 0) you may
assume the dotted grid lines are spaced 1 unit apart.

Figure 4.4: Five vectors for you to label using their rectangular format

The answers have been labelled on the picture below:
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Figure 4.5: Five vectors labelled in rectangular format

There is sometimes confusion between this vector format and the 𝑥, 𝑦 notation you’ve used in the past to
identify points on a graph (remember the vector is really the line joining the origin to this point). For this
reason, many people prefer to use what is called the matrix or column vector format which merely involves
writing the vector vertically rather than horizontally on the page. Matrix (and it’s plural matrices) is a
specific mathematical term for a grid of numbers inside brackets – matrices are covered in separate chapter.

Here are the five vectors, (2, 1), (1, 2), (−1, 3), (−3, −1), (−3, 0), from our example above written in matrix
format:

⎛⎜
⎝

2
1
⎞⎟
⎠

, ⎛⎜
⎝

1
2
⎞⎟
⎠

, ⎛⎜
⎝

−1
3

⎞⎟
⎠

, ⎛⎜
⎝

−3
−1

⎞⎟
⎠

, ⎛⎜
⎝

−3
0

⎞⎟
⎠

.

This format takes up more space in writing, but does have the benefit of being obviously a vector rather
than describing a point. We shall later see that there is another format to write rectangular notation by
introducing some base vectors called 𝑖 and 𝑗, but we won’t use them yet.

4.4 Polar notation
Polar notation is perhaps the easiest notation to understand, but unfortunately isn’t very useful in a lot of
algebra applications. This notation fits nicely with our original geometric introduction of vectors, here is a
summary.

The polar format of a vector involves drawing the vector starting at the origin on a graph and describing
two quantities:

• the length of the vector



CHAPTER 4. VECTORS 46

• the angle the vector makes anticlockwise with the positive 𝑥-axis
The length is normally called 𝑟, and is always chosen to be positive7.

The angle is normally called 𝜃 (the Greek letter theta) and we shall choose to describe it as between −180∘

and +180∘. This means we don’t write 200∘ but we write −160∘ instead8. This range of values is really just
another notational choice, so you’ll find some authors use the range of 0∘ to +360∘ for 𝜃. Such authors will
use 200∘ rather than −160∘.

The notation itself is written either as (𝑟, 𝜃) or 𝑟∠𝜃, with the former being more popular. You do need to
remember that the first number is always the length and the second number the angle. However, if you
include the degree symbol, ∘, it will be obvious.

Figure 4.6 is the same basic example seen in the introduction of the rectangular notation:

Figure 4.6: A vector of length
√

13 ≈ 3.606 at an angle of 33.69∘.

This vector is easy to describe in polar notation as (𝑟, 𝜃) = (
√

13, 33.69∘)
Figure 4.7 shows three more vectors that can be described via their length and angle.

7technically it might be zero
8they both describe the same angle really
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Figure 4.7: Three vectors with their angles and lengths labelled.

Notice the angle of the vector is always measured starting from the positive 𝑥-axis (this is called the pole, as
in polar).

Notice also that the vector which points downwards has a negative angle, because we measure anticlockwise
angles as positive, and clockwise as negative, with the positive positive 𝑥-axis measured as zero.

Here is a practice example:
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Identify in the picture below the following three vectors written in polar notation:
(1.41, 45∘), (5, 126.87∘), (3.61, −123.69∘) you may assume the dotted grid lines are spaced 1 unit apart.

Figure 4.8: Three vectors labelled 𝐴, 𝐵 and 𝐶.

The answer is in thisa footnote.
aIn the order they were written, they are B then A then C

4.5 Converting between Cartesian and Polar notations
As you may have already noticed there should be a fairly straightforward way to convert forwards and
backwards between polar and rectangular notations. Clearly they are both valid ways to describe a vector
so every vector should have both a polar and rectangular representation.

In order to convert between the two formats you need to use a little trigonometry, and Pythagoras’ theorem.

Let’s consider a vector 𝑣 which we write in both notations. So,

• Polar notation: 𝑣 = (𝑟, 𝜃), and also
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• Rectangular notation: 𝑣 = ⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

4.5.1 Polar to Rectangular
The easiest direction for conversion is probably Polar to Rectangular. In Figure 4.9 below you can see that
a vector with labelled polar notation (𝑟, 𝜃) has been drawn. Additionally a right-angled triangle has been
drawn underneath this vector.

Figure 4.9: How to convert polar to rectangular notation

Basic trigonometry has been performed in the above diagram to label the 𝑥 and 𝑦 lengths of the triangle
drawn. This means there is a straightforward conversion formula. If you would like to see the trigonometry
behind this then here is a video, otherwise you can skip to the formula below.

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:
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https://gcu.planetestream.com/View.aspx?id=5994~4B~dmaaP9m7

Standard conversion formula:

(Polar notation) (𝑟, 𝜃)
↓

(Rectangular notation) (𝑟 cos(𝜃), 𝑟 sin(𝜃))
(4.1)

This picture method works if the vector lives in the top-right quadrant on the graph, but what happens if
the angle 𝜃 isn’t between 0∘ and 90∘?

The great news is that we don’t need to worry, as these formulae with cos(𝜃) and sin(𝜃) also work outside
this range.

Here is a video to help you see this conversion working for the angle 120∘:

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link:

https://gcu.planetestream.com/View.aspx?id=5995~4C~FapLz8xu

In the video we had 𝜃 = 120∘ and so, since cos(120∘) = −0.5,

𝑟 cos(𝜃) = 𝑟 cos(120∘) = −0.5𝑟

i.e. the 𝑥 co-ordinate becomes negative, which is what was expected for an angle of 120∘. These conversion
formulae, using 𝑟 cos(𝜃) and 𝑟 sin(𝜃), work for all 𝑟 and all 𝜃.

4.5.2 Rectangular to Polar
This conversion is also not super difficult, but it is a little trickier to make sure you get the angle correct.

We imagine this time starting with a vector with rectangular notation (𝑥, 𝑦) and want to calculate its polar
version (𝑟, 𝜃).
The answer is actually very easy if 𝑥 = 0 because then the vector either points vertically upwards9 or vertically
downwards10 and the angle will be 90∘ or −90∘ respectively. The length 𝑟 will just be the size11 of 𝑦.
We can solve the cases where 𝑦 = 0 very similarly (the angle will be 0∘ or 180∘).

So we will only need the calculations below if 𝑥 and 𝑦 are not zero.

We start with a sketch from which its obvious we can use Pythagoras’ theorem to find 𝑟 (Figure 4.10):
9if 𝑦 is positive

10if 𝑦 is negative
11see discussion below

https://gcu.planetestream.com/View.aspx?id=5994~4B~dmaaP9m7
https://gcu.planetestream.com/View.aspx?id=5995~4C~FapLz8xu
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Figure 4.10: How to use Pythagoras to find vector length

Just looking at the vector lengths in this diagram it’s clear that we can just square the two values, add them
and then square root the answer to use Pythagoras to find the length of the vector. This even works in the
case above where 𝑎 is negative, because 𝑎2 will be positive anyway.

Standard formula for polar length, 𝑟, from rectangular notation (𝑥, 𝑦):

𝑟 = √𝑥2 + 𝑦2

The difficulty comes with making sure we measure the correct angle in the diagram. Looking at the triangle
drawn in the top-right, with side lengths 𝑥 and 𝑦, we know the formula for the angle 𝜃 will be

𝜃 = tan−1 ( 𝑦
𝑥) , sometimes also called arctan( 𝑦

𝑥) .

However, calculating tan−1 ( 𝑏
𝑎 ) for the triangle in the top-left may not find the angle desired because most

calculators give the answer to tan−1 that lies between −90∘ and 90∘, and we want an angle that lies outside
this range, at approximately 120∘. There are many valid approaches but perhaps the cleanest is to always
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convert the sides of the right-angled triangle into lengths (i.e. turn negative numbers positive) and consider
this picture:

Figure 4.11: Using tan−1 ( |𝑦|
|𝑥| ) always returns one of these four positive 𝛼.

Notice in Figure 4.11 there are four vectors drawn, and four triangles (each with sides 𝑥 and 𝑦) and that the
angle labelled 𝛼 is always the angle created between a vector and the 𝑥-axis. In this picture four identical
angles are all labelled 𝛼 and they are the positive angle obtained if you calculate

𝛼 = tan−1 ( |𝑦|
|𝑥|)

where the notation |𝑦| and |𝑥| just means to take the size12 of 𝑦 and 𝑥 respectively, basically just ignoring
their sign. e.g. |4| = 4, | − 2| = 2, |1| = 1, | − 17| = 17 etc…

To work out the correct angle 𝜃 for the polar notation, isn’t too difficult once you have 𝛼.
12formally called the absolute value
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The formula for the polar angle 𝜃 from rectangular notation (𝑥, 𝑦) can be found by first calculating

𝛼 = tan−1 ( |𝑦|
|𝑥|)

Then, based on where the vector (starting from the origin) lives…
• In the top-right corner 𝜃 = 𝛼 already.
• In the bottom-right corner 𝜃 = −𝛼,
• In the bottom-left corner 𝜃 = −180∘ + 𝛼,
• In the top-left corner 𝜃 = 180∘ − 𝛼.

It’s easiest to just draw a sketch like Figure 4.11 above, to recreate these rather than try and memorize
them.
To work these out manually just remember that the negative 𝑥-axis is 180∘ around from the positive
𝑥-axis.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

4.6 Vector addition and subtraction
Now that we’ve invented a whole new type of object, a vector, and we’ve covered in detail the ways to represent
vectors, we are allowed to decide what it means to add two vectors together, or subtract two vectors from
each other. Luckily for us, mathematicians who first worked with vectors have already agreed upon a very
useful meaning which allows us to solve a wide range of problems without getting too complicated.

If we recall that we can think of vectors as describing movements, then adding two vectors represents doing
one movement after the other.

So if vector 𝑣 = ⎛⎜
⎝

2
−3

⎞⎟
⎠

and vector 𝑤 = ⎛⎜
⎝

−5
4

⎞⎟
⎠

so that

• 𝑣 represents moving right 2 and down 3, and
• 𝑤 represents moving left 5 and up 4

then we say that 𝑣 + 𝑤 represents

‘moving right 2 and down 3’ then ‘moving left 5 and up 4’.
Geometrically it can be calculated by drawing the vector 𝑤 to start at the end of vector 𝑣 like the picture in
Figure 4.12. Notice that the vector 𝑤 has been drawn to start at the end of 𝑣.

https://numbas.mathcentre.ac.uk/question/114443/simultaneous/embed/?token=baaed354-2c09-410e-8b53-ee0109487446
https://numbas.mathcentre.ac.uk/question/114443/simultaneous/embed/?token=baaed354-2c09-410e-8b53-ee0109487446


CHAPTER 4. VECTORS 54

Figure 4.12: Illustration of geometry of vector addition.

Thankfully, algebraically it’s even easier, if the vectors are in rectangular notation, you just add the corre-
sponding components like this:

𝑣 + 𝑤 = ⎛⎜
⎝

2
−3

⎞⎟
⎠

+ ⎛⎜
⎝

−5
4

⎞⎟
⎠

= ⎛⎜
⎝

(2) + (−5)
(−3) + (4)

⎞⎟
⎠

= ⎛⎜
⎝

−3
1

⎞⎟
⎠

So 𝑣 + 𝑤 is the vector which represents moving 3 left and 1 up, i.e. the net effect of doing 𝑣 and then 𝑤13.
13or the other way round too!
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So the general formula for adding vectors just looks like this:

⎛⎜
⎝

𝑎
𝑏
⎞⎟
⎠

+ ⎛⎜
⎝

𝑐
𝑑
⎞⎟
⎠

= ⎛⎜
⎝

𝑎 + 𝑐
𝑏 + 𝑑

⎞⎟
⎠

(4.2)

Subtraction works in exactly the same way, you can either think of 𝑣 − 𝑤 as 𝑣 + (−𝑤) or use the
formula:

⎛⎜
⎝

𝑎
𝑏
⎞⎟
⎠

− ⎛⎜
⎝

𝑐
𝑑
⎞⎟
⎠

= ⎛⎜
⎝

𝑎 − 𝑐
𝑏 − 𝑑

⎞⎟
⎠

(4.3)

If you begin with your vectors in polar notation, however, then it’s much trickier to add them together.
Indeed the easiest method is normally to convert them first into another notation (like rectangular) and then
perform the calculation.

The examples below can be used to practice adding and subtracting vectors. You can generate a new random
example using the button below each question. In this example, the Reveal answers button will also show
you how to do the question if you are stuck.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

4.7 Multiplying a vector by a scalar
Here we’re combining two terms we have learnt in this chapter. Recall that a scalar is just another name
for a constant, a single-value or number (in contrast to a vector which includes a direction). So if we have a
vector 𝑤 then examples of multiplying by a scalar would include

2𝑤, 3𝑤, −𝑤, 3.4𝑤, −
√

7𝑤
Note, that in the third example, just like when performing algebra normally −𝑤 is just a short version of
−1 × 𝑤.

Since the idea of multiplication is really just repeated addition, so that multiplying something by 2 is the
same as adding it to itself, it’s not a surprise that multiplying a vector by a scalar is also pretty easy.

If you’ve been wondering until now why scalars are called scalar… then you’re about to see. Multiplication
by scalars has the effect of scaling the vector, in the sense that scaling is used to change the size of an image.
Scaling by a factor of 2 means to double the size, scaling by 3 means to triple the size, etc…

As a simple example, if 𝑤 = ⎛⎜
⎝

−1
2

⎞⎟
⎠

then 5𝑤 = ⎛⎜
⎝

−5
10

⎞⎟
⎠
.

The standard formula for scalar multiplication looks as follows. If we call our scalar 𝑘 then in rectan-
gular format

𝑘 × ⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= ⎛⎜
⎝

𝑘 × 𝑥
𝑘 × 𝑦

⎞⎟
⎠

(4.4)

Geometrically, it’s also quite easy to see how scaling works. First, in Figure 4.13, some examples to show
how scaling works for simple positive multiples.

https://numbas.mathcentre.ac.uk/question/116788/adding-vectors/embed/?token=512f57bf-7a6d-4dd0-9d47-62697a575159
https://numbas.mathcentre.ac.uk/question/116789/subtracting-vectors/embed/?token=2f9457ce-37e4-44eb-924d-b44881651a83
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Figure 4.13: Illustration of geometry of vector addition.

Next, in Figure 4.14, we see that the negative of a vector just reverses the direction, and fractional multiples
behave as expected. So 1.5𝑣 is 50% longer than 𝑣.

Figure 4.14: Illustration of geometry of scalar multiplication of a vector.

In polar notation it’s also fairly easy, since scaling a vector never actually changes the direction of the vector,
except when we multiply by a negative scalar. In which case the direction is completely reversed. Thus
a vector with angle 𝜃 = 30∘ when multiplied by −1 is completely reversed and now has angle −150∘. Or a
vector that begins with angle 𝜃 = −50∘ is totally reversed and becomes a new vector with an angle of 130∘.
The precise formula depends on whether the original 𝜃 was negative or positive. Notice also that the length
of a vector is doubled when it is multiplied by 2 or is multiplied by −2, it’s just the angle also changes in the
latter.
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Multiplying vectors by scalars in polar form, is best visualized geometrically, but the formulae also
look like this:
If 𝑘 > 0 then

𝑘 × (𝑟, 𝜃) = (𝑘 × 𝑟, 𝜃).
But if 𝑘 < 0, then first recall that −𝑘 = |𝑘| is the positive scaling factor, and

𝑘 × (𝑟, 𝜃) = (|𝑘| × 𝑟, 𝜃 + 180∘ or 𝜃 − 180∘)
which one of the two angles above is correct, is whichever one fits in the standard range between
−180∘ and 180∘.
It’s not recommended to try and memorize this formula, best to get a geometric understanding by
trying some examples.
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Practice
In Figure 4.15, which of the four labelled vectors represents 𝑣 and which one represents −1×𝑣, i.e. −𝑣?

Figure 4.15: Four vectors, but which is −𝑣?

Next, a scaled vector. The (shortest) black vector is 𝑣, which of the other vectors is 3𝑣?

Figure 4.16: Which one is 3𝑣?

Answersa

aIn the first picture, 𝑣 was 𝐴 and −𝑣 was 𝐶. In the second picture it’s the red line to (3, 1.5) which depicts 3𝑣.



CHAPTER 4. VECTORS 59

4.8 Relative position vectors
One natural use of vectors is to represent locations of objects in a diagram, like in force diagrams. In
such cases objects are often described by labelling their locations and the edges between such points can be
represented as vectors.

A vector that describes the displacement between two positions in space is called a relative position
vector.
e.g. if a point 𝑃 is located at (3, 1) and point 𝑄 is located at (−1, 3) then, the position vector of 𝑄
relative to 𝑃 is written ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 and calculated by subtracting the co-ordinates of 𝑃 from 𝑄. Alternatively,
you can subtract ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝑃 from ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑂𝑄 like this:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 = ⎛⎜
⎝

−1
3

⎞⎟
⎠

− ⎛⎜
⎝

3
1
⎞⎟
⎠

= ⎛⎜
⎝

−4
2

⎞⎟
⎠

.

The ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 notation is used, because a directed line (starting at 𝑃 ) joining 𝑃 to 𝑄 will match the vector
in direction and length.
Recall: this arrow notation to signify a vector is one of the alternatives to underlining a vector. It is
almost always used in this kind of example where you have locations described by letters.

As previously, it is not important to learn the formula for the relative position vector, it is better for future
applications if you can work it out by remembering that the relative position vector of 𝑄 from 𝑃 is the vector
required by someone who starts at 𝑃 who wants to travel to 𝑄.

In the examples above 𝑃 = (3, 1) and 𝑄 = (−1, 3) so to reach 𝑄 from 𝑃 requires:

• Subtracting 4 from the 𝑥-coordinate (notice −4 = (−1) − (3)), and
• Adding 2 to the 𝑦-coordinate (notice 2 = (3) − (1)).

Here is that same example, shown in geometric form, where it is easier to see the vector ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄:
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Figure 4.17: Illustration of a relative position vector. Here, the position vector of 𝑄 relative to 𝑃 is written
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄.

It is again hopefully clear that the calculation of a relative position vector is quite straightforward when
vectors are written in rectangular format. Since this calculation is a subtraction the difficulty in doing this
with vectors written in polar notation is the same as it was in Section 4.6.

4.9 The 𝑖, 𝑗 notation for vectors
Introduction of a final alternative rectangular notation has been saved until now as it really is just a completely
equivalent alternative to the previously introduced Rectangular/Cartesian format.

Definition of the 𝑖, 𝑗 vectors.
For this notation we introduce two special vectors:

𝑖 = ⎛⎜
⎝

1
0
⎞⎟
⎠

and 𝑗 = ⎛⎜
⎝

0
1
⎞⎟
⎠

We have already introduced the standard rules for addition, subtraction and scalar multiplication of vectors.
So it only remains for us to appreciate how these rules manifest in this new 𝑖, 𝑗 notation. One reason this
notation is popular is because it allows the 𝑖 and 𝑗 to be treated much like we treat unknowns when we
perform algebra.

Firstly, it’s very easy to convert from rectangular to 𝑖, 𝑗 notation:



CHAPTER 4. VECTORS 61

⎛⎜
⎝

3
7
⎞⎟
⎠

= 3 ⎛⎜
⎝

1
0
⎞⎟
⎠

+ 7 ⎛⎜
⎝

0
1
⎞⎟
⎠

= 3𝑖 + 7𝑗

or in general

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= 𝑥 ⎛⎜
⎝

1
0
⎞⎟
⎠

+ 𝑦 ⎛⎜
⎝

0
1
⎞⎟
⎠

= 𝑥𝑖 + 𝑦𝑗

for any values (positive, zero, or negative) of 𝑥 and 𝑦.
• The constant in front of the 𝑖 vector corresponds to the 𝑥-coordinate.
• The constant in front of the 𝑗 vector corresponds to the 𝑦-coordinate.

You can do addition and subtraction using this notation in a standard algebraic way, by grouping the 𝑖 terms
and 𝑗 terms separately, just as you would two different letters in algebra.

For example,

(2𝑖 + 3𝑗) + (3𝑖 − 9𝑗) = 5𝑖 − 6𝑗

or if 𝑣 = 3𝑖 + 𝑗 and 𝑤 = −𝑖 + 7𝑗 then

2𝑣 − 3𝑤 = 2 (3𝑖 + 𝑗) − 3 (−𝑖 + 7𝑗)
= (6𝑖 + 2𝑗) − (−3𝑖 + 21𝑗)
= 9𝑖 − 19𝑗

This notation is very often used in textbooks and resources as a way to avoid the slightly more space-
consuming rectangular column vector notation which can span multiple lines of text. However, obviously
some users may also just prefer it.
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Practice
Match up these five vectors written in matrix notation with the 𝑖, 𝑗 vectors below.
The column vector formats:

i. ⎛⎜
⎝

3
4
⎞⎟
⎠

ii. ⎛⎜
⎝

0
2
⎞⎟
⎠

iii. ⎛⎜
⎝

2
0
⎞⎟
⎠

iv. ⎛⎜
⎝

4
3
⎞⎟
⎠

v. ⎛⎜
⎝

4
−3

⎞⎟
⎠

The 𝑖, 𝑗 notation:
a. 4𝑖 + 3𝑗
b. 2𝑖
c. 3𝑖 + 4𝑗
d. 4𝑖 − 3𝑗
e. 2𝑗

Answersa

a(i)(c), (ii)(e), (iii)(b), (iv)(a), (v)(d)

4.10 The Scalar (or Dot) product of two vectors
Having discussed multiplying vectors by scalars in Section 4.7, one could naturally ask the question of whether
vectors can also be multiplied by each other.

Since vectors were a new mathematical object, the creators were free to decide what this multiplication is
designed to represent and mean. The result of the study was that there are actually two different useful ways
to define the multiplication of one vector with another vector. This section (Section 4.10) will discuss the
first of these:

• The Scalar Product (also known as the Dot (⋅) Product);
• The Vector Product (also known as the Cross (×) Product) will be discussed in Section 4.13

Each of these products has two names(!) because one name describes what sort of output you get, and
the alternative name describes the symbol used to denote the multiplication. We cannot just use ×
like we have always done in algebra, because we are going to have two different ways to define multiplication.

Unsurprisingly, the Dot Product will use a dot like this, ⋅, and the Cross Product (see later) will use a cross,
like this, ×. But because their other names are more helpful we shall stick to calling them the Scalar14 and
Vector15 products for the time being.

14Dot
15Cross
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The Scalar Product is a way to multiply two vectors which gives a scalar as its output. The easy
formula definition available in rectangular notation is as follows.

If 𝑣 = ⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

and 𝑤 = ⎛⎜
⎝

𝑎
𝑏
⎞⎟
⎠

then

𝑣 ⋅ 𝑤 = 𝑥𝑎 + 𝑦𝑏

Let’s see a few examples involving numbers, from which it should be obvious how to calculate the Scalar
Product.

For vectors 𝑣 = ⎛⎜
⎝

8
−2

⎞⎟
⎠

and 𝑤 = ⎛⎜
⎝

3
4
⎞⎟
⎠

their Scalar Product is

𝑣 ⋅ 𝑤 = ⎛⎜
⎝

8
−2

⎞⎟
⎠

⋅ ⎛⎜
⎝

3
4
⎞⎟
⎠

= 8 × 3 + (−2) × 4 = 16.

For vectors 𝑎 = ⎛⎜
⎝

−1
4

⎞⎟
⎠

and 𝑏 = ⎛⎜
⎝

−2
7

⎞⎟
⎠

their Scalar Product is

𝑎 ⋅ 𝑏 = ⎛⎜
⎝

−1
4

⎞⎟
⎠

⋅ ⎛⎜
⎝

−2
7

⎞⎟
⎠

= (−1) × (−2) + 4 × 7 = 30.

For vectors 𝑣1 = ⎛⎜
⎝

3
1
⎞⎟
⎠

and 𝑣2 = ⎛⎜
⎝

−1
3

⎞⎟
⎠

their Scalar Product is

𝑣1 ⋅ 𝑣2 = ⎛⎜
⎝

3
1
⎞⎟
⎠

⋅ ⎛⎜
⎝

−1
3

⎞⎟
⎠

= 3 × (−1) + 1 × 3 = 0.

It’s worth noting in this final example we have used subscripts rather than different letters to name our
vectors. This is a very typical approach because when working with vectors you can often quickly run out of
new letters, so it’s easier to use just one letter like 𝑣 and use subscripts to name them differently.

There is an alternative definition of the Scalar Product, which is useful for finding the angle between
two vectors, but not very useful for actually calculating the Dot Product:

𝑣 ⋅ 𝑤 = length(𝑣) × length(𝑤) × cos(𝜃) (4.5)

where 𝜃 is the angle between the vectors 𝑣 and 𝑤.
Authors often use the notation |𝑣| for length(𝑣) so this formula is often written:

𝑣 ⋅ 𝑤 = |𝑣||𝑤| cos(𝜃). (4.6)

If we have written our vector in Polar format then the length is just called 𝑟. If we have our vector in
Rectangular notation then we need to use Pythagoras to work out its length.

As stated above, this formula is not generally useful for actually finding the Scalar Product of two vectors
because the formula given before is so easy to use. Additionally we don’t normally know the angle between
two vectors. However, as we shall see in Section 4.11 we can use this new formula to work out the angle
between two vectors. By the angle between two vectors, we just mean the angle you create if you draw both
vectors starting at the same point and measure the gap from the first to the second vector, e.g.



CHAPTER 4. VECTORS 64

Figure 4.18: Two examples of the angle between two vectors, called 𝜃 in the Scalar Product formula.

As a final aside, while you will generally use the Rectangular format to work out a Scalar Product, if you do
happen to start with two vectors in Polar format, e.g. 𝑣 = (𝑟1, 𝜃1) and 𝑤 = (𝑟2, 𝜃2) then finding the Scalar
Product is actually pretty easy. We know that length(𝑣) = 𝑟1 and length(𝑤) = 𝑟2. And the angle between
the two vectors will simply be 𝜃2 − 𝜃1 (draw a little sketch if you want). So, occasionally this version of the
formula is useful:

(𝑟1, 𝜃1) ⋅ (𝑟2, 𝜃2) = 𝑟1𝑟2 cos(𝜃2 − 𝜃1).

In the next section we shall discover why the Scalar Product is so useful.

Some examples to practice calculating Scalar Products will appear in the examples at the end of the notes
in Section 7.

4.11 Applications of the Scalar Product
The Scalar Product calculation has many useful applications, below we shall discuss just four of these,
although there are others.

4.11.1 How to find the angle between two vectors
Given two vectors, 𝑣 and 𝑤, we can use the Scalar Product to quickly find the angle between them. If you
imagine drawing the two vectors both starting from the same point (see Figure 4.18 for two such examples)
this is the angle we shall try to find.

There are four steps:

• Starting in Rectangular format, use the simple Scalar Product formula to calculate 𝑣 ⋅ 𝑤 (see (4.10));
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• Find the lengths of the vectors (using Pythagoras);
• Re-arrange the 𝑣 ⋅ 𝑤 = length(𝑣) × length(𝑤) × cos(𝜃) formula to find cos(𝜃);
• Use inverse cosine to find 𝜃.

Let’s try it with 𝑣 = ⎛⎜
⎝

2
−1

⎞⎟
⎠

and 𝑤 = ⎛⎜
⎝

1
5
⎞⎟
⎠

First,

𝑣 ⋅ 𝑤 = ⎛⎜
⎝

2
−1

⎞⎟
⎠

⋅ ⎛⎜
⎝

1
5
⎞⎟
⎠

= 2 × 1 + (−1) × 5 = −3.

Next we find the vectors’ lengths,

length(𝑣) = |𝑣| = √22 + (−1)2 =
√

5,
and

length(𝑤) = |𝑤| = √12 + 52 =
√

26.
Substituting these values into either of the formulae above ((4.5) or (4.6)),

−3 =
√

5
√

26 cos(𝜃),

which can be rearranged to say
cos(𝜃) = −3√

5
√

26 ≈ −0.2631.

Finally we use cos−1 to get

𝜃 = cos−1(−0.2631) ≈ 105.255∘.
This is our angle from 𝑣 to 𝑤. Try sketching the vectors yourself and verify that the angle is indeed
slightly more than a right-angle. In fact, this example is the right-most example in Figure 4.18!
A minor note is that the angle 360∘ − 𝜃 is always the angle between the vectors if you consider 𝑤 to 𝑣
rather than 𝑣 to 𝑤.

4.11.2 How to check if two vectors form a right-angle
If two vectors form a right-angle then the technical term used is that they are orthogonal (to each other)16.

Checking for orthogonality is actually much easier than finding the angle between two vectors. Recall that if
the angle 𝜃 = 90∘ then

cos(𝜃) = cos(90∘) = 0.

So if we look at the complicated Scalar Product formula ((4.5)):

𝑣 ⋅ 𝑤 = length(𝑣) × length(𝑤) × cos(𝜃),

we notice that if the angle between vectors 𝑣 and 𝑤 is 𝜃 = 90∘ then cos(𝜃) = 0 and the right-hand side of the
equation will equal 0! So it follows that 𝑣 ⋅ 𝑤 = 0.
This means that whenever two vectors form a 90∘ angle, then their Scalar Product will be zero!

Even better is the news that by looking at the right-hand side of (4.11.2) the only way for the right-hand
side to be equal to zero is if cos(𝜃) = 0 unless we’ve stupidly started with a vector of length 0 (which doesn’t

16it’s also called perpendicular
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really make any angles)17. So as long as neither of our vectors is just a vector of zeroes, then the only way
to get 𝑣 ⋅ 𝑤 = 0 is via an angle of 90∘ (or 270∘, if being picky, but that’s just 90∘ in disguise).

Our conclusion is that to check if two vectors are orthogonal, you just find their Scalar Product and check if
it’s zero.

So the following two statements are actually saying exactly the same thing:

• 𝑣 ⋅ 𝑤 = 0
• 𝑣 and 𝑤 form a right-angle.

We can do a quick couple of examples:

Let’s try it with 𝑣 = ⎛⎜
⎝

2
−1

⎞⎟
⎠

and 𝑤 = ⎛⎜
⎝

1
5
⎞⎟
⎠

𝑣 ⋅ 𝑤 = 2 × 1 + (−1) × 5 = −3 ≠ 0.
So they are not orthogonala.

On the other hand, if we try 𝑎 = ⎛⎜
⎝

3
1
⎞⎟
⎠

and 𝑏 = ⎛⎜
⎝

−1
3

⎞⎟
⎠
, then

𝑎 ⋅ 𝑏 = 3 × (−1) + 1 × 3 = 0
so these two vectors are orthogonal. Sketch them and see it for yourself if you wish.

awe actually just saw the angle they form is about 105∘

4.11.3 Finding the projection/component of a vector in a particular direction
Many applications of vectors to real-world force diagrams involve identifying what effect a known force has
upon an object. Forces have both a strength18 and a direction, however, and this direction can strongly effect
how much of a force’s full strength acts on an object.

As an example, if you strike a nail with a hammer by hitting it directly flat on the head, then all of the
force is acting in the direction of pushing the nail into your target. If, however, you strike the nail with an
identical strength force, but only hit the nail at a 45∘ angle then some of your force is acting sideways and
not assisting in pushing the nail into your target. That sideways force often results in you bending the nail,
oops!

Another famous example is that of an object on a slope, sliding down under gravity. The steeper the slope
the more of the gravitational force is aligned with the slope, and the shallower the slope the less effect the
gravitational force has to move the object downhill. This process of calculating how much of the force acts
in different directions is called resolving.

First a method you don’t need to learn for these notes, the standard trigonometry approach. Here is
a typical diagram for an object on a slope with a labelled angle and gravitational force:

17You may want to think about this.
18magnitude or length
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Figure 4.19: An object on a slope at angle 𝜃, with a gravitational force labelled.

If we zoom into the object on the slope and label the angles, we can then use trigonometry to work out how
much force is in each direction:
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Figure 4.20: A zoom into the object on the slope with angles labelled.

Labelling these forces on the diagram we get the following version, showing how much of the force of 𝑚𝑔
Newtons is resolved in each direction:
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Figure 4.21: The object on the slope, with force size 𝑚𝑔 resolved into directions.

There is in fact a shortcut which skips using trigonometry, via our Scalar Product. This is the approach
we shall learn here.

We define the Scalar projection of a force onto a line by taking a vector 𝑣 of length 1 in the direction
of the line and then calculating:

𝐹 ⋅ 𝑣.
This projection of a force onto a line tells you how much of the force acts in this direction. (The same
as resolving forces seen above.)

Definition of a unit vector
A vector which has length equal to 1 is known as a unit vector. We could have defined this earlier
when defining length, but it wasn’t necessary.
For every possible direction there is always exactly only vector of length 1, so there are as many unit
vectors as there are directions, i.e. infinity!
In a number of applications of scalar products, and vectors in general, we need to take a starting
vector and change (or more technically scale) its lengtha to length 1. To do this you simply need to
divide a vector by its length, or multiply it by the scalar 1

length .
e.g. given a vector length 12, multiplying the vector by 1

12 will create a new vector of length 1, without
changing the vector’s direction.

anot its direction

To find how much of a force acts in a particular direction, we just find the Scalar Product of our force with
a vector of length 1 (i.e. a unit vector) in the direction we care about.
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Using the scalar product to resolve a force
If we consider exactly the same object on the slope from Figure 4.19, then we can find the size of
the gravitational force acting down the slope by calculating the Scalar Product of the force, 𝐹 = 𝑚𝑔,
with a vector of length 1 that points down the slope.

Figure 4.22: The required vector 𝑣 using the Scalar Product approach.

You just need the vector 𝑣, with length(𝑣) = 1, as per Figure 4.22, and then the force’s resolu-
tion/projection down the slope is calculated via

𝐹 ⋅ 𝑣.
Note, in this example we haven’t calculated 𝑣 but in many examples you will already have a vector
from previous calculations you can use for 𝑣 – which you perhaps need to scale first to make it of
length 1.
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Numerical example of Scalar projection

Consider a force 𝐹 = ⎛⎜
⎝

4
3
⎞⎟
⎠
, which you can check has magnitudea of 5 and so represents a force of 5

Newtons, and you wish to know how much effect this force has in the Southeast direction…
We start with a vector which points in the Southeast direction like

𝑢 = ⎛⎜
⎝

1
−1

⎞⎟
⎠

.

Unfortunately, this vector has length

√(1)2 + (−1)2 =
√

2 ≠ 1
So we divide 𝑢 by its length to create a new vector which points in the same direction, but is of length
1b. So we divide 𝑢 by

√
2 via scalar multiplication:

Let 𝑣 = 1√
2

× 𝑢 = ⎛⎜
⎝

1√
2

− 1√
2

⎞⎟
⎠

≈ ⎛⎜
⎝

0.707
−0.707

⎞⎟
⎠

This vector 𝑣 points in the Southeast direction and had length 1 so the size of the force 𝐹 which acts
in the Southeast direction is calculated as

𝐹 ⋅ 𝑣 ≈ ⎛⎜
⎝

4
3
⎞⎟
⎠

⋅ ⎛⎜
⎝

0.707
−0.707

⎞⎟
⎠

= 0.707 N.

Notice that the original force 𝐹 actually had strength of 5 N, but not much of it acts in the Southeast
direction, only 0.707 Newtons worth.

alength
bthink about it!

4.11.4 Calculating the “work done” by a force
Another important concept in mechanics is the work done by a force. This quantifies how much energy is
transferred by the force during the movement of an object.

It has a formal definition, which is actually very simple.

The definition of work done
If a force 𝐹 acts upon an object, and results in a displacement vector (from any original position)
represented by 𝑑 then

Work done = 𝐹 ⋅ 𝑑.
This says that the Work done is just the Scalar Product of the force acting with the displacement
which occurred.

If a number of different forces, 𝐹 1, 𝐹 2, 𝐹 3, … all act upon an object you can work out individually how much
work each force contributed to an overall displacement by separately calculating 𝐹 1 ⋅ 𝑑, 𝐹 2 ⋅ 𝑑, 𝐹 3 ⋅ 𝑑, …. The
overall work done is then the sum of these individual answers.
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Example
If the wind, represented by a force 𝐹 , moves an object from a location 𝑃 to a location 𝑄 then how
much work is done by the wind?
We start by calculating the displacement, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄, see Section 4.8.
Then we calculate

Work done = 𝐹 ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄

For example, if 𝐹 = ⎛⎜
⎝

25
5

⎞⎟
⎠

and the object is moved from point 𝑃 with co-ordinates (1, 5) to point 𝑄

with co-ordinates (10, 18) then the work done is

⎛⎜
⎝

25
5

⎞⎟
⎠

⋅ ⎛⎜
⎝

9
13

⎞⎟
⎠

= 25 × 9 + 5 × 13 = 290 (Joules).

Practice

How much work is done by the force 𝐹 = ⎛⎜
⎝

−2
3

⎞⎟
⎠
, in moving an object from location 𝑃 = (3, 1), to

location 𝑄 = (−4, 3)?
Answera

a20 Joules

4.12 Vectors in more than 2 dimensions
Two-dimensional (2D) vectors are easy to visualize and also easy to sketch as they can be drawn on a flat
piece of paper. Three dimensional vectors, however, require more spatial reasoning skills to visualize, and
are harder to draw on 2D surfaces like computer screens.

Here’s an attempt:
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Figure 4.23: An attempt to show a 3D-vector (on a 2D screen).

As you can see the standard rectangular notation matrix format has been extended to just contain a longer
column vector like this:

𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

1
2
3

⎞⎟⎟⎟⎟⎟
⎠

.

Indeed one can generalize this process to as many dimensions as you wish, writing longer and longer vectors,
however our human brains aren’t very good at visualizing beyond three dimensions, and there aren’t as many
real-world applications to vectors beyond 3-dimensions. We read the first component as the 𝑥-coordinate,
then the second component as the 𝑦-coordinate and finally the third component as the 𝑧-coordinate.

In the 𝑖, 𝑗 notation introduced in Section 4.9, you can just introduce 𝑘 =
⎛⎜⎜⎜⎜⎜
⎝

0
0
1

⎞⎟⎟⎟⎟⎟
⎠

to represent the third dimension.
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Extending the existing 𝑖 and 𝑗 in the natural way as 𝑖 =
⎛⎜⎜⎜⎜⎜
⎝

1
0
0

⎞⎟⎟⎟⎟⎟
⎠

and 𝑗 =
⎛⎜⎜⎜⎜⎜
⎝

0
1
0

⎞⎟⎟⎟⎟⎟
⎠

. This vector 𝑣 can then be

written 𝑣 = 𝑖 + 2𝑗 + 3𝑘.

4.12.1 Adding, subtracting and scaling 3D vectors
The great news is that the rules for performing algebra on vectors in 2D extend completely as expected to
3D vectors.

• Addition and subtraction work the same. You just have a third calculation to do each time. (See
equations (4.2) and (4.3))

• Scalar multiplication is the same. You just have to multiple all three components by the scalar. (See
equation (4.4))

Examples

⎛⎜⎜⎜⎜⎜
⎝

1
3

−4

⎞⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜
⎝

2
−1
3

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

1 + 2
3 + (−1)
(−4) + 3

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

3
2

−1

⎞⎟⎟⎟⎟⎟
⎠

and

3 ×
⎛⎜⎜⎜⎜⎜
⎝

1
0

−2

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

3
0

−6

⎞⎟⎟⎟⎟⎟
⎠

4.12.2 Lengths for 3D vectors
Amazingly even Pythagoras can be extended to work in more than two dimensions. The standard formula is
that you need to calculate the sum of the squares of all the coordinates.

So if 𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

−2
7
3

⎞⎟⎟⎟⎟⎟
⎠

then

length(𝑣) = |𝑣| = √(−2)2 + 72 + 32 =
√

62.

4.12.3 Scalar Product for 3D vectors
Even our Scalar Product formula can be extended quite easily to three dimensions. There’s just a third
product to add on the end of the calculation, as an extension to our 2D version earlier.

If 𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟⎟⎟
⎠

and 𝑤 =
⎛⎜⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐

⎞⎟⎟⎟⎟⎟
⎠

then

𝑣 ⋅ 𝑤 = 𝑥𝑎 + 𝑦𝑏 + 𝑧𝑐.

An amazing fact is that the second formula for the Scalar Product (equation (4.5)), i.e.

𝑣 ⋅ 𝑤 = length(𝑣) × length(𝑤) × cos(𝜃)
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is totally unchanged! The angle between the two vectors is now the angle in 3D space between the two
vectors. This means the widest angle visible between them, visible to a viewer who moves around so that
both vectors are perpendicular to their vision.

The following properties and facts about Scalar Products still work in 3 dimensions:

• The orthogonality rule, in Section 4.11.2, so a Scalar Product of zero still means two vectors form a
right-angle.

• The formula for work done remains the same,
• The formula for scalar projection onto another vector remains the same too.

All these properties still working is why this definition of the (Scalar) Product between two vectors is so
useful and powerful in many areas.

Here’s an example of a Scalar Product calculation for two 3-dimensional vectors:

Figure 4.24: Step-by-step Scalar Product calculation of two 3D-vectors.

Let us see how the 3-dimensional Scalar Product can be used to find angles.
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Example
A triangle in 3D has verticesa at 𝐴 = (3, 2, 4), 𝐵 = (1, −4, 5) and 𝐶 = (2, 0, −1). Determine the angle
between the sides 𝐴𝐵 and 𝐴𝐶.
The angle between the sides 𝐴𝐵 and 𝐴𝐶 will be the angle between the vectors ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶.
So we begin by finding

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

1 − 3
−4 − 2
5 − 4

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

−2
−6
1

⎞⎟⎟⎟⎟⎟
⎠

,

and

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶 =
⎛⎜⎜⎜⎜⎜
⎝

2 − 3
0 − 2

−1 − 4

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

−1
−2
−5

⎞⎟⎟⎟⎟⎟
⎠

.

To calculate an angle between two vectors we use the Scalar Product formula ((4.5)):

𝑣 ⋅ 𝑤 = length(𝑣) × length(𝑤) × cos(𝜃)
In our case, we can easily calculate

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶 = 2 + 12 − 5 = 9,
so re-arranging the Scalar Product formula for the angle 𝜃 we get

cos(𝜃) = 9
length(𝐴𝐵) length(𝐴𝐶) .

So next we calculate the lengths of our sides, by using (3-dimensional) Pythagoras,

length(𝐴𝐵) = √(−2)2 + (−6)2 + 12 =
√

41, and

length(𝐴𝐶) = √(−1)2 + (−2)2 + (−5)2 =
√

30.
So, cos(𝜃) = 9√

41
√

30 = 0.2566 …. Finally, using cos−1 we obtain

𝜃 = cos−1(0.2566 …) = 75.13∘.
aa technical term for corners!

4.12.4 Polars and other formats for 3D vectors
This is the only topic where 3D vectors become a little messier. You can no longer describe a vector in 3D
with just a length and a single angle. Indeed there are competing ways to describe vectors in 3D using at
least one angle. We shall not cover them here since they don’t get enormous usage outside of certain specific
real-world applications, but an interested reader could go and look them up. The two main formats are:

• Spherical (polar) format, and
• Cylindrical (polar) format.

You will have come across at least one of these before, because the Longitude and Latitude system of co-
ordinates for the surface of Planet Earth are actually just Spherical polar co-ordinates where the length is
fixed at the Earth’s radius.
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4.13 The Vector Product of two vectors
As promised we shall briefly introduce the other invented method for multiplying vectors. This second type
of multiplication is called the Vector Product (or the Cross product), it is written with a × symbol, e.g. 𝑣×𝑤.

First two warnings…

The Vector Product for vectors is only designed for 3-dimensional vectors.

The Vector Product is messier to calculate than the Scalar Product.

As with the Scalar Product, the name tells you what type of object you get as a result. Let’s see a definition
of the Vector Product.

The Vector Product (also called Cross Product) of two vectors, 𝑣 and 𝑤 is a calculation written

𝑣 × 𝑤.
It is only defined if both 𝑣 and 𝑤 are 3-dimensional, e.g.

𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

4
1

−5

⎞⎟⎟⎟⎟⎟
⎠

and 𝑤 =
⎛⎜⎜⎜⎜⎜
⎝

2
−9
−3

⎞⎟⎟⎟⎟⎟
⎠

The general formula is not pretty, and looks like this:

⎛⎜⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐

⎞⎟⎟⎟⎟⎟
⎠

×
⎛⎜⎜⎜⎜⎜
⎝

𝑑
𝑒
𝑓

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝑏𝑓 − 𝑐𝑒
𝑐𝑑 − 𝑎𝑓
𝑎𝑒 − 𝑏𝑑

⎞⎟⎟⎟⎟⎟
⎠

(4.7)

Note that unlike the Scalar Product (where the output is a number/scalar), the output
of the Vector Product is a vector!

It’s not recommended to try and remember this formula, instead there are a number of different ways to
relate this formula to other topics in maths which make it more memorable. Probably the easiest method is
via what is known as the determinant of a matrix, which we shall cover in Chapter 5, specifically in Section
5.3.8 and Equation (5.5).

For now we shall just see an example of the calculation, and then make some remarks upon where it is useful.
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Taking the sample vectors from above, i.e.

𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

4
1

−5

⎞⎟⎟⎟⎟⎟
⎠

and 𝑤 =
⎛⎜⎜⎜⎜⎜
⎝

2
−9
−3

⎞⎟⎟⎟⎟⎟
⎠

(4.8)

We can calculate the Vector Product via formula (4.7).

⎛⎜⎜⎜⎜⎜
⎝

4
1

−5

⎞⎟⎟⎟⎟⎟
⎠

×
⎛⎜⎜⎜⎜⎜
⎝

2
−9
−3

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

(1)(−3) − (−5)(−9)
(2)(−5) − (4)(−3)
(4)(−9) − (1)(2)

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

(−3) − (45)
(−10) − (−12)

(−36) − (2)

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

−48
2

−38

⎞⎟⎟⎟⎟⎟
⎠

Definitely not a pretty calculation, plenty of scope for errors, especially with numerous negative signs.

4.14 Applications of the Vector Product
4.14.1 Finding a “normal” to 2 vectors
The word normal in the context of vectors is an adjective meaning perpendicular to, orthogonal to, or “makes
a right-angle with”.

One amazing property19 of the Vector Product is that

𝑣 × 𝑤 is always perpendicular to both 𝑣 and 𝑤.

So to find a vector which is normal to two other vectors you can just calculate their Vector Product. If you
think about it geometrically, in 3-dimensions the answer to this question is unique excepting scalar multiples
of the answer. That is, if 𝑛 is normal to 𝑣 and 𝑤 then the only other vectors which are also normal to 𝑣 and
𝑤 are vectors that look like 𝑘𝑛 for all constant values of 𝑘.
Let us check this orthogonality claim for 𝑣 × 𝑤 for an example, by using our orthogonal property from the
Scalar Product we saw in Section 4.11.2.

19and probably the most useful property
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We can check this with our example we used above to calculate a Vector Product. We begin with

𝑛 =
⎛⎜⎜⎜⎜⎜
⎝

−48
2

−38

⎞⎟⎟⎟⎟⎟
⎠

and let us first calculate 𝑛 ⋅ 𝑣 where 𝑣 and 𝑤 were defined as

𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

4
1

−5

⎞⎟⎟⎟⎟⎟
⎠

and 𝑤 =
⎛⎜⎜⎜⎜⎜
⎝

2
−9
−3

⎞⎟⎟⎟⎟⎟
⎠

.

𝑛 ⋅ 𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

−48
2

−38

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

4
1

−5

⎞⎟⎟⎟⎟⎟
⎠

= −48 × 4 + 2 × 1 + (−38) × (−5)
= −192 + 2 + 190 = 0 ✓

The Scalar Product was zero, so the two vectors are indeed perpendiculara in 3D.
The second calculation, verifying that 𝑛 ⋅ 𝑤 = 0 is left for you as an exercise.

aor orthogonal, or at-right-angles

4.14.2 Calculating the moment of a force
The moment of a force, also called a torque, is a physics concept representing the turning force around some
location. Since these notes are focussed upon the mathematical elements we shall just provide a definition
here and not go into the physics.

Definition of moment
If we have a force, 𝐹 , which acts through a point in space we call 𝐵, then the moment of this force
about another point 𝐴 is defined as

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 × 𝐹.
Recall the notation ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 means the vector joining the point 𝐴 to the point 𝐵, see Section 4.8.

4.14.3 Other uses of the Vector Product
There are a few other more obscure uses of the Vector Product, they are not worth discussing here, but an
interested reader could go and look up shearing force and the volume of a parallelepiped!

4.15 Further practice exercises
There are many more vectors examples for you try, especially for these latter topics, in the specific further
exercises Section 7.

As with the algebra chapter, reinforcing your learning is best done by trying examples, so you are recom-
mended to seek out your own further exercises too.
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4.16 Summary of chapter
Having worked through this chapter and attempted the exercises you should now have developed understand-
ing of the following topics:

• know what vectors (and scalars) are and identify common notations for them;
• use Cartesian/Rectangular or Polar notations for vectors and be able to convert between them;
• perform basic algebra like addition and scalar multiplication of vectors;
• use vectors to represent relative positions of objects;
• define, calculate and use the Scalar Product of two vectors in various applications;
• define, calculate and use the Vector Product of two three-dimensional vectors in various applications.
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Introduction to Matrices

A matrix is just a collection of numbers arranged into a grid. They are always drawn with brackets1 around
them. Here are a few examples of matrices2 of different shapes and sizes,

(4 0 3 −1) , ⎛⎜
⎝

1
√

2
𝑦 7

⎞⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

3 9
−1 7
0 3.4

⎞⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

4 5 5
1 −2 −9
1 0 0

⎞⎟⎟⎟⎟⎟
⎠

. (5.1)

In this introduction most of the numbers in the matrix grid will be integers, to make your calculations easier,
but they don’t need to be. As you can see above you can even just insert algebra letters, to represent
unknowns.

Matrices have a very wide range of practical uses, here are just a few you may come across:

• For representing movements and performing calculations in computer graphics;
• For representing mechanical systems and movements;
• For representing electrical circuits and calculating currents and voltages;
• For storing, then manipulating statistical data;
• As a large family of objects useful in cryptography;
• For representing data in, and then solving, business optimization problems.

The two data applications above both hint at the use of spreadsheet software, which naturally contains boxes
in a grid formation for storing numbers.

We have actually seen matrices before, when we discussed the Rectangular/Cartesian format for vectors. In
4.3 we introduced a notation which placed the components of a vector into a column inside parentheses as
follows:

𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

3
−3
7

⎞⎟⎟⎟⎟⎟
⎠

.

This format is just a special case of a matrix with grid of width 1 and height 3.
Fundamentally matrices are just a clever notation for holding many numbers in a grid format at the same
time. However, as with lots of notation in maths, once we have a nice notation if we invent nice ways to
manipulate it and do algebra then we can later make solving very complex problems relatively easy. We shall

1or parentheses
2the plural of matrix

81
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see exactly this for solving systems of linear equations later (i.e. solving simultaneous equations in Sections
5.6, 5.7 and 5.8).

5.1 Terminology
In absolute consistency with the notation used with vectors, the numbers in a matrix can be described by
which row and which column they lie in. In keeping with terminology for vectors, rows are horizontal and
columns are vertical.

A matrix can therefore be thought of as a collection of rows stacked on top of each other, or as a collection
of columns placed side-by-side.

5.1.1 Describing the shape of a matrix
When it comes to describing the shape we just need to tell the reader how many rows and how many columns
the matrix has. Note that matrices are always a full grid, every row is the same length and every column is
the same length (height).

Formal shape definition
A matrix with 3 rows and 2 columns is called a 3-by-2 matrix, or a (3 × 2) matrix.
In general, if it has 𝑚 rows and 𝑛 columns then it is called an 𝑚-by-𝑛 matrix.
Notice that the order of 𝑚 and 𝑛 will mattera so it’s important to agree which number comes first,
and which second.
The same memory aids exist here remembering the usage of rows and columns, from when we discussed
vectors.
fiRst = Rows
seCond = Columns
Additionally, for anyone who confuses the meanings of rows and columns… seats in cinemas are
arranged in rows, and good old Roman columns on buildings stand vertically.

aif they aren’t the same number

This 𝑚-by-𝑛 notation will be important if we use a letter like 𝑀 in algebra to describe a matrix, because
you cannot tell from just the letter 𝑀 what shape it is. Naturally if you have written out the matrix in full
inside brackets then it will be obvious what shape it is!

5.1.2 Describing elements of a matrix
If we wish to refer to a specific number inside a matrix, we can identify it by which intersection of row and
column it lies at.

For example, in this large matrix,

𝑀 =
⎛⎜⎜⎜⎜⎜
⎝

3 1 8 −1
2 3 0 9
3 −7 5 9

⎞⎟⎟⎟⎟⎟
⎠

the element at row 2, column 3 is a 0 (zero)a.
In repeated consistency with the previous section, we can shorten the description of the element in
Row 2 and in Column 3, and just say that the (2, 3) element of the matrix is 0.

ait has also been highlighted in red

Various authors of books may also describe elements of a matrix as entries. Additionally the (2, 3) element
of 𝑀 can also be called 𝑀(2, 3) or 𝑀2,3 or even 𝑚23. This last notation without a comma is only safe if
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the number of rows and columns is small, otherwise you might not be able to tell where the two numbers
separate.

5.1.3 Comparing matrices
In most work with matrices we generally only deal with one (or two) different shapes within a single question.
Indeed a lot of the most interesting uses of matrices are specific to what we shall later call square matrices
(which have the same number of rows as they have columns).

When it comes to directly comparing two matrices, we only say that two matrices are equal if they are exactly
the same shape and all the elements match exactly.

Before we conclude this terminology section, a few exercises to provide you with some practice with the new
terms.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

Question 1: For each of the matrices in the original list in this chapter (see (5.1)) identify what
shape they are in the 𝑚-by-𝑛 notation.
Question 2: Were any pair of the matrices in those examples the same shape as each other?
Question 3: Finally, what shape is this matrix and what is its (1, 4) element?

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 −7 9 8
0 91 −3 −1
2 5 7 2
1 2 16 −3

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Answers:
Question 1a

Question 2b

Question 3c

aThe shapes of the matrices are… 1-by-4, 2-by-2, 3-by-2 and 3-by-3.
bNone were of the same shape as each other.
cFinally the (1, 4) element of this 4-by-4 matrix is 8. We needed Row 1, Column 4 for the (1, 4) element.

5.2 Algebra operations
Whenever we introduce a new mathematical object, such as a matrix, we need to also check whether the
standard algebra we do with numbers can be applied to it too. Sometimes new mathematical objects require
special meanings for addition, multiplication, division, etc… However, the good news is that for matrices the
basic rules are very similar. The main complication occurs in the same place as it did with vectors. Namely,
that when we think about multiplication there are two choices: do we want to multiply by a scalar or by
another matrix? We shall see the answers later.

As with all new objects the idea is to define how to do algebra in the most sensible way so that we can
continue to perform as much of our normal algebra as possible.

5.2.1 Adding and subtracting matrices
These calculations are going to be nice and straightforward.

First a couple of warnings…

https://numbas.mathcentre.ac.uk/question/119561/matrix-shapes/embed/?token=6e9cacd5-9888-48c3-8a29-efafd56ba743
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Some things you cannot do:

• You cannot add a single number to a matrix so 4 + ⎛⎜
⎝

2 −3
1 5

⎞⎟
⎠

doesn’t make sense.

• You cannot add two matrices if they are not exactly the same shape.

Now for the good news, once you have two matrices of identical shape, adding them together is as easy as
just separately adding every element with its matching position element in the other matrix. Subtraction is
the same, you just subtract the second matrix elements from the first, one-by-one. Let’s see one example of
each, after which is should be very obvious how it works.

To add two matrices they need to be the same shape, and then you add together corresponding
location elements like this:

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 4
−1 0
3 1
4 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 2
1 −4
9 −5
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 + 4 4 + 2
−1 + 1 0 + −4
3 + 9 1 + −5
4 + 1 −1 + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

5 6
0 −4
12 −4
5 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Eight separate additions were performed, check them!
To subtract one matrix from another it’s the same idea. They need to be the same shape, and you
just need to make sure you know which number is on the left and which on the right:

⎛⎜
⎝

7 −4
2 4

⎞⎟
⎠

− ⎛⎜
⎝

1 −3
−5 6

⎞⎟
⎠

= ⎛⎜
⎝

7 − 1 −4 − −3
2 − −5 4 − 6

⎞⎟
⎠

= ⎛⎜
⎝

6 −1
7 −2

⎞⎟
⎠

Here four separate standard subtractions were performed, check them!

5.2.2 Scalar multiplication of matrices
Also relatively easy is the idea of multiplying a whole matrix by a number3. For this calculation you just
multiply every element of the matrix by this number. If 𝑀 is a matrix, you can then talk about 2𝑀 , and
3𝑀 and 𝑘𝑀 for any constant 𝑘.
Let’s see an example combining addition and multiplication by a scalar.

3a scalar
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Let 𝑀 = ⎛⎜
⎝

1 4
0 3

⎞⎟
⎠

and 𝑁 = ⎛⎜
⎝

−2 3
1 −5

⎞⎟
⎠

both be 2-by-2 matrices.

First let’s calculate 3𝑀 :

3𝑀 = 3 ⎛⎜
⎝

1 4
0 3

⎞⎟
⎠

= ⎛⎜
⎝

3 12
0 9

⎞⎟
⎠

You should check each element matches what you were expecting.
Now for a linear combination of 𝑀 and 𝑁 , let’s calculate 3𝑀 − 2𝑁 :

3𝑀 − 2𝑁 = ⎛⎜
⎝

3 12
0 9

⎞⎟
⎠

− 2 ⎛⎜
⎝

−2 3
1 −5

⎞⎟
⎠

= ⎛⎜
⎝

3 12
0 9

⎞⎟
⎠

− ⎛⎜
⎝

−4 6
2 −10

⎞⎟
⎠

= ⎛⎜
⎝

7 6
−2 19

⎞⎟
⎠

Again, check the calculations here to convince yourself you know what’s happening.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

5.2.3 Matrix multiplication using the Scalar product
As forewarned, multiplying a matrix by another matrix (known as matrix multiplication) is the most com-
plicated part of working with matrices. We want a way of multiplying matrices by each other which has
practical applications and is useful. The good news is that there is indeed a way to do this which is extremely
useful in many applications.

The bad news is that the process involves a lot more calculations than the other algebra seen so far. None
of the calculations are complex, but there are quite a lot of them. Conveniently if you have already studied
the Scalar Product4 of two vectors (see 4.10) then the method can be understood more easily.

So first we shall remind ourselves how the Scalar Product of two vectors of the same shape works. Remember
first that a vector is just a matrix with 1 column.

4also called the Dot Product

https://numbas.mathcentre.ac.uk/question/119566/matrix-linear-combination/embed/?token=e221efa1-3a50-429c-bb4a-8c63d2610114
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Scalar Product definition (reminder)
If we have two vectors of the same shape (i.e. they have the same number of elements) then their
Scalar Product is calculated by

• Multiplying each element of one vector by the element of the other vector in the corresponding
position, then

• Adding together all these answers.
Here’s the example we saw before,

For vectors 𝑣 = ⎛⎜
⎝

8
−2

⎞⎟
⎠

and 𝑤 = ⎛⎜
⎝

3
4
⎞⎟
⎠

their Scalar Product is

𝑣 ⋅ 𝑤 = ⎛⎜
⎝

8
−2

⎞⎟
⎠

⋅ ⎛⎜
⎝

3
4
⎞⎟
⎠

= 8 × 3 + (−2) × 4 = 16.

As an example for 3-dimensional vectors, 𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

2
−1
4

⎞⎟⎟⎟⎟⎟
⎠

and 𝑤 =
⎛⎜⎜⎜⎜⎜
⎝

5
8

−1

⎞⎟⎟⎟⎟⎟
⎠

their Scalar Product is

𝑣 ⋅ 𝑤 =
⎛⎜⎜⎜⎜⎜
⎝

2
−1
4

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

5
8

−1

⎞⎟⎟⎟⎟⎟
⎠

,

= 2 × 5 + (−1) × 8 + 4 × (−1),
= 10 − 8 − 4 = −2.

It was worth seeing this Scalar Product definition (again) because our method for finding the product of two
matrices is actually just going to be a collection of different Scalar Products! In words, the product of two
matrices (called 𝐴 and 𝐵), is going to be a new matrix whose elements are the separate Scalar Products
created by matching every row from 𝐴 with every column from 𝐵. First a couple of warnings…

Warning 1:
When multiplying matrices together the order matters, so 𝐴×𝐵 and 𝐵 ×𝐴 are different calculationsa

Warning 2:
Two matrices 𝐴 and 𝐵 can only be multiplied together to create 𝐴𝐵 if …
“The number of columns of 𝐴” equals “The number of rows of 𝐵”.

aWe almost always omit the × symbol between matrices. And just write the one-letter names in order, so that 𝐴×𝐵
is written 𝐴𝐵 and 𝐵 × 𝐴 is written 𝐵𝐴. But this is all just notational convenience.
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Example
We consider the product of two matrices, called 𝐴 and 𝐵, which are defined as follows

𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

1 2 3
4 5 6
7 8 9

⎞⎟⎟⎟⎟⎟
⎠

and

𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

11 2
4 5
7 8

⎞⎟⎟⎟⎟⎟
⎠

The product
𝐴𝐵

is created by writing 𝐴 to the left of 𝐵a

𝐴𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

1 2 3
4 5 6
7 8 9

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

11 2
4 5
7 8

⎞⎟⎟⎟⎟⎟
⎠

Notice that the length of each row of 𝐴b matches the height of each column of 𝐵c. Both of
these quantities are equal to 3.

aWarning: this will be different to putting 𝐵 to the left of 𝐴
bwhich is also called its number of columns!
calso called its number of rows!

This is how we start to write the product of two matrices 𝐴 and 𝐵. But how about the method for actually
calculating the product? Well in words, we have to do the following…

To calculate the product of two matrices involves lots of separate calculations:

• One calculation for every combination using… a row from 𝐴 and a column from 𝐵!
• In our example above 𝐴 has 3 rows, so there are 3 row choices.
• In our example above 𝐵 has 2 columns, so there are 2 column choices.
• Together this means there are 3 × 2 = 6 combinations of row and column choices. For completeness

we shall list them all here:

1. Row 1 (of 𝐴) with Column 1 (of 𝐵)
2. Row 1 (of 𝐴) with Column 2 (of 𝐵)
3. Row 2 (of 𝐴) with Column 1 (of 𝐵)
4. Row 2 (of 𝐴) with Column 2 (of 𝐵)
5. Row 3 (of 𝐴) with Column 1 (of 𝐵)
6. Row 3 (of 𝐴) with Column 2 (of 𝐵)

You will need to systematically go through all 6 combinations to calculate the product 𝐴𝐵. You are creating
the entries for 𝐴𝐵 one at a time.

For every (row from 𝐴,column from 𝐵)-pair you need to calculate the Scalar Product. You insert the
answer in the corresponding position in the answer matrix. i.e. if you used Row 𝑖 (of 𝐴) and Column 𝑗 (of
𝐵) then their Scalar Product should be inserted in Row 𝑖, Column 𝑗 of the product 𝐴𝐵.

We’ll write out the formal definition in words, and set an exercise for you to try, then do a fully worked
example. The example will likely make more sense than the wordy definition when you first read it.
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Definition of matrix multiplication
Once you have selected a row from 𝐴 and a column from 𝐵 you treat them both as vectors of the
same length and find their Scalar Product.
The answer to multiplying two matrices together is another matrix, and the answer has shapea which
matches the number of rows of 𝐴 and the number of columns of 𝐵. In this case 𝐴 had 3 rows and 𝐵
had 2 columns, so 𝐴𝐵 has 3 rows and 2 columns. This will become much clearer when we learn what
to do with the Scalar Products explained above.
For each row of 𝐴 and for each column of 𝐵 you find the Scalar Product of those vectors and put
the answer in the location described by where you got the vectors from!
So, using Row 3 of 𝐴 and Column 1 of 𝐵 means you calculate this Scalar Product

⎛⎜⎜⎜⎜⎜
⎝

7
8
9

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

11
4
7

⎞⎟⎟⎟⎟⎟
⎠

= 77 + 32 + 63 = 172

and the answer of 172 is placed in Row 3, Column 1 of the answer, i.e. in 𝐴𝐵 it appears like this

𝐴𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

⋅ ⋅
⋅ ⋅

172 ⋅

⎞⎟⎟⎟⎟⎟
⎠

.

Note: We rotated Row 3 of 𝐴 so we could write it next to Column 1 of 𝐵 to do the Scalar Product.
ahow many rows and columns it has

Practice
Using the method outlined above try and calculate the five missing values in 𝐴𝐵 (represented by dots)
here:

𝐴𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

⋅ ⋅
⋅ ⋅

172 ⋅

⎞⎟⎟⎟⎟⎟
⎠

As a reminder here are 𝐴 and 𝐵 in this example:

𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

1 2 3
4 5 6
7 8 9

⎞⎟⎟⎟⎟⎟
⎠

, 𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

11 2
4 5
7 8

⎞⎟⎟⎟⎟⎟
⎠

Hint: to find the Row 1, Column 2 entry of 𝐴𝐵, you need to find the Scalar Product of Row 1 from
𝐴 with Column 2 from 𝐵. a

aRemember it’s always Rows fiRst and Columns seCond.

It’s strongly recommended that you watch this video to see matrix multiplication in action:

#> [Video appears here in html version
#> the hyperlink is provided below]
#> [This pdf version instead contains detailed text steps below]

Alternative direct video link: https://gcu.planetestream.com/View.aspx?id=5555~4u~vB7eUMN3

https://gcu.planetestream.com/View.aspx?id=5555~4u~vB7eUMN3
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Now let’s do the full worked calculation of 𝐴𝐵, slowly.
From Row 1 of 𝐴 and Column 1 of 𝐵 you calculate this Scalar Product

⎛⎜⎜⎜⎜⎜
⎝

1
2
3

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

11
4
7

⎞⎟⎟⎟⎟⎟
⎠

= 1 × 11 + 2 × 4 + 3 × 7 = 40

and the answer of 40 is placed in Row 1, Column 1 of the answer.

From Row 1 of 𝐴 and Column 2 of 𝐵 you calculate this Scalar Product

⎛⎜⎜⎜⎜⎜
⎝

1
2
3

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

2
5
8

⎞⎟⎟⎟⎟⎟
⎠

= 1 × 2 + 2 × 5 + 3 × 8 = 36

and the answer of 36 is placed in Row 1, Column 2 of the answer.

From Row 2 of 𝐴 and Column 1 of 𝐵 you calculate this Scalar Product

⎛⎜⎜⎜⎜⎜
⎝

4
5
6

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

11
4
7

⎞⎟⎟⎟⎟⎟
⎠

= 4 × 11 + 5 × 4 + 6 × 7 = 106

and the answer of 106 is placed in Row 2, Column 1 of the answer.

From Row 2 of 𝐴 and Column 2 of 𝐵 you calculate this Scalar Product

⎛⎜⎜⎜⎜⎜
⎝

4
5
6

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

2
5
8

⎞⎟⎟⎟⎟⎟
⎠

= 4 × 2 + 5 × 5 + 6 × 8 = 81

and the answer of 81 is placed in Row 2, Column 2 of the answer.

From Row 3 of 𝐴 and Column 1 of 𝐵 you calculate this Scalar Product

⎛⎜⎜⎜⎜⎜
⎝

7
8
9

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

11
4
7

⎞⎟⎟⎟⎟⎟
⎠

= 7 × 11 + 8 × 4 + 9 × 7 = 172

and the answer of 172 is placed in Row 3, Column 1 of the answer.
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From Row 3 of 𝐴 and Column 2 of 𝐵 you calculate this Scalar Product

⎛⎜⎜⎜⎜⎜
⎝

7
8
9

⎞⎟⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜⎜
⎝

2
5
8

⎞⎟⎟⎟⎟⎟
⎠

= 7 × 2 + 8 × 5 + 9 × 8 = 126

and the answer of 126 is placed in Row 3, Column 2 of the answer.

So our final answer is:

𝐴𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

1 2 3
4 5 6
7 8 9

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

11 2
4 5
7 8

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

40 36
106 81
172 126

⎞⎟⎟⎟⎟⎟
⎠

It is often easier to remember this method by seeing the rows and columns highlighted, so let’s look at another
example. Imagine we want to find the following matrix product:

⎛⎜
⎝

8 1 3 −2
4 0 −6 1

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 1 2
−1 2 3
0 5 −4
2 0 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We begin by highlighting Row 1 of 𝐴 with Column 1 of 𝐵, the result from finding the Scalar Product of these
two highlighted vectors will go into Row 1, Column 1 of our answer:

Figure 5.1: Highlighted rows and columns for matrix multiplication

This Scalar Product has value 8 × 3 + 1 × (−1) + 3 × 0 + (−2) × 2 = 19.
Next we highlight Row 1 of 𝐴 with Column 2 of 𝐵, the result from finding the Scalar Product of these two
highlighted vectors will go into Row 1, Column 2 of our answer:
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Figure 5.2: Highlighted rows and columns for matrix multiplication

This Scalar Product has value 8 × 1 + 1 × 2 + 3 × 5 + (−2) × 0 = 25.
Finally we highlight Row 1 of 𝐴 with Column 3 of 𝐵, the result from finding the Scalar Product of these two
highlighted vectors will go into Row 1, Column 3 of our answer:

Figure 5.3: Highlighted rows and columns for matrix multiplication

This Scalar Product has value 8 × 2 + 1 × 3 + 3 × (−4) + (−2) × (−2) = 11.
These three calculations give (Row 1, Column 1), then (Row 1, Column 2) and (Row 1, Column 3) of the
answer. We still need to repeat the above procedure but using Row 2 of 𝐴 each time to find Row 2 values in
our answer.
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Practice
Calculate the three Scalar Products in the coloured images above, and then repeat the process but
using Row 2 of 𝐴 each time. Insert your six answers into their correct places to obtain your end result:
the matrix product 𝐴𝐵.
Verify that you get the following answer:

⎛⎜
⎝

8 1 3 −2
4 0 −6 1

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 1 2
−1 2 3
0 5 −4
2 0 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

19 25 11
14 −26 30

⎞⎟
⎠

If you get a different value in any element, go back and repeat the product. It is very common to
make numerical mistakes when calculating matrix products.

When introducing matrix multiplication it was mentioned that you need each row of 𝐴 to be of the same
length as each column of 𝐵, this is actually not something you need to remember if you know the method!
Notice that it would have been impossible to calculate the Scalar Products above unless every row of 𝐴
matched each column of 𝐵 for length!

A tip and a warning
If the two matrices match the correct shape requirement above then you can find the product using
the method outlined.
If they don’t match this shape requirement then you cannot multiply the matrices together.
Warning: The order of the matrix product matters! Which matrix was written on the left and which
on the right will effect the answer. In fact it may not even be possible(!) to multiply the matrices,
and even if you can you will normally get a totally different answer! So always make sure you know
which matrix appears first in the product.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

In the examples provided above you were asked to perform matrix multiplications of matrices that were
selected to have the correct shapes to make matrix multiplication possible. As a small exercise in checking
what shape matrices can actually be multiplied together, here are a few examples to think about.

Here are three matrices, 𝐴, 𝐵 and 𝐶:

𝐴 = ⎛⎜
⎝

1 4
0 −1

⎞⎟
⎠

, 𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

4
7
2

⎞⎟⎟⎟⎟⎟
⎠

, 𝐶 = ⎛⎜
⎝

3 2 −4
0 1 1

⎞⎟
⎠

Question: Which of the six matrix products 𝐴𝐵, 𝐴𝐶, 𝐵𝐶, 𝐵𝐴, 𝐶𝐴 and 𝐶𝐵 are actually possible?
If unsure, then refer back to the definition of matrix multiplication to think about what Scalar Products
you need to calculate.
Hint: The length of each row in the left matrix, needs to match the length of each column in the
right matrix.
Answers: a

aPermitted products are 𝐴𝐶 and 𝐶𝐵

https://numbas.mathcentre.ac.uk/question/119738/multiplying-matrices/embed/?token=ef077e1b-3a83-43ea-9cc8-d1ae4bab0248
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5.3 Special matrices, quantities and procedures
Matrices are a very rich area of maths, there are so many different matrices with so many uses that there are
a few certain shapes and specific matrices which are given special names because they come up in numerous
applications…

5.3.1 General pattern: Square matrices
A matrix is described as square if the number of rows matches the number of columns. The shape of the
matrix grid will look like a square, it’s as simple as that! Here are some examples of square matrices, of
different sizes

⎛⎜
⎝

1 6
−4 −123

⎞⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

5 0 1
1 2 0

−1 2 0

⎞⎟⎟⎟⎟⎟
⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

7 6 −1 0
1 −1 2 9
0 3 −4 9
0 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

5.3.2 Special matrix: the zero matrix
There isn’t just one zero-matrix, there is in fact one zero-matrix for every given possible matrix shape. Perhaps
unsurprisingly the zero matrix of a particular shape is just a matrix where every element is a zero. e.g.

𝑍 =
⎛⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟
⎠

, or 𝑍 = ⎛⎜
⎝

0 0
0 0

⎞⎟
⎠

.

This matrix behaves a lot like the number 0 when used in matrix addition. Just like adding zero to a number
makes no difference to a number, adding the zero matrix to a matrix makes no difference to the matrix.

5.3.3 Special matrix: the identity matrix – (see inverses later)
More useful than the zero matrix is the identity matrix, it is like the zero matrix above, but useful when
doing matrix multiplication. The identity matrix can be described in three steps:

• it has to be a square matrix (see 5.3.1);
• all the elements along the diagonal from the top left to the bottom right are ones; and
• all the other elements are zeros.

So here are the identity matrices of shapes 2-by-2, 3-by-3 and 4-by-4 :

⎛⎜
⎝

1 0
0 1

⎞⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟
⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.2)

The reason they are called identity matrices comes from the use of the word identity when describing the
ordinary multiplication of a number by 1. The number 1 has the property that when you multiply a number
by it then nothing changes, e.g. 13 × 1 = 13 and 1 × 𝑥 = 𝑥 5. So while the zero matrix made no difference
when adding (see 5.3.2), the idea with the identity matrix is the following:

5i.e. multiplying by 1 makes no difference
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Multiplying a matrix by an identity matrix leaves it unchanged
Just like multiplying a number by 1 makes no difference to the number, multiplying a matrix by the
identity matrix makes no difference to the matrix!
This is less easy to see, but you should definitely try the following calculation for yourself :

⎛⎜
⎝

3 1 −1
8 −2 4

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

3 1 −1
8 −2 4

⎞⎟
⎠

In algebra an identity matrix is represented by an 𝐼 (a capital 𝑖), so the product above is written as 𝑀𝐼 = 𝑀 .
We say that for any matrix 𝑀 , multiplying it by 𝐼 (of the correct shape) gives you back 𝑀 . If 𝑀 is a square
matrix, then you can easily check that also 𝐼𝑀 = 𝑀 , so that you can put 𝐼 on the left or the right of 𝑀 and
get the same answer. This property that 𝑀𝐼 = 𝐼𝑀 is very special to an identity matrix 𝐼 , because normally
changing the order of the product of two matrices will give a totally different answer.

Note that we had to select an identity matrix of the correct size for the matrix multiplication to make
sense. In this example we had to choose a matrix whose columns were length 3 to match with the
length of each row of our starting matrix.

When working with identity matrices and algebra we normally use the letter 𝐼 to describe the matrices, so
the standard names of the matrices in (5.2) are actually

𝐼2 = ⎛⎜
⎝

1 0
0 1

⎞⎟
⎠

, 𝐼3 =
⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟
⎠

, 𝐼4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

5.3.4 Special matrix: the transpose (and how to create it)
This one isn’t quite a special matrix like the zero and identity matrices were, but it falls into the same
category. Transposing is actually a procedure, something you can do to a matrix. To find the transpose of a
matrix you just need to swap all the rows and columns.

The shape of the matrix will transform from an 𝑚-by-𝑛 matrix into an 𝑛-by-𝑚 matrix. e.g.

⎛⎜
⎝

1 8 0
−1 3 −5

⎞⎟
⎠

becomes
⎛⎜⎜⎜⎜⎜
⎝

1 −1
8 3
0 −5

⎞⎟⎟⎟⎟⎟
⎠

,

i.e. Row 1 became Column 1, and Row 2 became Column 2. So our 2-by-3 matrix became a 3-by-2 matrix.

Interestingly the transpose of a square matrix will be another square matrix of the same shape.

Authors will use the letter 𝑇 in a superscript as notation for the transpose of a matrix. So 𝑀 becomes 𝑀𝑇 ,
e.g.

⎛⎜⎜⎜⎜⎜
⎝

5 0 2
1 −3 99
4 0 2

⎞⎟⎟⎟⎟⎟
⎠

𝑇

=
⎛⎜⎜⎜⎜⎜
⎝

5 1 4
0 −3 0
2 99 2

⎞⎟⎟⎟⎟⎟
⎠
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An often useful fact about transposes is that if you transpose twice you will get back to where you
started. It’s true for any matrix 𝑀 that

(𝑀𝑇 )𝑇 = 𝑀.

Check it for yourself in the examples above.
You will also note that all the identity matrices (see Section 5.3.3) are unaffected by finding their
transpose. e.g.

⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟
⎠

𝑇

=
⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟
⎠

, i.e. 𝐼𝑇
3 = 𝐼3

5.3.5 General pattern: Diagonal matrices
Like with identity matrices, we shall also use the adjective diagonal for square matrices. When describing
identity matrices, every single element of the matrix was specified, either as a 1 (along the Northwest to
Southeast diagonal), or a 0 elsewhere. We shall talk about that same diagonal from top left to bottom right
when introducing diagonal matrices, but not every element will have a specified value.

A square matrix is called diagonal if *all the elements not on the diagonal from top left to bottom right
are zero**. This definition may feel like a negative way of describing something, so an alternative more
constructive description would be as follows:

In a diagonal matrix you can choose any values for the elements along the Northwest-to-Southeast diagonal,
but all the other entries must be zero. Here are some examples,

⎛⎜
⎝

4 0
0 −1

⎞⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 0 0
0 0 7

⎞⎟⎟⎟⎟⎟
⎠

, and

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎 0 0 0
0 𝑏 0 0
0 0 𝑐 0
0 0 0 𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

You may notice that in second of these examples, one of the numbers on the diagonal was also zero, this is
permitted. The definition merely demanded that the numbers not on the diagonal are all zero. In the third
example, the letters 𝑎, 𝑏, 𝑐 and 𝑑 can take any values and the matrix will still be diagonal.

We sometimes refer to this diagonal from top left to bottom right as the diagonal of the matrix, even more
technically as the main diagonal6, i.e. the highlighted entries here:

Figure 5.4: Illustration of the main diagonal of a matrix

Having named this as the main diagonal of a matrix then you can also define a diagonal matrix as one where
the only place you might find non-zero elements is along the main diagonal.

It is clear that there are lots of possible diagonal matrices of a particular shape, because you can choose any
numbers you wish to go along the main diagonal.

6some people call it also the leading diagonal
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5.3.6 General pattern: Triangular matrices
These matrices are less important, and only used in more limited applications but we shall briefly mention
them. There are actually two types of triangular matrices:

• A matrix is called upper-triangular if the triangle of elements below the main diagonal are all
zero; and

• A matrix is called lower-triangular if the triangle of elements above the main diagonal are all
zero.

This mismatch between “upper” and “below”, and between “lower” and “above” might sound like madness.
However, it’s like our first definition of a diagonal matrix as one which is “zero in places not on the diagonal”.
In fact there are two more natural and perfectly equivalent descriptions, namely

• A matrix is called upper-triangular if only the triangle of elements including and above the
main diagonal are allowed to be non-zero;

• A matrix is called lower-triangular if only the triangle of elements including and below the
main diagonal are allowed to be non-zero.

Figure 5.5: A picture of the upper-triangle highlighted, this matrix is not upper-triangular, because the
entries below the triangle aren’t all zeros.

The single word triangular is used to describe either or both of these cases above. Just like you can talk of
African elephants and Indian elephants as special examples of elephants.

We shan’t dwell on this adjective for now, but just show a few examples of triangular matrices. First a few
upper-triangular ones,

⎛⎜
⎝

1 4
0 −3

⎞⎟
⎠

, ⎛⎜
⎝

0 2
0 1

⎞⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

2 0 8
0 1 −2
0 0 3

⎞⎟⎟⎟⎟⎟
⎠

then a few lower-triangular ones,

⎛⎜
⎝

1 0
4 −3

⎞⎟
⎠

, ⎛⎜
⎝

1 0
3 0

⎞⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

2 0 0
3 1 0
4 −1 2

⎞⎟⎟⎟⎟⎟
⎠

finally a few that are not triangular at all,
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⎛⎜
⎝

1 2
4 −3

⎞⎟
⎠

, ⎛⎜
⎝

0 1
2 0

⎞⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

2 −1 3
0 1 7
1 0 2

⎞⎟⎟⎟⎟⎟
⎠

5.3.7 General pattern: Symmetric matrices
These types of matrices do arise a lot more in applications. They are also easy to identify just by looking at
the entries of the matrix. The technical definition, which uses the word transpose from above, is to say that
a matrix is symmetric if the transpose of the matrix is the same as the starting matrix.

The easier definition would be to say:

• the matrix has a square shape, and
• if you place a mirror down the main diagonal, then every number above the diagonal matches its image

below the diagonal and vice-versa7.

Here are some examples of symmetric matrices from which it will hopefully become obvious.

⎛⎜⎜⎜⎜⎜
⎝

5 −1 2
−1 3 4
2 4 0

⎞⎟⎟⎟⎟⎟
⎠

, and

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 8 −4
0 3 7 11
8 7 2 9

−4 11 9 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.3)

Notice that along the main diagonal you can put whatever values you wish, but every other element has a
mirror image element across the main diagonal.

In fact the matching mirror image location for the (𝑖, 𝑗)-element is the one in position (𝑗, 𝑖), e.g. Row 3
Column 1 must match Row 1 Column 3, and Row 2 Column 4 must match Row 4 Column 2.

5.3.8 Special quantity: The Determinant (important enough to have its own
section below)

For every square matrix we can calculate a quantity known as the determinant. The process to calculate the
determinant is easy for a 2-by-2 matrix but becomes progressively harder and messier for larger and larger
matrices. We shall start with defining it for a 2-by-2 matrix.

For a 2-by-2 matrix which looks like this:

⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠

its determinant is defined to be the value of

𝑎 × 𝑑 − 𝑏 × 𝑐
It’s just the product of the main diagonal, minus the product of the other diagonal.
Notationally, the determinant of a matrix called 𝑀 is normally written det(𝑀).

Here is an image showing which pairs are multiplied, check the definition above to see which product is
subtracted from the other product.

7the diagonal itself can take any values
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Figure 5.6: Illustration of products for finding a 2-by-2 deteminant.

Here are three example calculations, along with the det notation illustrated:

det⎛⎜
⎝

4 7
1 2

⎞⎟
⎠

= 4 × 2 − 7 × 1 = 1

det⎛⎜
⎝

−1 2
−3 −4

⎞⎟
⎠

= (−1) × (−4) − 2 × (−3) = 4 + 6 = 10

det⎛⎜
⎝

1 4
−1 −4

⎞⎟
⎠

= 1 × (−4) − 4 × (−1) = −4 + 4 = 0

Take extreme care when calculating determinants when negative numbers are around. You will fre-
quently be subtracting negative numbers, and need to convert two negatives into a plus.

Now for the 3-by-3 determinant…

Calculating the determinant always involves using every element of the matrix, so when we get to 3-by-3
it’s not the same pattern of diagonals. However, the formula for the 3-by-3 determinant can be described in
terms of three 2-by-2 matrix determinants.8

Let’s suppose we have a general 3-by-3 matrix that looks like this:

⎛⎜⎜⎜⎜⎜
⎝

𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3

⎞⎟⎟⎟⎟⎟
⎠

We have named each element by its location to make what follows easier to understand.

Definition of the 3-by-3 matrix determinant
One way to calculate the 3-by-3 determinant is to evaluate:

𝑎1,1 × det(𝑎2,2 𝑎2,3

𝑎3,2 𝑎3,3
) − 𝑎1,2 × det(𝑎2,1 𝑎2,3

𝑎3,1 𝑎3,3
) + 𝑎1,3 × det(𝑎2,1 𝑎2,2

𝑎3,1 𝑎3,2
)

8There are actually a few equivalent ways of describing the 3-by-3 determinant.
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This calculation is most easily understood via three pictures, or via watching the subsequent video showing
it in action. Geometrically, the 2-by-2 determinants required are the ones you are left with if you delete Row
1 and sequentially Columns 1, 2 and 3 from the matrix like this:

Figure 5.7: The lower square is the first 2-by-2 determinant needed to find a 3-by-3 determinant

Figure 5.8: The lower split square is the second 2-by-2 determinant needed to find a 3-by-3 determinant

Figure 5.9: The lower square is the third 2-by-2 determinant needed to find a 3-by-3 determinant

Here is a video demonstration, which helps explain the procedure:

#> [Video appears here in html version
#> the hyperlink is provided below]

Alternative direct video link: https://gcu.planetestream.com/View.aspx?id=5354~4r~SDdzPCeX

In a direct link to the Vectors section, we can now present a formula for the Vector Product of two vectors
using this 3-by-3 determinant.

You may recall Equation (4.7) provided a general formula for the Vector Product, namely

https://gcu.planetestream.com/View.aspx?id=5354~4r~SDdzPCeX
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⎛⎜⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐

⎞⎟⎟⎟⎟⎟
⎠

×
⎛⎜⎜⎜⎜⎜
⎝

𝑑
𝑒
𝑓

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝑏𝑓 − 𝑐𝑒
𝑐𝑑 − 𝑎𝑓
𝑎𝑒 − 𝑏𝑑

⎞⎟⎟⎟⎟⎟
⎠

(5.4)

Well, another way to write this is:

⎛⎜⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐

⎞⎟⎟⎟⎟⎟
⎠

×
⎛⎜⎜⎜⎜⎜
⎝

𝑑
𝑒
𝑓

⎞⎟⎟⎟⎟⎟
⎠

= det
⎛⎜⎜⎜⎜⎜
⎝

𝑖 𝑗 𝑘
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

⎞⎟⎟⎟⎟⎟
⎠

(5.5)

where we recall that 𝑖, 𝑗, 𝑘 are just names for
⎛⎜⎜⎜⎜⎜
⎝

1
0
0

⎞⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

0
1
0

⎞⎟⎟⎟⎟⎟
⎠

and
⎛⎜⎜⎜⎜⎜
⎝

0
0
1

⎞⎟⎟⎟⎟⎟
⎠

, respectively.

In words, we place our two given vectors into the second and third rows of a 3-by-3 matrix, and write the
letters 𝑖, 𝑗, 𝑘 on the top row. Then we can calculate the determinant, giving the answer in terms of 𝑖, 𝑗 and
𝑘. The answer will be the Vector Product of the vectors visible in Row 2 and Row 3.

It is important to put the vectors into the matrix in the same order they appeared in the Vector Product,
otherwise your answer will be incorrect9. The first vector in the Vector Product must go in Row 2, and the
second vector in the Vector Product must go in Row 3.

Practice
Calculate the Vector Product of the two vectors from (4.8), namely

𝑣 =
⎛⎜⎜⎜⎜⎜
⎝

4
1

−5

⎞⎟⎟⎟⎟⎟
⎠

and 𝑤 =
⎛⎜⎜⎜⎜⎜
⎝

2
−9
−3

⎞⎟⎟⎟⎟⎟
⎠

by using the determinant formula above.
Check your answer with the answer calculated in Section 4.13 after Equation (4.8).
Warning: this can get numerically messy, and easy to make mistakes.

5.3.9 Revision exercises
This section contained a large number of new words, adjectives, nouns and terminology. So it will be useful
to try a few exercises to revise this topic before moving on.

9you will get negative the correct answer if you put them the wrong way around
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Examples to try
For each of the following matrices determine if it is an example of any of our special matrices, or fits
any of the general patterns. As a reminder here are the key terms we are using: (we won’t bother
with triangular as it’s not that useful)
(i) Square
(ii) Zero
(iii) Identity
(iv) Diagonal
(v) Symmetric

𝐴 = ⎛⎜
⎝

3 1
1 8

⎞⎟
⎠

𝐵 = ⎛⎜
⎝

2 0
0 7

⎞⎟
⎠

𝐶 = ⎛⎜
⎝

2 3 7
0 4 1

⎞⎟
⎠

𝐷 =
⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟
⎠

𝐸 = ⎛⎜
⎝

0 0
0 0

⎞⎟
⎠

We shall, in fact, go through these examples quickly to ensure some of the special cases are ironed out upon
first study.

Answers, explained:
Square: 𝐴, 𝐵, 𝐷 and 𝐸 are all square matrices. Their number of rows matches their number of
columns.
Zero: Only 𝐸 is an example of a zero matrix. Remember, every element must be zero, not just some
of them.
Identity: Only 𝐷 is an example of an identity matrix, in this case it is the 3-by-3 identity, often
called 𝐼3.
Diagonal: 𝐵 is a typical example of a diagonal matrix, all entries not on the main diagonal are zero.
In fact 𝐷 and 𝐸 are technically also both diagonal – however observing they are an identity and zero
matrix, respectively, provides even more information.
Symmetric: Here 𝐴 is a typical example of a symmetric matrix. However, 𝐵, 𝐷 and 𝐸 are all
technically examples too because they are each identical to their own transpose.

#> [Embedded question appears here in html version
#> the hyperlink is provided below]

Link to Numbas on the web

5.4 The inverse of a matrix
When we work in standard algebra we often deal with equations that look like 8𝑥 = 3, for which we divide
both sides by 8 to reach 𝑥 = 3

8 . This division by 8 is the equivalent to multiplying both sides by 8−1 because

https://numbas.mathcentre.ac.uk/question/119746/determinants/embed/?token=db9db943-2ca7-4097-ac47-81b9971dd2ac
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8 × 8−1 = 1. However, when we’re working with matrices there is no easy way to define division by a matrix,
but we can try. We shall only try and consider division/inversion by square matrices.

So if we have an equation like

𝐴𝐵 = 𝐶

where 𝐴, 𝐵 and 𝐶 are matrices, and 𝐴 is furthermore square-shaped, then there isn’t a guaranteed way to
divide both sides by 𝐴 to get 𝐵 = something. The reason for this is that there isn’t always a single matrix
𝐵 that works in that equation10.

Let’s see an example. Suppose we have an equation like 𝐴𝐵 = 𝐶 of the form: (here 𝐵 is a 2-by 2 matrix)

⎛⎜
⎝

1 2
2 4

⎞⎟
⎠

( 𝐵 ) = ⎛⎜
⎝

4 3
8 6

⎞⎟
⎠

(5.6)

You would like to divide both sides by ⎛⎜
⎝

1 2
2 4

⎞⎟
⎠

to discover what 𝐵 is. However, this isn’t possible because

there are infinitely many matrices 𝐵 that work! For example, 𝐵 = ⎛⎜
⎝

2 −1
1 2

⎞⎟
⎠

and 𝐵 = ⎛⎜
⎝

0 1
2 1

⎞⎟
⎠

both work,

and there are many more!

Sometimes it is possible, and there is a unique answer for 𝐵. This process of trying to divide by 𝐴 in an
equation like 𝐴𝐵 = 𝐶 to find 𝐵 requires trying to find what is called the inverse of 𝐴.

The inverse of a (square) matrix
Firstly, we only try and do this for square matrices.
We use the notation 𝐴−1 for what we call the inverse of matrix A.
By direct comparison with 8−1 (the inverse of 8 being the number which multiplies 8 to give 1), a
matrix 𝑍 is called the inverse of matrix 𝐴 if

𝑍𝐴 = 𝐼
where 𝐼 is an identity matrix. When such a matrix 𝑍 exists then we can write it as 𝑍 = 𝐴−1, and we
say that 𝐴 is invertiblea.

ai.e. can be inverted

Warning: You cannot always find an inverse of a square matrix. Some square matrices don’t have
inverses, while for non-square matrices none of this even makes sense. Mathematically, however, the
good news is that most square matrices can be inverted. Whether an inverse exists depends on the
determinant being non-zero.

10if we could divide and get 𝐶/𝐴 then this is what 𝐵 would be
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Some examples of inverses:

If 𝐴 = ⎛⎜
⎝

1 2
0 5

⎞⎟
⎠

then 𝐴 does have an inverse and it is

𝐴−1 = ⎛⎜
⎝

1 − 2
5

0 1
5

⎞⎟
⎠

.

If 𝐴 = ⎛⎜
⎝

4 1
5 2

⎞⎟
⎠

then 𝐴 does have an inverse and it is

𝐴−1 = ⎛⎜
⎝

2
3 − 1

3

− 5
3

4
3

⎞⎟
⎠

.

You should check that in each of those examples, that

𝐴−1𝐴 = ⎛⎜
⎝

1 0
0 1

⎞⎟
⎠

= 𝐼2.

Note: it is also always true that 𝐴𝐴−1 = 𝐼 but we won’t discuss this here.

You will note that in both of the examples above the inverse of 𝐴 contained fractions with the same denom-
inator, which actually turns out to be the determinant of 𝐴! This is because there is a general formula for
the inverse of a 2-by-2 matrix and it’s defined as follows:

Inverse of a 2-by-2 matrix formula
For any 2-by-2 matrix, 𝐴, if the determinant of 𝐴 isn’t zero (i.e. det(𝐴) ≠ 0), then when

𝐴 = ⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠

its inverse is

𝐴−1 = 1
det(𝐴)

⎛⎜
⎝

𝑑 −𝑏
−𝑐 𝑎

⎞⎟
⎠

, (5.7)

recalling that det(𝐴) = 𝑎𝑑 − 𝑏𝑐.
Warning: This formula doesn’t work if the determinant is zero.
In the case that 𝑎𝑑 − 𝑏𝑐 = 0 there is no inverse of 𝐴.

Now go back to Equation (5.6) and check that the 𝐴 matrix is not invertible11.
11because its determinant is zero
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It is worth taking a moment to look at the formula for the inverse of a 2-by-2 matrix in Equation
(5.7).
Notice the pattern:

• the main diagonal elements (the 𝑎 and 𝑑) have been swapped;
• the off-diagonal elements (the 𝑏 and 𝑐) have had their signs changeda.

Then this result has been divided by the determinant.
ai.e. they’ve been multiplied by −1

Unfortunately this formula just needs to be memorized, and the general formula for the inverse of 3-by-3
matrices is much messier. The good news is that this quantity called the determinant can still be used as
the deciding factor in all cases as to whether or not you can invert a matrix.

The determinant rule:
• You can always find the inverse of a matrix if its determinant is not zero.
• But if the determinant is zero, there is no inverse to find.

Why do we care about inverting a matrix?
Inverses will turn out to be really powerful. They can be used in a wide range of applications to solve
equations involving matrices, because they allow us to perform simplifying algebra. Without them we
are very limited in what we can do with algebra of matrices.

We shall consider the inverse of 3-by-3 and larger matrices in later sections (i.e. Sections 5.7 and 5.8).

First some examples to revise determinants, and inverses.

Practice
Below are four 2-by-2 matrices, in each case do the following:

• Calculate its determinant;
• Comment on whether the matrix will have an inverse;
• If an inverse exists, find it!
• After finding an inverse, multiply it by the original matrix to verify you get 𝐼2.

𝐴 = ⎛⎜
⎝

1 4
2 9

⎞⎟
⎠

𝐵 = ⎛⎜
⎝

−3 −2
4 2

⎞⎟
⎠

𝐶 = ⎛⎜
⎝

2 −8
−1 4

⎞⎟
⎠

𝐷 = ⎛⎜
⎝

5 3
3 1

⎞⎟
⎠

In more advanced courses on matrices you will see their applications. In the realm of 3D graphics and
integration the determinant will turn out to have a geometric interpretation of how much the world is scaled
when using a particular matrix. However we won’t go into that topic here.
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5.5 Properties of inverse matrices
Before moving on to some applications, we shall first see a few properties of inverses that can prove useful
when performing algebra. These rules could be learned, or looked up when necessary. They don’t need to
be memorized, but you will learn them with practice. More important is to know there are some rules and
when first working with matrices to go and check them.

Useful algebra rules for matrices
In all examples below 𝐴 and 𝐵 are general matrices, and 𝑘 is a non-zero scalar (constant).

• The inverse of an inverse equals the original matrix, i.e.

(𝐴−1)−1 = 𝐴.

• The inverse of the product of two matrices equals the product of their inverses but in reverse
order! i.e.

(𝐴𝐵)−1 = 𝐵−1𝐴−1.
• The inverse of a matrix multiplied by a scalar equals the inverse of the matrix multiplied by the

inverse of the scalar, i.e.
(𝑘𝐴)−1 = 1

𝑘𝐴−1, note 𝑘 ≠ 0.

• The inverse of the transpose of a matrix equals the transpose of the inverse of the matrix, i.e.

(𝐴𝑇 )−1 = (𝐴−1)𝑇 .

5.6 How to solve a 2-by-2 linear system using a matrix
Although we don’t see highly practical real-world examples here, we can at least see a clever use of matrices
to solve simultaneous equations. In the example presented below we limit it to just solving two simultaneous
equations but, as we shall see later, the method can be applied to as many simultaneous equations as you
wish.

Firstly, we want to see how matrices are related to simultaneous equations.

Consider the following two simultaneous equations:

𝑥 + 2𝑦 = −1
4𝑥 − 3𝑦 = 18

The clever use of matrices is to notice that there is a way to write this pair of equations as a single matrix
equation.
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How to re-write simultaneous equations in matrix format
Simultaneous equations can always be rewritten as a single matrix equation. For the example seen
above it becomes,

⎛⎜
⎝

1 2
4 −3

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= ⎛⎜
⎝

−1
18

⎞⎟
⎠

Expand out this single equation carefully and see it matches!

• Row 1 of the matrix multiplied by ⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

equalling −1 yields the first simultaneous equation, and

• Row 2 of the matrix multiplied by ⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

equalling 18 yields the second simultaneous equation.

To illustrate the general method, we can give a general formula.

General matrix method for solving simultaneous equations
Given a totally general pair of simultaneous equations:

𝑎𝑥 + 𝑏𝑦 = 𝑔
𝑐𝑥 + 𝑑𝑦 = ℎ

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑔 and ℎ are scalars; we wish to solve these equations to find the values of 𝑥 and 𝑦
which make both equations simultaneously true.
We can write the equations as a single matrix equation as follows:

⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= ⎛⎜
⎝

𝑔
ℎ

⎞⎟
⎠

(5.8)

If we now let 𝑀 = ⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠

then

if 𝑀−1 exists we can multiply (on the left) both sides of (5.8) by 𝑀−1 to obtain:

𝑀−1 ⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= 𝑀−1 ⎛⎜
⎝

𝑔
ℎ

⎞⎟
⎠

(5.9)

however 𝑀 = ⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠
, so

𝑀−1 ⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠

= 𝑀−1𝑀 = 𝐼2 = ⎛⎜
⎝

1 0
0 1

⎞⎟
⎠

.

This means that Equation (5.9) turns into,

𝐼2
⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= 𝑀−1 ⎛⎜
⎝

𝑔
ℎ

⎞⎟
⎠

. (5.10)

We know that multiplying by 𝐼 makes no difference, it’s like multiplying a scalar by 1 (see Section
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5.3.3), so this equation becomes

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= 𝑀−1 ⎛⎜
⎝

𝑔
ℎ

⎞⎟
⎠

(5.11)

We now have an equation which tells us exactly what 𝑥 and 𝑦 are, which is our target!

Just before we see a worked example, a vital observation:

In all algebraic work, when solving equations with matrices, the key idea is almost always to
multiply both sides of the equation by the inverse of some matrix.
This multiplication by an inverse will convert one of the products into an identity, and simplify the

algebra. We saw this above, when trying to find a formula for ⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

in (5.8), (5.9), (5.10) and (5.11).

Notice how the left of the equation changed between (5.8) and (5.11), that was all the result of
multiplication by the correct inverse matrix.

Example
We shall solve our starting problem:

𝑥 + 2𝑦 = −1
4𝑥 − 3𝑦 = 18

We begin by writing it as:

⎛⎜
⎝

1 2
4 −3

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= ⎛⎜
⎝

−1
18

⎞⎟
⎠

(5.12)

Next we let 𝑀 = ⎛⎜
⎝

1 2
4 −3

⎞⎟
⎠

and desire to find 𝑀−1.

First we calculate det(𝑀) = 1 × (−3) − 2 × 4 = −11.
Second we use the general formula, from Equation (5.7)a,

𝑀−1 = − 1
11

⎛⎜
⎝

−3 −2
−4 1

⎞⎟
⎠

Third we perform our key step: we multiply (on the left) both sides by 𝑀−1 with the intention of
cancelling out the existing 𝑀 on the left.
So we multiply Equation (5.12) by 𝑀−1 to get

𝑀−1 ⎛⎜
⎝

1 2
4 −3

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= 𝑀−1 ⎛⎜
⎝

−1
18

⎞⎟
⎠

(5.13)

To see the algebra in gory detail we substitute our value of 𝑀−1.
The left side looks like:

Left = − 1
11

⎛⎜
⎝

−3 −2
−4 1

⎞⎟
⎠

⎛⎜
⎝

1 2
4 −3

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

and the right side looks like:
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Right = − 1
11

⎛⎜
⎝

−3 −2
−4 1

⎞⎟
⎠

⎛⎜
⎝

−1
18

⎞⎟
⎠

and these two sides are equal.

However, − 1
11

⎛⎜
⎝

−3 −2
−4 1

⎞⎟
⎠

⎛⎜
⎝

1 2
4 −3

⎞⎟
⎠

= ⎛⎜
⎝

1 0
0 1

⎞⎟
⎠
, so Equation (5.13) becomes

𝐼2
⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= − 1
11

⎛⎜
⎝

−3 −2
−4 1

⎞⎟
⎠

⎛⎜
⎝

−1
18

⎞⎟
⎠

,

and 𝐼2
⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= ⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠
, so we reach:

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= − 1
11

⎛⎜
⎝

−3 −2
−4 1

⎞⎟
⎠

⎛⎜
⎝

−1
18

⎞⎟
⎠

.

These steps are the same every time we use this methodb. The answer to our problem now results
from performing the multiplication on the right.
You should check by hand that you agree with

− 1
11

⎛⎜
⎝

−3 −2
−4 1

⎞⎟
⎠

⎛⎜
⎝

−1
18

⎞⎟
⎠

= − 1
11

⎛⎜
⎝

−33
22

⎞⎟
⎠

.

So,

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= ⎛⎜
⎝

3
−2

⎞⎟
⎠

,

and so 𝑥 = 3 and 𝑦 = −2.
aSwap the main diagonal, change signs on the other diagonal
bthough the numbers and matrices themselves obviously vary

This calculation might look like a lot of work, but it is actually the same fundamental algebra every time,
except that the matrices 𝑀 and 𝑀−1, and the right-hand side will depend upon the problem being tackled.
Here is the general shortcut answer…

Given simultaneous equations in the format:

𝑀𝑥 = 𝑏
where

• 𝑀 is a square matrix;
• 𝑏 is a column vector containing the right-hand side values; and
• 𝑥 is a column vector containing the unknown variables, e.g. (𝑥, 𝑦), for which we wish to solve.

Then if 𝑀−1 existsa the answer is always

𝑥 = 𝑀−1𝑏.
ai.e. if 𝑀 is invertible, i.e. it has a non-zero determinant
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Practice
In each of the following problems convert the simultaneous equations into a matrix equation, then use
the above “matrix inverse method” to solve to find 𝑥 and 𝑦.
Note: It is easy to check your own answers, just substitute your solutions for 𝑥 and 𝑦 back into the
original equations and confirm that they satisfy both equations.

• Problem 1: Solve

4𝑥 + 2𝑦 = 10
3𝑥 − 7𝑦 = −1

• Problem 2: Solve

3𝑥 − 5𝑦 = 17
−𝑥 − 6𝑦 = 2

Warning:
In the case that the determinant of the 2-by-2 matrix is zero, then the matrix doesn’t have an inverse.
Therefore we do not have a matrix to multiply both sides of the equations by, as in Equation (5.9),

to convert the left hand side into 𝐼2
⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠
.

Typically there will be infinitely many possible (𝑥, 𝑦) solutions to the equations. In very exceptional
circumstances, however, there may be no solutions at all. We shall not go into these details here.

5.7 3-by-3 matrices
There is fundamentally nothing particularly different to working with 3-by-3 matrices than with 2-by-2
matrices. All the adjectives discussed in Section 5.3 were intentionally designed to work for matrices of all
sizes12.

Using 3-by-3 matrices allows you to model three-dimensional situations, so in one sense you may expect them
to be more useful for real-world modelling. However, we very often find in Engineering applications that we
are working on cross-sectional areas, or by symmetry we are able to neglect one dimension – so a great deal
of applications you will see actually only require working in two-dimensions.

One key difference, however, is the application of matrices for solving simultaneous equations, where the
dimensions of the square matrix correspond to the number of equations. Thus we need 3-by-3 matrices to be
able to solve sets of 3 simultaneous equations, and indeed 𝑛-by-𝑛 matrices to solve 𝑛 simultaneous equations
(see Section 5.8 later).

The only real differences mathematically are that:
• the number of raw calculations required when multiplying 3-by-3 matrices is markedly increased;
• the formula for the determinant is more complicated; and
• there isn’t a nice easy formula for the inverse of a 3-by-3 matrix, like there was for a 2-by-2

matrix in (5.7).

We actually already gave a formula, and procedure for the determinant of the 3-by-3 matrix in Section 5.3.8,
where you will have seen it’s considerably messier to calculate than finding a 2-by-2 determinant. However,
whether a matrix has an inverse or not is still just a matter of whether its determinant is not zero or is zero.

12subject to some adjectives referring only to square matrices
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There are a few different, equally good methods, for finding the inverse of a 3-by-3 matrix. In
practice, the manual skill of finding such inverses is becoming less and less important in mathematics
since software to find the inverse for you is readily available. As such these notes will not contain
an explanation of the method. You are free to look up any good methods, these two are particularly
popular and not too complicated:

• Co-factor and adjoint method for matrix inverses,
• Augmented matrix method for matrix inverses (also called the Gauss-Jordan method),

We shall discuss general computer methods briefly in the final Section 5.8.

For now, we shall just assume that we have a method for finding the inverse of a 3-by-3 matrix. The important
fact you must know is that the inverse of a 3-by-3 matrix is a matrix which multiplied by the original matrix
yields 𝐼3, the 3-by-3 identity matrix, e.g.

⎛⎜⎜⎜⎜⎜
⎝

1 4 0
2 −1 7
1 8 9

⎞⎟⎟⎟⎟⎟
⎠

−1

⎛⎜⎜⎜⎜⎜
⎝

1 4 0
2 −1 7
1 8 9

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟
⎠

Let us use a matrix inverse to solve a system of three simultaneous equations.

Solve these simultaneous equations using the inverse matrix method:

3𝑥 + 𝑦 + 𝑧 = 1
𝑥 − 2𝑦 − 𝑧 = 0

8𝑥 − 2𝑦 + 𝑧 = −3

Assuming you already know that:

⎛⎜⎜⎜⎜⎜
⎝

3 1 1
1 −2 −1
8 −2 1

⎞⎟⎟⎟⎟⎟
⎠

−1

= 1
7

⎛⎜⎜⎜⎜⎜
⎝

4 3 −1
9 5 −4

−14 −14 7

⎞⎟⎟⎟⎟⎟
⎠

.

The first step is to convert our simultaneous equations into a single matrix equation. The three
equations will become a single 3-by-3 matrix multiplied by a 3-by-1 column matrix, equal to another
3-by-1 column matrix, like this:

⎛⎜⎜⎜⎜⎜
⎝

3 1 1
1 −2 −1
8 −2 1

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

1
0

−3

⎞⎟⎟⎟⎟⎟
⎠

.

The next step is to find the inverse of our 3-by-3 matrix, which has already been done for us.
We then multiply both sides (on their lefts) by this inverse. So the left-hand side of the equation
becomes:

1
7

⎛⎜⎜⎜⎜⎜
⎝

4 3 −1
9 5 −4

−14 −14 7

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

3 1 1
1 −2 −1
8 −2 1

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟⎟⎟
⎠

,
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and the right-hand side becomes

1
7

⎛⎜⎜⎜⎜⎜
⎝

4 3 −1
9 5 −4

−14 −14 7

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

1
0

−3

⎞⎟⎟⎟⎟⎟
⎠

,

putting them together and simplifying we get…

𝐼3

⎛⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟⎟⎟
⎠

= 1
7

⎛⎜⎜⎜⎜⎜
⎝

4 3 −1
9 5 −4

−14 −14 7

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

1
0

−3

⎞⎟⎟⎟⎟⎟
⎠

,

and it just remains to perform the matrix multiplication on the right hand side…

1
7

⎛⎜⎜⎜⎜⎜
⎝

4 3 −1
9 5 −4

−14 −14 7

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

1
0

−3

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

1
3

−5

⎞⎟⎟⎟⎟⎟
⎠

.

So 𝑥 = 1, 𝑦 = 3 and 𝑧 = −5.

Here is an example for you to try at home. Notice that you can just use the general result from Equation
(5.6) once you have identified the necessary matrices in the question.

Practice
Solve these simultaneous equations using the inverse matrix method:

4𝑥 + 𝑦 + 𝑧 = 1
𝑥 − 2𝑦 − 𝑧 = 0

8𝑥 − 𝑦 + 𝑧 = −3

You should look online for a 3-by-3 matrix inverse calculator, to find the necessary inverse. As an
exercise check that the supplied inverse is correct by multiplying the original matrix by its inverse to
(hopefully) obtain the identity matrix 𝐼3.

You can find many examples online if you wish to test your skills with this type of question, you will also
find a couple of examples in the bonus exercises in Section 8.

5.8 Larger matrices
Larger matrices’ main use is for representing large numbers of simultaneous equations in one single equation.
To represent 𝑛 simultaneous linear equations in the matrix format will involve designing an appropriate
𝑛-by-𝑛 matrix. Useful applications normally require calculating this matrix’s inverse at some point.

Fortunately there are many efficient algorithms designed for computers to calculate inverses of large matrices.
For humans it becomes extremely time consuming to calculate the inverse of matrices as they get larger,
indeed humans will very rarely attempt to invert any matrix by hand which is larger than 3-by-3.

The only frequent exception to the previous claim about human calculation, is for certain special
matrices whose inverses are actually easy to calculate. One interesting class of matrices like this are
diagonal matrices (see Section 5.3.5). Recall that a diagonal matrix looks like this:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑1 0 0 0 … 0
0 𝑑2 0 0 … 0
0 0 𝑑3 0 … 0
0 0 0 𝑑4 … 0
⋮ ⋮ ⋮ ⋮ ⋱ 0
0 0 0 0 0 𝑑𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

All entries not on the main diagonal are zeros, and the diagonal entries can take any values you like.
Note: when working with large matrices we often use a sequence of three dots to say “continue the
pattern”.
A typical 4-by-4 example may look like this:

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

7 0 0 0
0 −2 0 0
0 0 1

3 0
0 0 0 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Notice that finding the inverse is actually very easy. Just perform the following multiplication to see
why,

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
7 0 0 0
0 − 1

2 0 0
0 0 3 0
0 0 0 1

10

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

7 0 0 0
0 −2 0 0
0 0 1

3 0
0 0 0 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

the answer is just 𝐼4, notice how all the zeros make the product quite easy to calculate.
So inverting an 𝑛-by-𝑛 diagonal matrix really is just as simple as going down the diagonal and inverting
each element one at a time, i.e. replacing 𝑑 with 𝑑−1 or 1

𝑑 , however you prefer to write it. Just beware,
this doesn’t work if any elements on the diagonal are zeros!

As discussed earlier, the primary use of larger matrices is for solving systems of simultaneous equations,
though they can be more complicated than standard linear equations. These methods can be used, for
example, to solve systems of what are called differential equations (which you will study in later courses).

A general set of 𝑛 simultaneous linear equations looks like this:

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + 𝑎1,3𝑥3 + … + 𝑎1,𝑛𝑥𝑛 = 𝑏1
𝑎2,1𝑥1 + 𝑎2,2𝑥2 + 𝑎2,3𝑥3 + … + 𝑎2,𝑛𝑥𝑛 = 𝑏2
𝑎3,1𝑥1 + 𝑎3,2𝑥2 + 𝑎3,3𝑥3 + … + 𝑎3,𝑛𝑥𝑛 = 𝑏3
⋮ ⋮ ⋮ ⋮ = ⋮

𝑎𝑛,1𝑥1 + 𝑎𝑛,2𝑥2 + 𝑎𝑛,3𝑥3 + … + 𝑎𝑛,𝑛𝑥𝑛 = 𝑏𝑛

where all the 𝑎𝑖𝑗 and 𝑏𝑘 are constants. And we had to name our variables 𝑥1, 𝑥2, 𝑥3 etc… else we
would have quickly run out of letters!
Such a system of equations can always be written in matrix format as:

𝐴𝑥 = 𝑏 (5.14)



CHAPTER 5. INTRODUCTION TO MATRICES 113

where

𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑥3

⋮
𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑏1

𝑏2

𝑏3

⋮
𝑏𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛

𝑎21 𝑎22 𝑎23 … 𝑎2𝑛

𝑎31 𝑎32 𝑎33 … 𝑎3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 … 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The solution to Equation (5.14), assuming that 𝑑𝑒𝑡(𝐴) ≠ 0, so that 𝐴 has an inversea, is always

𝑥 = 𝐴−1𝑏

The algebra to get from (5.14) to (5.8) has been seen twice before, first in Equations (5.9), (5.10),
(5.11) for 2-by-2 matrices, and then again in (5.13) and (5.6) when working with 3-by-3 matrices. It
always just involves multiplying on the left by the inverse of our square matrix, and simplifying.

aand so 𝐴−1 even exists!

Having glossed over the procedures for finding the inverse of a 3-by-3 matrix13 we should conclude with some
references to software you can use to find matrix inverses larger than 2-by-2 when needed.

Software for finding matrix inverses
• online you will find various websites called things like matrix inverse calculator;
• if using common spreadsheet softwarea, there’s a function called MINVERSE (matrix inverse);
• if using Wolfram Alpha you can type inv, inverse or inverse of ;
• in Python one option is numpy.linalg.inv();
• in R, you can use inv or solve;
• in Matlab you can use inv; and
• in other software, just search the web or the help files.

aExcel, OpenOffice or Sheets

Practice
Use one of the software options above to find the inverse of this 4-by-4 matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 1 0 5
0 1 −1 2
2 5 −2 4
1 0 −1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Verify your answer is the inverse by multiplying it by the matrix and verifying you get an identity
matrix.

13though they were named
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5.9 Summary of chapter
Having worked through this chapter and attempted the exercises you should now have developed understand-
ing of the following topics:

• Know what a matrix is and describe its shape;
• Perform basic algebra including addition, subtraction and scalar multiplication;
• Determine if matrices are valid shapes to be multiplied together, and carry out the multiplication where

appropriate;
• Calculate the determinant of 2-by-2 and 3-by-3 matrices;
• Calculate the inverse of 2-by-2 matrices, when it exists; and
• Use matrix methods to solve systems of linear equations.



Chapter 6

Algebra exercises

This section contains purely bonus exercises to accompany the Algebra chapter. Each chapter contained
embedded examples and exercises, often with explanations.

These questions are provided with fewer explanations, generally just with the basic answers provided later.
Of course, you can ask questions of the course lecturer about any problems here too.

6.1 Expansion of brackets and powers
1. Expand the following expressions involving products and powers

i. (3𝑥2) (5𝑥4)
ii. (8𝑥3) (9𝑥5)
iii. (4𝑥𝑦) (7𝑥2𝑦3)
iv. (−𝑥3𝑦4) (6𝑥8𝑦9)
v. (5𝑥2𝑦7) (−7𝑥3𝑦9)
vi. (3𝑎𝑏)2 (−5𝑎𝑏3)
vii. (−5𝑥2𝑦)(−8𝑥3𝑦2)
viii. (−3𝑎𝑏) (−4𝑎𝑏3)
ix. (4𝑎) (𝑎𝑏) (−𝑎2𝑏)
x. (−3𝑎𝑏) (−4𝑎2𝑏) (𝑎𝑏2)2

2. Expand the following brackets and simplify
i. (𝑥 + 2)(𝑥 + 3)
ii. (2𝑥 + 5)(3𝑥 − 7)
iii. (2𝑥 − 3)(2𝑥 + 3)
iv. (4𝑦 − 8)(6𝑦 − 13)
v. (𝑥 + 4)2

vi. (2𝑥 + 3𝑦)2

vii. (2𝑥 − 3𝑦)2

viii. (𝑥 + 2)(𝑥2 − 4𝑥 + 5)
ix. (2𝑥 − 1)(𝑥2 − 3𝑥 + 7)
x. (𝑥 + 3)(𝑥 − 4)(𝑥 + 5)

3. Expand the brackets (𝑎 − 𝑏)(𝑎 + 𝑏) and then use this general formula to answer the following without
doing any new algebra:

i. Expand (𝑥 + 2)(𝑥 − 2)
ii. Expand (2𝑥 − 3)(2𝑥 + 3)
iii. Factorize 𝑥2 − 16
iv. Factorize 25𝑥2 − 64
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6.2 Simplifying fractions
1. Simplify the following fractions containing powers

i.
12𝑎2

3𝑎2

ii.
−32𝑏3

8𝑏2

iii.
42𝑎3𝑏4

6𝑎2𝑏
iv.

72𝑐2𝑑3

−9𝑐𝑑2
v.

4𝑥𝑦 − 8𝑥𝑦2

2𝑥𝑦
vi.

6𝜋𝑟ℎ2 + 18𝜋𝑟2ℎ
3𝜋𝑟ℎ

6.3 Exponentials and Logarithms
1. Use the log button your calculator (which is actually base 10, i.e. log10) and the 10□ button to evaluate

the following:

i. log10(1000)
ii. log10(2.5)
iii. 103.5

iv. log10(103.5)
v. log10(10−1.4)
vi. 10log10(6.1)

vii. 10log10(0.5)

Yes! The final four answers can be worked out by realizing that 10□ and log10(□) are inverse operations.
The first one you may realize the answer, if you notice that 1000 = 103.

2. Use the ln (which is just log𝑒) on your calculator, and its counterpart 𝑒□ to evaluate the following:

i. ln(4.5)
ii. ln(2.75)
iii. 𝑒0.6

iv. 𝑒−1.5

v. ln(𝑒0.6)
vi. ln(𝑒−1.5)
vii. 𝑒ln(2.5)

viii. 𝑒ln(0.75)

Yes! The final four answers can be worked out by realizing that 𝑒□ and ln(□) are inverse operations.

3. Use the three log laws to expand these logarithms into sums and differences of simpler logarithms.

i. log10 ( 3𝑥2
𝑦 )

ii. ln ( 𝑥2𝑦2

4 )
iii. log10 ( 100

𝑥+1 )
iv. ln ( 𝑒2

2𝑥+3 )
v. log10 (

√
𝑥2 + 1)

vi. ln(√ (𝑥+1)3(𝑥−1)
(𝑥+2) )



CHAPTER 6. ALGEBRA EXERCISES 117

4. Combine these sums and differences of simple logs into one single logarithm:

i. 3 log10(𝑥) + 2 log10(𝑦) − 4 log10(𝑧)
ii. 2 log10(𝑥 + 𝑦) − 1

2 log10(𝑧)
iii. 3 ln(𝑥) + 1

3 ln(𝑦)
iv. 4 ln(2𝑥 + 𝑦) − 2 ln(𝑧)

6.4 Re-arranging formula to make a variable the subject
1. For each of the following formulae, change the subject of the equation to the quantity indicated in the

bracket on the right:
i. 𝑣 = 𝑢 + 𝑎𝑡, (𝑡)
ii. 𝑠 = 1

2 𝑎𝑡2, (𝑡)
iii. 𝑠 = 𝑢𝑡 + 1

2 𝑎𝑡2, (𝑢)
iv. 𝑠 = 𝑢𝑡 + 1

2 𝑎𝑡2, (𝑎)
v. 𝑣 =

√
𝑢2 + 2𝑎𝑠, (𝑠)

vi. 𝑣 =
√

𝑢2 + 2𝑎𝑠, (𝑢)
vii. 𝑦 = 𝑎 + 𝑏𝑥3, (𝑥)
viii. 𝑖 = 5𝑒𝑡, (𝑡)
ix. 𝑖 = 8𝑒−2𝑡, (𝑡)
x. 𝑦 = 102𝑥+1, (𝑥)
xi. 𝑦 = 103𝑥−2, (𝑥)
xii. 𝑦 = 𝑐0 + 𝑎0𝑒−𝑘𝑡, (𝑡)

2. For each of the following, change the subject of the equation to the quantity indicated in the bracket
on the right:

i.
𝑦 = 2 − 𝑥

3 + 𝑥, (𝑥)

ii.
𝑦 = 4 + 2𝑥

5 − 𝑥 , (𝑥)

iii.
𝑧 = 𝑥𝑦

𝑥 + 𝑦 , (𝑦)

iv.
𝐶 = 𝐶1𝐶2

𝐶1 − 𝐶2
, (𝐶2)

6.5 Factorizing quadratics
1. Factorize each of the following quadratic expressions:

i. 𝑥2 + 3𝑥 + 2
ii. 𝑥2 + 5𝑥 + 4
iii. 𝑥2 + 4𝑥 + 4
iv. 𝑥2 + 𝑥 − 2
v. 𝑥2 − 𝑥 − 2
vi. 𝑥2 + 5𝑥 − 6
vii. 𝑥2 − 5𝑥 − 6
viii. 𝑥2 + 𝑥 − 6
ix. 𝑥2 − 𝑥 − 6
x. 2𝑥2 + 11𝑥 + 12

6.6 Solving equations – variety of learned methods
1. Solve the following equations: where answers are decimals, give accurate to five decimal places
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i. 4𝑥 + 5 = 8
ii. 10𝑥 − 8 = −12
iii. 6𝑥 + 3 = 2𝑥 − 5
iv. 3𝑥 − 9 = 5𝑥 + 2
v. 5 + 3𝑥2 = 32
vi. 5𝑥3 + 320 = 0
vii. 𝑒𝑥 = 0.75
viii. 𝑒4𝑥 = 0.2
ix. 5𝑒−𝑥 − 8 = 7
x. 4 + 12𝑒−3𝑥 = 13
xi. ln(3𝑥) = −2
xii. 5 ln(2𝑥) + 3 = 0
xiii. 5 − 3 ln(4𝑥) = −10
xiv. ln(6𝑥 + 4) = 0.25
xv. 10𝑥 = 2.5
xvi. 103𝑥−2 = 1.75
xvii. log10(4𝑥) = 0.32
xviii. log10(5𝑥 + 4) = 0.65
xix. 24𝑥−1 = 5
xx. 32𝑥+4 = 6

2. Solve the following quadratic equations by factorization, then repeat using the quadratic formula and
check your answers match.

i. 𝑥2 + 2𝑥 − 15 = 0
ii. 𝑥2 − 9𝑥 + 20 = 0
iii. 𝑥2 + 10𝑥 + 25 = 0
iv. 2𝑥2 − 7𝑥 − 4 = 0

3. Complete the square on each of these quadratic equations. Then try solving them using the quadratic
formula, what happens?

i. 𝑥2 + 2𝑥 + 2 = 0
ii. 𝑥2 + 4𝑥 − 9 = 0
iii. 𝑥2 + 4𝑥 + 9 = 0
iv. 2𝑥2 − 3𝑥 + 4 = 0

Now look back at your completed squared versions, can you see why they couldn’t be solved?

4. Solve the following pairs of simultaneous equations:

i.

4𝑥 + 3𝑦 = 2
2𝑥 − 𝑦 = 16

ii.

5𝑥 + 2𝑦 = 1
4𝑥 + 3𝑦 = −2

iii.

6𝑥 − 2𝑦 = −20
4𝑥 + 5𝑦 = −7

iv.

8𝑥 − 5𝑦 = 24.5
2𝑥 − 3𝑦 = 10.5
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Vectors exercises

This section contains purely bonus exercises to accompany the Vectors chapter. Each chapter contained
embedded examples and exercises, often with explanations.

These questions are provided with fewer explanations, generally just with the basic answers provided later.
Of course, you can ask questions of the course lecturer about any problems here too.

7.1 Vector sketching
1. Sketch the following vectors (given in polar format) starting from the specified points:

i. (2, 30∘) starting from (−3, 2).
ii. (5, 30∘) starting from (1, 4).
iii. (0.25, 200∘) starting from (5, 4).
iv. (6, −30∘) starting from (−2, 2).

2. Sketch the following vectors (given in the rectangular format) starting from the specified points:

i. ⎛⎜
⎝

3
4
⎞⎟
⎠

starting from (2, 1).

ii. ⎛⎜
⎝

−4
2

⎞⎟
⎠

starting from (2, −4).

iii. ⎛⎜
⎝

6.5
3.5

⎞⎟
⎠

starting from (−4, −4).

iv. ⎛⎜
⎝

−2.5
−4.5

⎞⎟
⎠

starting from (−6, 2).

7.2 Vector format conversion
1. Convert the following vectors to rectangular (Cartesian) format without using a calculator (Hint: the

angles are nice):
i. (4, 0∘)
ii. (8, 90∘)
iii. (6, 180∘)
iv. (5, 270∘)
v. (3, −90∘)
vi. (10, , −180∘)

2. Convert the following vectors into rectangular (Cartesian) format with the aid of the standard equations
(4.1), and then your calculator.

i. (2, 30∘)
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ii. (3, 80∘)
iii. (1, 120∘)
iv. (5, 315∘)
v. (4, 200∘)
vi. (2, −75∘)

3. Convert the following vector to Polar format, without the use of a calculator (Hint: the angles will be
nice)

i. ⎛⎜
⎝

5
0
⎞⎟
⎠

ii. ⎛⎜
⎝

0
10

⎞⎟
⎠

iii. ⎛⎜
⎝

−8
0

⎞⎟
⎠

iv. ⎛⎜
⎝

0
−2

⎞⎟
⎠

4. Convert the following vectors from rectangular format to Polar format,

i. ⎛⎜
⎝

−3
2

⎞⎟
⎠

ii. ⎛⎜
⎝

3
−2

⎞⎟
⎠

iii. ⎛⎜
⎝

−4
−3

⎞⎟
⎠

iv. ⎛⎜
⎝

4
3
⎞⎟
⎠

v. ⎛⎜
⎝

−2
1

⎞⎟
⎠

vi. ⎛⎜
⎝

2
−1

⎞⎟
⎠

7.3 Vector addition, subtraction and multiplication

1. Given the vectors 𝑣1 = ⎛⎜
⎝

4
−3

⎞⎟
⎠
, 𝑣2 = ⎛⎜

⎝

−2
4

⎞⎟
⎠

and 𝑣3 = ⎛⎜
⎝

−5
−1

⎞⎟
⎠
, determine the following vectors. In cases

(i)-(vi) you may like to sketch the answers graphically too.
i. 𝑣1 + 𝑣2
ii. 𝑣1 + 𝑣2 + 𝑣3
iii. 𝑣1 + (−𝑣2)
iv. 𝑣1 − 𝑣3
v. 2𝑣1
vi. 3𝑣2
vii. 2𝑣1 + 3𝑣2
viii. 4𝑣1 − 2𝑣2 + 5𝑣3
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7.4 Scalar Products and Relative Positions
1. For each of the following pairs of vectors, determine their lengths |𝑣1|, |𝑣1|, their Scalar Product (𝑣1 ⋅𝑣2),

and the angle between them, 𝜃.

i. 𝑣1 = ⎛⎜
⎝

2
2
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

1
−3

⎞⎟
⎠

ii. 𝑣1 = ⎛⎜
⎝

−4
6

⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

5
−8

⎞⎟
⎠

iii. 𝑣1 = ⎛⎜
⎝

3
4
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

1
0
⎞⎟
⎠

iv. 𝑣1 = ⎛⎜
⎝

3
4
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

0
1
⎞⎟
⎠

2. A triangle has vertices 𝐴 = (1, 1), 𝐵 = (4, 2) and 𝐶 = (3, 4).
i. Sketch this triangle on the standard 𝑥𝑦-axes (including the origin).
ii. Determine the relative position vectors ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶.
iii. By calculation (using a Scalar Product), determine the angle of the triangle at the vertex 𝐴.
iv. If you have access to a protractor, try measuring the angle in your diagram to see if it agrees.

3. A triangle has vertices 𝐴 = (−2, 1), 𝐵 = (3, 1) and 𝐶 = (1, 5).
i. Draw this triangle accurately (including the origin).
ii. By calculation (using a Scalar Product), determine the angle of the triangle at the vertex 𝐵.
iii. If you have access to a protractor, try measuring the angle in your diagram to see if it agrees.

7.5 Scalar Product further applications
1. For each of these pairs of vectors, determine whether the pair are orthogonal to each other (i.e. at

right-angles):

i. 𝑣1 = ⎛⎜
⎝

4
0
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

0
3
⎞⎟
⎠

ii. 𝑣1 = ⎛⎜
⎝

3
2
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

−3
2

⎞⎟
⎠

iii. 𝑣1 = ⎛⎜
⎝

1
5
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

−5
1

⎞⎟
⎠

iv. 𝑣1 = ⎛⎜
⎝

15
3

⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

−2
10

⎞⎟
⎠

v. 𝑣1 = ⎛⎜
⎝

10
3

⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

−10
33

⎞⎟
⎠

2. For each of the following forces 𝐹 find the Scalar projection of 𝐹 in the direction of the given vector 𝑑:

i. 𝐹 = ⎛⎜
⎝

5
0
⎞⎟
⎠

, 𝑑 = ⎛⎜
⎝

1/
√

2
1/

√
2
⎞⎟
⎠

ii. 𝐹 = ⎛⎜
⎝

4
−3

⎞⎟
⎠

, 𝑑 = ⎛⎜
⎝

0
1
⎞⎟
⎠

iii. 𝐹 = ⎛⎜
⎝

3
−2

⎞⎟
⎠

, 𝑑 = ⎛⎜
⎝

0.6
0.8

⎞⎟
⎠
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iv. 𝐹 = ⎛⎜
⎝

2
1
⎞⎟
⎠

, 𝑑 = ⎛⎜
⎝

3
4
⎞⎟
⎠

(Note, you will need to scale 𝑑 to length 1 first)

3. For each of the following forces 𝐹 find the work done in moving an object from location 𝑃 to location
𝑄:

i. 𝐹 = ⎛⎜
⎝

5
1
⎞⎟
⎠

, 𝑃 = (1, 3), 𝑄 = (2, 5).

ii. 𝐹 = ⎛⎜
⎝

−1
−1

⎞⎟
⎠

, 𝑃 = (1, 3), 𝑄 = (−2, −5).

iii. 𝐹 = ⎛⎜
⎝

2
3
⎞⎟
⎠

, 𝑃 = (−6, −4), 𝑄 = (0, 0).

7.6 3-dimensional vectors (mixture of topics)
1. Given the three 3-dimensional vectors

𝑣1 =
⎛⎜⎜⎜⎜⎜
⎝

4
−5
1

⎞⎟⎟⎟⎟⎟
⎠

, 𝑣2 =
⎛⎜⎜⎜⎜⎜
⎝

5
6

−3

⎞⎟⎟⎟⎟⎟
⎠

, 𝑣3 =
⎛⎜⎜⎜⎜⎜
⎝

6
2

−4

⎞⎟⎟⎟⎟⎟
⎠

determine the following:
i. 𝑣1 + 𝑣2 + 𝑣3
ii. 4𝑣1 + 3𝑣2 − 2𝑣3
iii. 𝑣1 + (−𝑣3)
iv. −2𝑣1 + 𝑣2 + 5𝑣3
v. 𝑣1 ⋅ 𝑣2
vi. 𝑣2 ⋅ 𝑣3
vii. 𝑣1 × 𝑣2
viii. 𝑣2 ⋅ 𝑣3
ix. 𝑣3 ⋅ 𝑣2

2. Using the same vectors from the previous question, find the following: (you may use previous answers,
to speed up calculations)

i. The angle between 𝑣1 and 𝑣2.
ii. The angle between 𝑣1 and 𝑣3.
iii. The component/projection of 𝑣1 in the direction of 𝑣2. (Careful here to use a length 1 vector)
iv. The component/projection of 𝑣3 in the direction of 𝑣1. (Careful here to use a length 1 vector)

3. A triangle in 3D has vertices at 𝐴 = (1, 4, 3), 𝐵 = (4, 2, 0) and 𝐶 = (5, 4, 6).
i. Determine the relative position vectors ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶.
ii. Determine the angle of the triangle at vertex 𝐴.

4. A triangle in 3D has vertices at 𝐴 = (−2, 3, −5), 𝐵 = (2, 0, 4) and 𝐶 = (1, 5, 1)
i. Determine the angle of the triangle at vertex 𝐶.

7.7 3D vector applications

1. A force 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

3
−2
5

⎞⎟⎟⎟⎟⎟
⎠

acts on a particle which moves from point 𝑃 = (1, 4, −1) to point 𝑄 = (−2, 3, 1).

i. Determine the displacement vector 𝑑 of the particle.
ii. Determine the work done by the force.
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2. A force 𝐹 acts through a point 𝑃 . Given that 𝑃 = (2, 3, −5), 𝑄 = (1, 2, −3) and 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

3
−2
5

⎞⎟⎟⎟⎟⎟
⎠

,

i. Calculate the moment of this force about the point 𝑄. You may want to consult Section 4.14.2.



Chapter 8

Matrices exercises

This section contains purely bonus exercises to accompany the Matrices chapter. Each chapter contained
embedded examples and exercises, often with explanations.

These questions are provided with fewer explanations, generally just with the basic answers provided later.
Of course, you can ask questions of the course lecturer about any problems here too.

8.1 Matrix algebra
1. Consider the following matrices:

𝐴 = (1 0 −3) , 𝐵 = (4 −1 2) , 𝐶 = ⎛⎜
⎝

1 2
4 3

⎞⎟
⎠

𝐷 = ⎛⎜
⎝

−3 1
6 5

⎞⎟
⎠

, 𝐸 =
⎛⎜⎜⎜⎜⎜
⎝

−2 6 3
1 0 −1
5 8 4

⎞⎟⎟⎟⎟⎟
⎠

, 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

9 0 7
2 −2 0
1 6 5

⎞⎟⎟⎟⎟⎟
⎠

𝐺 =
⎛⎜⎜⎜⎜⎜
⎝

2 6
1 3

−1 5

⎞⎟⎟⎟⎟⎟
⎠

, 𝐻 =
⎛⎜⎜⎜⎜⎜
⎝

0 −6
−1 0
3 8

⎞⎟⎟⎟⎟⎟
⎠

𝐽 =
⎛⎜⎜⎜⎜⎜
⎝

2
−1
4

⎞⎟⎟⎟⎟⎟
⎠

, 𝐾 =
⎛⎜⎜⎜⎜⎜
⎝

−1
2
0

⎞⎟⎟⎟⎟⎟
⎠

i. State the shape of each matrix.
ii. Determine the following algebraic combinations (not all may be possible!)

a. 𝐴 + 𝐵
b. 𝐶 − 𝐷
c. 𝐸 + 𝐹
d. 𝐸 − 𝐹
e. 2𝐺 + 3𝐻
f. 3𝐶 − 𝐷
g. 𝐺𝐶
h. 𝐸𝐽
i. 𝐽𝐸
j. 𝐶𝐷
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k. 𝐷𝐶
l. 𝐸𝐹

m. 𝐻𝐸
n. 𝐴𝐾
o. 𝐾𝐴

2. Simplify the following linear combinations:

i. ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

+ ⎛⎜
⎝

−1 −2
2 1

⎞⎟
⎠

ii. ⎛⎜
⎝

1 3
1
2 −2

⎞⎟
⎠

+ ⎛⎜
⎝

− 1
2 0

3
2 1

⎞⎟
⎠

iii. 3 ⎛⎜
⎝

1 −1
0 2

⎞⎟
⎠

iv. 2 ⎛⎜
⎝

1 4
−1 6

⎞⎟
⎠

+ 3 ⎛⎜
⎝

0 −2
4 1

⎞⎟
⎠

3. Calculate the following matrix products:

i. ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎛⎜
⎝

−1 −2
2 1

⎞⎟
⎠

ii. ⎛⎜
⎝

1 3
2 1

⎞⎟
⎠

⎛⎜
⎝

1 0 −3
1 2 −2

⎞⎟
⎠

iii. (1 1
2 3)

⎛⎜⎜⎜⎜⎜
⎝

1 4
−1 1

2

0 1

⎞⎟⎟⎟⎟⎟
⎠

iv. (3 −2 5)
⎛⎜⎜⎜⎜⎜
⎝

2
0
7

⎞⎟⎟⎟⎟⎟
⎠

8.2 Matrix properties
1. Calculate the following products:

i. ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎡⎢
⎣

⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎛⎜
⎝

−1 −2
2 1

⎞⎟
⎠

⎤⎥
⎦

ii. ⎡⎢
⎣

⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎛⎜
⎝

−1 −2
2 1

⎞⎟
⎠

⎤⎥
⎦

⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

iii. Look at the two calculations you have just performed, are the answers the same? What does this
tell you about the order or matrix multiplication?

2. Answer the following two questions about squaring matrices:

i. Which of the following matrices can be squared? 𝐴 = ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

and 𝑀 = ⎛⎜
⎝

1 0 −3
1 2 −2

⎞⎟
⎠

ii. In general, considering all possible matrices, which matrices can be squared?

3. For the matrix 𝐴 = ⎛⎜
⎝

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

⎞⎟
⎠
,

i. Calculate 𝐴𝑇 and (𝐴𝑇 )𝑇 .
ii. How does (𝐴𝑇 )𝑇 compare to 𝐴?
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4. Let 𝐴 = ⎛⎜
⎝

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

⎞⎟
⎠

and 𝐵 = ⎛⎜
⎝

𝑢 𝑣 𝑤
𝑥 𝑦 𝑧

⎞⎟
⎠
.

i. Evaluate 𝐴𝑇 + 𝐵𝑇 and (𝐴 + 𝐵)𝑇 .
ii. Comment on your answer.

8.3 Matrix determinants and inverses
1. Calculate the determinants of each of the following matrices:

i. ⎛⎜
⎝

1 1
0 1

⎞⎟
⎠

ii. ⎛⎜
⎝

3 −2
4 5

⎞⎟
⎠

iii. ⎛⎜
⎝

6 −3
−4 2

⎞⎟
⎠

iv.
⎛⎜⎜⎜⎜⎜
⎝

1 1 0
0 1 1
1 0 1

⎞⎟⎟⎟⎟⎟
⎠

v.
⎛⎜⎜⎜⎜⎜
⎝

1 2 1
3 2 1
2 3 2

⎞⎟⎟⎟⎟⎟
⎠

vi.
⎛⎜⎜⎜⎜⎜
⎝

2 1 1
1 2 2
2 4 4

⎞⎟⎟⎟⎟⎟
⎠

2. For each matrix in the previous question, determine its inverse or explain why you know it doesn’t have
an inverse. (You may use a computer for 3-by-3 matrix inverses)

3. For the matrix 𝐴 = ⎛⎜
⎝

4 5
2 3

⎞⎟
⎠
, use the standard formula to determine its inverse (written 𝐴−1) and

calculate the two products 𝐴𝐴−1 and 𝐴−1𝐴. Comment on your results.

4. For the matrix 𝐴 = ⎛⎜
⎝

4 1 3
2 1 2

⎞⎟
⎠

calculate the product 𝐴𝐴𝑇 . Can you always multiply a matrix by its

own transpose?

5. Let 𝐴 = ⎛⎜
⎝

2 5
1 4

⎞⎟
⎠

and 𝐵 = ⎛⎜
⎝

4 −5
0 3

⎞⎟
⎠
.

i. First calculate 𝐴−1 and 𝐵−1

ii. Next evaluate, by hand, 𝐴𝐵, (𝐴𝐵)−1 and 𝐵−1𝐴−1

iii. Comment on whether you were expecting these final two evaluations to be equal

6. Consider the following matrix 𝐴 = ⎛⎜
⎝

1 2
𝑘 3

⎞⎟
⎠

where 𝑘 is a constant.

i. Determine which value(s) of 𝑘 allow 𝐴 to be invertible.



CHAPTER 8. MATRICES EXERCISES 127

ii. Calculate the inverse of 𝐴 (note your answer will contain 𝑘)

7. Let 𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

1 −2 1
−3 2 −1
2 −1 0

⎞⎟⎟⎟⎟⎟
⎠

.

i. Calculate the determinant of 𝐴.
ii. Find the inverse of 𝐴 (using your computer).
iii. By hand, calculate the matrix products 𝐴𝐴−1 and 𝐴−1𝐴.
iv. Did your results agree with what you were expecting?

8. Given that 𝐷 =
⎛⎜⎜⎜⎜⎜
⎝

2 0 0
0 5 0
0 0 4

⎞⎟⎟⎟⎟⎟
⎠

, find the inverse matrix 𝐷−1 without using a computer.

9. (Hardest) Let 𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

4 0 9
0 5 + 𝑘 −3
0 2 𝑘

⎞⎟⎟⎟⎟⎟
⎠

be a matrix, where 𝑘 is a constant.

i. Calculate the determinant of 𝐴 (your answer will contain 𝑘).
ii. Use your determinant formula to determine all values of 𝑘 when the matrix is invertible.

8.4 Solving simultaneous of equations
1. Consider the following system of simultaneous equations:

2𝑥 − 5𝑦 = 2
3𝑥 − 7𝑦 = 1

i. Express these simultaneous equations in matrix form, i.e. as 𝐴𝑥 = 𝑏, where 𝐴 is a square matrix,
and both 𝑏 and 𝑥 are single column matrices.

ii. Determine the inverse, 𝐴−1, of your matrix 𝐴.
iii. Use 𝐴−1 to find the solution to the simultaneous equations.

2. A system of equations is given by

2𝑥 − 𝑦 + 3𝑧 = 13
𝑥 − 2𝑦 − 3𝑧 = −4

4𝑥 − 2𝑦 − 3𝑧 = 8

i. Express these simultaneous equations in the matrix form

𝐴𝑥 = 𝑏.

ii. Determine the matrix 𝐴−1 (use a computer, it will exist in this case).
iii. Use your result in the previous part to solve this system of equations for 𝑥, 𝑦, 𝑧.



Chapter 9

Algebra exercises – Solutions

This section contains solutions to the bonus exercises to accompany the Algebra chapter. Each chapter
contained embedded examples and exercises, often with explanations.

These solutions are provided with fewer explanations, generally just with the basic answers provided later.
Of course, you can ask questions of the course lecturer about any problems here too.

9.1 Expansion of brackets and powers
1. Expand the following expressions involving products and powers

i. (3𝑥2) (5𝑥4) = 15𝑥6

ii. (8𝑥3) (9𝑥5) = 72𝑥8

iii. (4𝑥𝑦) (7𝑥2𝑦3) = 28𝑥3𝑦4

iv. (−𝑥3𝑦4) (6𝑥8𝑦9) = −18𝑥11𝑦13

v. (5𝑥2𝑦7) (−7𝑥3𝑦9) = −35𝑥5𝑦16

vi. (3𝑎𝑏)2 (−5𝑎𝑏3) = −45𝑎3𝑏3

vii. (−5𝑥2𝑦)(−8𝑥3𝑦2) = 40𝑥5𝑦3

viii. (−3𝑎𝑏) (−4𝑎𝑏3) = 12𝑎3𝑏4

ix. (4𝑎) (𝑎𝑏) (−𝑎2𝑏) = −4𝑎4𝑏2

x. (−3𝑎𝑏) (−4𝑎2𝑏) (𝑎𝑏2)2 = 12𝑎5𝑏6

2. Expand the following brackets and simplify
i. (𝑥 + 2)(𝑥 + 3) = 𝑥2 + 5𝑥 + 6
ii. (2𝑥 + 5)(3𝑥 − 7) = 6𝑥2 + 𝑥 − 35
iii. (2𝑥 − 3)(2𝑥 + 3) = 4𝑥2 − 9
iv. (4𝑦 − 8)(6𝑦 − 13) = 24𝑦2 − 100𝑦 + 104
v. (𝑥 + 4)2 = 𝑥2 + 8𝑥 + 16
vi. (2𝑥 + 3𝑦)2 = 4𝑥2 + 12𝑥𝑦 + 9𝑦2

vii. (2𝑥 − 3𝑦)2 = 4𝑥2 − 12𝑥𝑦 + 9𝑦2

viii. (𝑥 + 2)(𝑥2 − 4𝑥 + 5) = 𝑥3 − 2𝑥2 − 3𝑥 + 10
ix. (2𝑥 − 1)(𝑥2 − 3𝑥 + 7) = 2𝑥3 − 7𝑥2 + 17𝑥 − 7
x. (𝑥 + 3)(𝑥 − 4)(𝑥 + 5) = 𝑥3 + 4𝑥2 − 17𝑥 − 60

3. Expand the brackets (𝑎 − 𝑏)(𝑎 + 𝑏) and then use this general formula to answer the following without
doing any new algebra (𝑎 − 𝑏)(𝑎 + 𝑏) = 𝑎2 − 𝑏2 so…

i. (𝑥 + 2)(𝑥 − 2) = 𝑥2 − 4
ii. (2𝑥 − 3)(2𝑥 + 3) = 4𝑥2 − 9
iii. 𝑥2 − 16 = (𝑥 − 4)(𝑥 + 4)
iv. 25𝑥2 − 64 = (5𝑥 − 8)(5𝑥 + 8)
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9.2 Simplifying fractions
1. Simplify the following fractions containing powers

i.
12𝑎2

3𝑎2 = 4

ii.
−32𝑏3

8𝑏2 = −4𝑏

iii.
42𝑎3𝑏4

6𝑎2𝑏 = 7𝑎𝑏3

iv.
72𝑐2𝑑3

−9𝑐𝑑2 = −8𝑐𝑑
v.

4𝑥𝑦 − 8𝑥𝑦2

2𝑥𝑦 = 2 − 4𝑦

vi.
6𝜋𝑟ℎ2 + 18𝜋𝑟2ℎ

3𝜋𝑟ℎ = 2ℎ + 6𝑟

9.3 Exponentials and Logarithms
1. Use the log button your calculator (which is actually base 10, i.e. log10) and the 10□ button to evaluate

the following:

i. log10(1000) = 3
ii. log10(2.5) = 0.397940009
iii. 103.5 = 3162.27766
iv. log10(103.5) = 3.5
v. log10(10−1.4) = −1.4
vi. 10log10(6.1) = 6.1
vii. 10log10(0.5) = 0.5
Could you have known the answer to any of these without using your calculator?

2. Use the ln (which is just log𝑒) on your calculator, and its counterpart 𝑒□ to evaluate the following:

i. ln(4.5) = 1.504077397
ii. ln(2.75) = 1.011600912
iii. 𝑒0.6 = 1.822118800
iv. 𝑒−1.5 = 0.223130160
v. ln(𝑒0.6) = 0.6
vi. ln(𝑒−1.5) = −1.5
vii. 𝑒ln(2.5) = 2.5
viii. 𝑒ln(0.75) = 0.75
Could you have known the answer to any of these without using your calculator?

3. Use the three log laws to expand these logarithms into sums and differences of simpler logarithms.

i. log10 ( 3𝑥2
𝑦 ) = log10(3) + 2 log10(𝑥) − log10(𝑦)

ii. ln ( 𝑥2𝑦2

4 ) = 2 ln(𝑥) + 2 ln(𝑦) − ln(4)
iii. log10 ( 100

𝑥+1 ) = 2 − log10(𝑥 + 1)
iv. ln ( 𝑒2

2𝑥+3 ) = 2 − ln(2𝑥 + 3)
v. log10 (

√
𝑥2 + 1) = 1

2 log10(𝑥2 + 1)
vi. ln(√ (𝑥+1)3(𝑥−1)

(𝑥+2) ) = 1
2 [3 ln(𝑥 + 1) + ln(𝑥 − 1) − ln(𝑥 + 2)]
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4. Combine these sums and differences of simple logs into one single logarithm:

i. 3 log10(𝑥) + 2 log10(𝑦) − 4 log10(𝑧) = log10 ( 𝑥3𝑦2

𝑧4 )
ii. 2 log10(𝑥 + 𝑦) − 1

2 log10(𝑧) = log10 ( (𝑥+𝑦)2
√𝑧 )

iii. 3 ln(𝑥) + 1
3 ln(𝑦) = ln (𝑥3𝑦 1

3 )
iv. 4 ln(2𝑥 + 𝑦) − 2 ln(𝑧) = ln( (2𝑥+𝑦)4

𝑧2 )

9.4 Re-arranging formula to make a variable the subject
1. For each of the following formulae, change the subject of the equation to the quantity indicated in the

bracket on the right:
i. 𝑡 = 𝑣−𝑢

𝑎
ii. 𝑡 = √ 2𝑠

𝑎

iii. 𝑢 = 𝑠− 1
2 𝑎𝑡2

𝑡 or 𝑠 = 𝑠
𝑡 − 1

2 𝑎𝑡
iv. 𝑎 = 2(𝑠−𝑢𝑡)

𝑡2

v. 𝑠 = 𝑣2−𝑢2
2𝑎

vi. 𝑢 =
√

𝑣2 − 2𝑎𝑠
vii. 𝑥 = ( 𝑦−𝑎

𝑏 )
1
3

viii. ln( 𝑖
5 ) or ln(𝑖) − ln(5)

ix. 𝑡 = − 1
2 ln(𝑖/8) or − 1

2 ln(𝑖) + 1
2 ln(8)

x. 𝑥 = 1
2 (log10 −1)

xi. 𝑥 = 1
3 (log10(𝑦) + 2)

xii. 𝑡 = − 1
𝑘 ln ( 𝑦−𝑐0

𝑎0
)

2. For each of the following, change the subject of the equation to the quantity indicated in the bracket
on the right:

i. 𝑦 = 2−𝑥
3+𝑥 , ⟹ 𝑥 = 2−3𝑦

𝑦+1
ii. 𝑦 = 4+2𝑥

5−𝑥 , ⟹ 𝑥 = 5𝑦−4
𝑦+2

iii. 𝑧 = 𝑥𝑦
𝑥+𝑦 , ⟹ 𝑦 = 𝑥𝑧

𝑥−𝑧
iv. 𝐶 = 𝐶1𝐶2

𝐶1−𝐶2
, ⟹ 𝐶2 = 𝐶𝐶1

𝐶+𝐶1

9.5 Factorizing quadratics
1. Factorize each of the following quadratic expressions:

i. 𝑥2 + 3𝑥 + 2 = (𝑥 + 1)(𝑥 + 2)
ii. 𝑥2 + 5𝑥 + 4 = (𝑥 + 1)(𝑥 + 4)
iii. 𝑥2 + 4𝑥 + 4 = (𝑥 + 2)2

iv. 𝑥2 + 𝑥 − 2 = (𝑥 + 2)(𝑥 − 1)
v. 𝑥2 − 𝑥 − 2 = (𝑥 − 2)(𝑥 + 1)
vi. 𝑥2 + 5𝑥 − 6 = (𝑥 + 6)(𝑥 − 1)
vii. 𝑥2 − 5𝑥 − 6 = (𝑥 − 6)(𝑥 + 1)
viii. 𝑥2 + 𝑥 − 6 = (𝑥 + 3)(𝑥 − 2)
ix. 𝑥2 − 𝑥 − 6 = (𝑥 − 3)(𝑥 + 2)
x. 2𝑥2 + 11𝑥 + 12 = (2𝑥 + 3)(𝑥 + 4)

9.6 Solving equations – variety of learned methods
1. Solve the following equations: where answers are decimals, give accurate to five decimal places

i. 4𝑥 + 5 = 8 ⟹ 𝑥 = 3
4

ii. 10𝑥 − 8 = −12 ⟹ 𝑥 = − 2
5

iii. 6𝑥 + 3 = 2𝑥 − 5 ⟹ 𝑥 = −2
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iv. 3𝑥 − 9 = 5𝑥 + 2 ⟹ 𝑥 = − 11
2

v. 5 + 3𝑥2 = 32 ⟹ 𝑥 = 3 and 𝑥 = −3
vi. 5𝑥3 + 320 = 0 ⟹ 𝑥 = 4
vii. 𝑒𝑥 = 0.75 ⟹ 𝑥 = ln(0.75) = −0.28768
viii. 𝑒4𝑥 = 0.2 ⟹ 𝑥 = 1

4 ln(0.2) = −0.40236
ix. 5𝑒−𝑥 − 8 = 7 ⟹ − ln(3) = −1.09861
x. 4 + 12𝑒−3𝑥 = 13 ⟹ 𝑥 = − 1

3 ln(0.75) = 0.09589
xi. ln(3𝑥) = −2 ⟹ 𝑥 = 1

3 𝑒−2 = 0.04511
xii. 5 ln(2𝑥) + 3 = 0 ⟹ 𝑥 = 1

2 𝑒−0.6 = 0.27441
xiii. 5 − 3 ln(4𝑥) = −10 ⟹ 𝑥 = 1

4 𝑒5 = 37.10329
xiv. ln(6𝑥 + 4) = 0.25 ⟹ 𝑥 = 1

6 (𝑒0.25 − 4) = −0.45266
xv. 10𝑥 = 2.5 ⟹ 𝑥 = log10(2.5) = 0.39794
xvi. 103𝑥−2 = 1.75 ⟹ 𝑥 = 1

3 (log10(1.75) + 2) = 0.74768
xvii. log10(4𝑥) = 0.32 ⟹ 𝑥 = 1

4 100.32 = 0.52232
xviii. log10(5𝑥 + 4) = 0.65 ⟹ 𝑥 = 1

5 (100.65 − 4) = 0.09337
xix. 24𝑥−1 = 5 ⟹ 𝑥 = 1

4 ( log(5)
log(2) + 1) = 0.83048

xx. 32𝑥+4 = 6 ⟹ 𝑥 = 1
2 ( log(6)

log(3) − 4) = −1.18454 any choice of log base is fine.

2. Solve the following quadratic equations by factorization, then repeat using the quadratic formula and
check your answers match.

i. 𝑥2 + 2𝑥 − 15 = (𝑥 + 5)(𝑥 − 3) ⟹ 𝑥 = −5 and 𝑥 = 3
ii. 𝑥2 − 9𝑥 + 20 = (𝑥 − 5)(𝑥 − 4) ⟹ 𝑥 = 4 and 𝑥 = 5
iii. 𝑥2 + 10𝑥 + 25 = (𝑥 + 5)2 ⟹ 𝑥 = −5 (repeated)
iv. 2𝑥2 − 7𝑥 − 4 = (2𝑥 + 1)(𝑥 − 4) ⟹ 𝑥 = − 1

2 and 𝑥 = 4
3. Complete the square on each of these quadratic equations. Then try solving them using the quadratic

formula, what happens?

i. 𝑥2 + 2𝑥 + 2 = (𝑥 + 1)2 + 1. No solution possible.
ii. 𝑥2 + 4𝑥 − 9 = (𝑥 + 2)2 − 13. Solutions are 𝑥 = −2 +

√
13 and 𝑥 = −2 −

√
13.

iii. 𝑥2 + 4𝑥 + 9 = (𝑥 + 2)2 + 5. No solution possible.
iv. 2𝑥2 − 3𝑥 + 4 = 2((𝑥 − 3

4 )2 + 1
4 ) = 2(𝑥 − 3

4 )2 + 1
4 . No solution possible.

In all cases where there was no (real) solution, the number outside the completed square bracket was
positive. This means that if we tried to re-arrange to make 𝑥 the subject we would need to square root
a negative number, which we cannot do. This is because when you square a number the answer is never
negative.

4. Solve the following pairs of simultaneous equations:

i.

4𝑥 + 3𝑦 = 2
2𝑥 − 𝑦 = 16

⟹ 𝑥 = 5, 𝑦 = −6
ii.

5𝑥 + 2𝑦 = 1
4𝑥 + 3𝑦 = −2

⟹ 𝑥 = 1, 𝑦 = −2
iii.

6𝑥 − 2𝑦 = −20
4𝑥 + 5𝑦 = −7

⟹ 𝑥 = −3, 𝑦 = 1
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iv.

8𝑥 − 5𝑦 = 24.5
2𝑥 − 3𝑦 = 10.5

⟹ 𝑥 = 1.5, 𝑦 = −2.5



Chapter 10

Vectors exercises - Solutions

This section contains solutions to the bonus exercises to accompany the Vectors chapter. Each chapter
contained embedded examples and exercises, often with explanations.

These solutions are provided with fewer explanations, generally just with the basic answers provided later.
Of course, you can ask questions of the course lecturer about any problems here too.

10.1 Vector sketching
1. Sketch the following vectors (given in polar format) starting from the specified points:

i. (2, 30∘) starting from (−3, 2).
ii. (5, 30∘) starting from (1, 4).
iii. (0.25, 200∘) starting from (5, 4).
iv. (6, −30∘) starting from (−2, 2).

Figure 10.1: Sketches for question 1

2. Sketch the following vectors (given in the rectangular format) starting from the specified points:

133
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i. ⎛⎜
⎝

3
4
⎞⎟
⎠

starting from (2, 1).

ii. ⎛⎜
⎝

−4
2

⎞⎟
⎠

starting from (2, −4).

iii. ⎛⎜
⎝

6.5
3.5

⎞⎟
⎠

starting from (−4, −4).

iv. ⎛⎜
⎝

−2.5
−4.5

⎞⎟
⎠

starting from (−6, 2).

Figure 10.2: Sketches for question 2

10.2 Vector format conversion
1. Convert the following vectors to rectangular (Cartesian) format without using a calculator (Hint: the

angles are nice):

i. (4, 0∘) ⟶ ⎛⎜
⎝

4
0
⎞⎟
⎠

ii. (8, 90∘) ⟶ ⎛⎜
⎝

0
8
⎞⎟
⎠

iii. (6, 180∘) ⟶ ⎛⎜
⎝

−6
0

⎞⎟
⎠

iv. (5, 270∘) ⟶ ⎛⎜
⎝

0
−5

⎞⎟
⎠
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v. (3, −90∘) ⟶ ⎛⎜
⎝

0
−3

⎞⎟
⎠

vi. (10, , −180∘) ⟶ ⎛⎜
⎝

−10
0

⎞⎟
⎠

2. Convert the following vectors into rectangular (Cartesian) format with the aid of the standard equations
(4.1), and then your calculator.

i. (2, 30∘) ⟶ ⎛⎜
⎝

1.732
1

⎞⎟
⎠

ii. (3, 80∘) ⟶ ⎛⎜
⎝

0.521
2.954

⎞⎟
⎠

iii. (1, 120∘) ⟶ ⎛⎜
⎝

−0.5
0.866

⎞⎟
⎠

iv. (5, 315∘) ⟶ ⎛⎜
⎝

3.536
−3.536

⎞⎟
⎠

v. (4, 200∘) ⟶ ⎛⎜
⎝

−3.759
−1.368

⎞⎟
⎠

vi. (2, −75∘) ⟶ ⎛⎜
⎝

0.518
−1.932

⎞⎟
⎠

3. Convert the following vector to Polar format, without the use of a calculator (Hint: the angles will be
nice)

i. ⎛⎜
⎝

5
0
⎞⎟
⎠

⟶ (5, 0∘)

ii. ⎛⎜
⎝

0
10

⎞⎟
⎠

⟶ (10, 90∘)

iii. ⎛⎜
⎝

−8
0

⎞⎟
⎠

⟶ (8, 180∘)

iv. ⎛⎜
⎝

0
−2

⎞⎟
⎠

⟶ (2, −90∘) or (2, 270∘)

4. Convert the following vectors from rectangular format to Polar format,

i. ⎛⎜
⎝

−3
2

⎞⎟
⎠

⟶ (3.606, 146.310∘)

ii. ⎛⎜
⎝

3
−2

⎞⎟
⎠

⟶ (3.606, −33.690∘)

iii. ⎛⎜
⎝

−4
−3

⎞⎟
⎠

⟶ (5, −143.130∘)

iv. ⎛⎜
⎝

4
3
⎞⎟
⎠

⟶ (5, 36.870∘)

v. ⎛⎜
⎝

−2
1

⎞⎟
⎠

⟶ (2.236, 153.435∘)
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vi. ⎛⎜
⎝

2
−1

⎞⎟
⎠

⟶ (2.236, −26.565∘)

10.3 Vector addition, subtraction and multiplication

1. Given the vectors 𝑣1 = ⎛⎜
⎝

4
−3

⎞⎟
⎠
, 𝑣2 = ⎛⎜

⎝

−2
4

⎞⎟
⎠

and 𝑣3 = ⎛⎜
⎝

−5
−1

⎞⎟
⎠
, determine the following vectors. In cases

(i)-(vi) you may like to sketch the answers graphically too.

i. 𝑣1 + 𝑣2 = ⎛⎜
⎝

2
1
⎞⎟
⎠

ii. 𝑣1 + 𝑣2 + 𝑣3 = ⎛⎜
⎝

−3
0

⎞⎟
⎠

iii. 𝑣1 + (−𝑣2) = ⎛⎜
⎝

6
−7

⎞⎟
⎠

iv. 𝑣1 − 𝑣3 = ⎛⎜
⎝

9
−2

⎞⎟
⎠

v. 2𝑣1 = ⎛⎜
⎝

8
−6

⎞⎟
⎠

vi. 3𝑣2 = ⎛⎜
⎝

−6
12

⎞⎟
⎠

vii. 2𝑣1 + 3𝑣2 = ⎛⎜
⎝

2
6
⎞⎟
⎠

viii. 4𝑣1 − 2𝑣2 + 5𝑣3 = ⎛⎜
⎝

−5
−25

⎞⎟
⎠

10.4 Scalar Products and Relative Positions
1. For each of the following pairs of vectors, determine their lengths |𝑣1|, |𝑣1|, their Scalar Product (𝑣1 ⋅𝑣2),

and the angle between them, 𝜃.

i. 𝑣1 = ⎛⎜
⎝

2
2
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

1
−3

⎞⎟
⎠

|𝑣1| =
√

8, |𝑣2| =
√

10, 𝑣1 ⋅ 𝑣2 = −4, 𝜃 = 116.57∘

ii. 𝑣1 = ⎛⎜
⎝

−4
6

⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

5
−8

⎞⎟
⎠

|𝑣1| =
√

52, |𝑣2| =
√

89, 𝑣1 ⋅ 𝑣2 = −68, 𝜃 = 178.32∘

iii. 𝑣1 = ⎛⎜
⎝

3
4
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

1
0
⎞⎟
⎠

|𝑣1| = 5, |𝑣2| = 1, 𝑣1 ⋅ 𝑣2 = 3, 𝜃 = 53.13∘
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iv. 𝑣1 = ⎛⎜
⎝

3
4
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

0
1
⎞⎟
⎠

|𝑣1| = 5, |𝑣2| = 1, 𝑣1 ⋅ 𝑣2 = 4, 𝜃 = 36.87∘

2. A triangle has vertices 𝐴 = (1, 1), 𝐵 = (4, 2) and 𝐶 = (3, 4).
i. Sketch this triangle on the standard 𝑥𝑦-axes (including the origin).
ii. Determine the relative position vectors ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶.

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 = ⎛⎜
⎝

3
1
⎞⎟
⎠

, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶 = ⎛⎜
⎝

2
3
⎞⎟
⎠

.

iii. By calculation (using a Scalar Product), determine the angle of the triangle at the vertex 𝐴.

𝜃 = 37.9∘

iv. If you have access to a protractor, try measuring the angle in your diagram to see if it agrees.
3. A triangle has vertices 𝐴 = (−2, 1), 𝐵 = (3, 1) and 𝐶 = (1, 5).

i. Draw this triangle accurately (including the origin).
ii. By calculation (using a Scalar Product), determine the angle of the triangle at the vertex 𝐵.

𝜃 = 63.4∘

iii. If you have access to a protractor, try measuring the angle in your diagram to see if it agrees.

10.5 Scalar Product further applications
1. For each of these pairs of vectors, determine whether the pair are orthogonal to each other (i.e. at

right-angles): Vectors are orthogonal if and only if their Scalar Product is zero:

i. 𝑣1 = ⎛⎜
⎝

4
0
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

0
3
⎞⎟
⎠

⟹ 𝑣1 ⋅ 𝑣2 = 0 ⇒ Orthogonal

ii. 𝑣1 = ⎛⎜
⎝

3
2
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

−3
2

⎞⎟
⎠

⟹ 𝑣1 ⋅ 𝑣2 = −5 ⇒ Not orthogonal

iii. 𝑣1 = ⎛⎜
⎝

1
5
⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

−5
1

⎞⎟
⎠

⟹ 𝑣1 ⋅ 𝑣2 = 0 ⇒ Orthogonal

iv. 𝑣1 = ⎛⎜
⎝

15
3

⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

−2
10

⎞⎟
⎠

⟹ 𝑣1 ⋅ 𝑣2 = 0 ⇒ Orthogonal

v. 𝑣1 = ⎛⎜
⎝

10
3

⎞⎟
⎠

, 𝑣2 = ⎛⎜
⎝

−10
33

⎞⎟
⎠

⟹ 𝑣1 ⋅ 𝑣2 = −1 ⇒ Not orthogonal

2. For each of the following forces 𝐹 find the Scalar projection of 𝐹 in the direction of the given vector
𝑑: In each case we need to calculate 𝐹 ⋅ ̂𝑑 where ̂𝑑 is a vector of length 1 in the direction
of 𝑑. In the first three examples ̂𝑑 = 𝑑 is already of length 1. In the final case we need to
divide by its length (which is 5)

i. 𝐹 = ⎛⎜
⎝

5
0
⎞⎟
⎠

, 𝑑 = ⎛⎜
⎝

1/
√

2
1/

√
2
⎞⎟
⎠

⟹ 𝐹 ⋅ ̂𝑑 = 5/
√

2 = 3.536

ii. 𝐹 = ⎛⎜
⎝

4
−3

⎞⎟
⎠

, 𝑑 = ⎛⎜
⎝

0
1
⎞⎟
⎠

⟹ 𝐹 ⋅ ̂𝑑 = −3

iii. 𝐹 = ⎛⎜
⎝

3
−2

⎞⎟
⎠

, 𝑑 = ⎛⎜
⎝

0.6
0.8

⎞⎟
⎠

⟹ 𝐹 ⋅ ̂𝑑 = 0.2
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iv. 𝐹 = ⎛⎜
⎝

2
1
⎞⎟
⎠

, 𝑑 = ⎛⎜
⎝

3
4
⎞⎟
⎠

⟹ 𝐹 ⋅ ̂𝑑 = 1
5 10 = 2

3. For each of the following forces 𝐹 find the work done in moving an object from location 𝑃 to location
𝑄: **In each case we need to calculate 𝐹 ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄

i. 𝐹 = ⎛⎜
⎝

5
1
⎞⎟
⎠

, 𝑃 = (1, 3), 𝑄 = (2, 5) ⇒ 𝐹 ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 = 9.

ii. 𝐹 = ⎛⎜
⎝

−1
−1

⎞⎟
⎠

, 𝑃 = (1, 3), 𝑄 = (−2, −5) ⇒ 𝐹 ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 = 11.

iii. 𝐹 = ⎛⎜
⎝

2
3
⎞⎟
⎠

, 𝑃 = (−6, −4), 𝑄 = (0, 0) ⇒ 𝐹 ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 = 24.

10.6 3-dimensional vectors (mixture of topics)
1. Given the three 3-dimensional vectors

𝑣1 =
⎛⎜⎜⎜⎜⎜
⎝

4
−5
1

⎞⎟⎟⎟⎟⎟
⎠

, 𝑣2 =
⎛⎜⎜⎜⎜⎜
⎝

5
6

−3

⎞⎟⎟⎟⎟⎟
⎠

, 𝑣3 =
⎛⎜⎜⎜⎜⎜
⎝

6
2

−4

⎞⎟⎟⎟⎟⎟
⎠

determine the following:

i. 𝑣1 + 𝑣2 + 𝑣3 =
⎛⎜⎜⎜⎜⎜
⎝

15
3

−6

⎞⎟⎟⎟⎟⎟
⎠

ii. 4𝑣1 + 3𝑣2 − 2𝑣3 =
⎛⎜⎜⎜⎜⎜
⎝

19
−6
3

⎞⎟⎟⎟⎟⎟
⎠

iii. 𝑣1 + (−𝑣3) =
⎛⎜⎜⎜⎜⎜
⎝

−2
−7
−5

⎞⎟⎟⎟⎟⎟
⎠

iv. −2𝑣1 + 𝑣2 + 5𝑣3 =
⎛⎜⎜⎜⎜⎜
⎝

27
26

−25

⎞⎟⎟⎟⎟⎟
⎠

v. 𝑣1 ⋅ 𝑣2 = −13
vi. 𝑣2 ⋅ 𝑣3 = 54

vii. 𝑣1 × 𝑣2 =
⎛⎜⎜⎜⎜⎜
⎝

9
17
49

⎞⎟⎟⎟⎟⎟
⎠

viii. 𝑣2 × 𝑣3 =
⎛⎜⎜⎜⎜⎜
⎝

−18
2

−26

⎞⎟⎟⎟⎟⎟
⎠
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ix. 𝑣3 × 𝑣2 =
⎛⎜⎜⎜⎜⎜
⎝

18
−2
26

⎞⎟⎟⎟⎟⎟
⎠

2. Using the same vectors from the previous question, find the following: (you may use previous answers,
to speed up calculations)

i. The angle between 𝑣1 and 𝑣2 is 𝜃 = 103.87∘.
ii. The angle between 𝑣1 and 𝑣3 is 𝜃 = 78.1∘.
iii. The component/projection of 𝑣1 in the direction of 𝑣2 is −3.153.
iv. The component/projection of 𝑣3 in the direction of 𝑣1 is 1.543.

3. A triangle in 3D has vertices at 𝐴 = (1, 4, 3), 𝐵 = (4, 2, 0) and 𝐶 = (5, 4, 6).
i. Determine the relative position vectors ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶.

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 =
⎛⎜⎜⎜⎜⎜
⎝

3
−2
−3

⎞⎟⎟⎟⎟⎟
⎠

, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶 =
⎛⎜⎜⎜⎜⎜
⎝

4
0
3

⎞⎟⎟⎟⎟⎟
⎠

ii. Determine the angle of the triangle at vertex 𝐴.

𝜃 = 82.65∘

4. A triangle in 3D has vertices at 𝐴 = (−2, 3, −5), 𝐵 = (2, 0, 4) and 𝐶 = (1, 5, 1)
i. Determine the angle of the triangle at vertex 𝐶.

𝜃 = 105.40∘

10.7 3D vector applications

1. A force 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

3
−2
5

⎞⎟⎟⎟⎟⎟
⎠

acts on a particle which moves from point 𝑃 = (1, 4, −1) to point 𝑄 = (−2, 3, 1).

i. Determine the displacement vector 𝑑 of the particle.

𝑑 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 =
⎛⎜⎜⎜⎜⎜
⎝

−3
−1
2

⎞⎟⎟⎟⎟⎟
⎠

ii. Determine the work done by the force.

Work done = 𝐹 ⋅ 𝑑 = 3.

2. A force 𝐹 acts through a point 𝑃 . Given that 𝑃 = (2, 3, −5), 𝑄 = (1, 2, −3) and 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

3
−2
5

⎞⎟⎟⎟⎟⎟
⎠

,

i. Calculate the moment of this force about the point 𝑄. You may want to consult Section 4.14.2.

Moment of force = 𝑀 = 𝑟 × 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

−8
6

−1

⎞⎟⎟⎟⎟⎟
⎠

A moment/torque produces a rotation. The direction of this vector gives the direction of the axis
of that rotation. The length is the strength of the force.



Chapter 11

Matrices exercises - Solutions

This section contains solutions to the bonus exercises to accompany the Introduction to Matrices chapter.
Each chapter contained embedded examples and exercises, often with explanations.

These solutions are provided with fewer explanations, generally just with the basic answers provided later.
Of course, you can ask questions of the course lecturer about any problems here too.

11.1 Matrix algebra
1. Consider the following matrices:

𝐴 = (1 0 −3) , 𝐵 = (4 −1 2) , 𝐶 = ⎛⎜
⎝

1 2
4 3

⎞⎟
⎠

𝐷 = ⎛⎜
⎝

−3 1
6 5

⎞⎟
⎠

, 𝐸 =
⎛⎜⎜⎜⎜⎜
⎝

−2 6 3
1 0 −1
5 8 4

⎞⎟⎟⎟⎟⎟
⎠

, 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

9 0 7
2 −2 0
1 6 5

⎞⎟⎟⎟⎟⎟
⎠

𝐺 =
⎛⎜⎜⎜⎜⎜
⎝

2 6
1 3

−1 5

⎞⎟⎟⎟⎟⎟
⎠

, 𝐻 =
⎛⎜⎜⎜⎜⎜
⎝

0 −6
−1 0
3 8

⎞⎟⎟⎟⎟⎟
⎠

𝐽 =
⎛⎜⎜⎜⎜⎜
⎝

2
−1
4

⎞⎟⎟⎟⎟⎟
⎠

, 𝐾 =
⎛⎜⎜⎜⎜⎜
⎝

−1
2
0

⎞⎟⎟⎟⎟⎟
⎠

i. State the shape of each matrix.
(A) 1-by-3
(B) 1-by-3
(C) 2-by-2
(D) 2-by-2
(E) 3-by-3
(F) 3-by-3
(G) 3-by-2
(H) 3-by-2
(I) 3-by-1
(J) 3-by-1

ii. Determine the following algebraic combinations (not all may be possible!)

140
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a. 𝐴 + 𝐵 = (5 −1 −1)

b. 𝐶 − 𝐷 = ⎛⎜
⎝

4 1
−2 −2

⎞⎟
⎠

c. 𝐸 + 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

7 6 10
3 −2 −1
6 14 9

⎞⎟⎟⎟⎟⎟
⎠

d. 𝐸 − 𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

−11 6 −4
−1 2 −1
4 2 −1

⎞⎟⎟⎟⎟⎟
⎠

e. 2𝐺 + 3𝐻 =
⎛⎜⎜⎜⎜⎜
⎝

4 −6
−1 6
7 34

⎞⎟⎟⎟⎟⎟
⎠

f. 3𝐶 − 𝐷 = ⎛⎜
⎝

6 5
6 4

⎞⎟
⎠

g. 𝐺𝐶 =
⎛⎜⎜⎜⎜⎜
⎝

26 22
13 11
19 13

⎞⎟⎟⎟⎟⎟
⎠

h. 𝐸𝐽 =
⎛⎜⎜⎜⎜⎜
⎝

2
−2
18

⎞⎟⎟⎟⎟⎟
⎠

i. 𝐽𝐸 = Not possible, not correct shapes.

j. 𝐶𝐷 = ⎛⎜
⎝

9 11
6 19

⎞⎟
⎠

k. 𝐷𝐶 = ⎛⎜
⎝

1 −3
26 27

⎞⎟
⎠

l. 𝐸𝐹 =
⎛⎜⎜⎜⎜⎜
⎝

−3 6 1
8 −6 2
65 8 55

⎞⎟⎟⎟⎟⎟
⎠

m. 𝐻𝐸 Not possible, not correct shapes.
n. 𝐴𝐾 = (−1). This one is weird, but it’s a 1-by-1 matrix!

o. 𝐾𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

−1 0 3
2 0 −6
0 0 0

⎞⎟⎟⎟⎟⎟
⎠

. This is extremely weird, every Scalar Product was a product of just

two numbers. You rarely do this kind of product.
2. Simplify the following linear combinations:

i. ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

+ ⎛⎜
⎝

−1 −2
2 1

⎞⎟
⎠

= ⎛⎜
⎝

0 −2
4 2

⎞⎟
⎠

ii. ⎛⎜
⎝

1 3
1
2 −2

⎞⎟
⎠

+ ⎛⎜
⎝

− 1
2 0

3
2 1

⎞⎟
⎠

= ⎛⎜
⎝

1
2 3
2 −1

⎞⎟
⎠
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iii. 3 ⎛⎜
⎝

1 −1
0 2

⎞⎟
⎠

= ⎛⎜
⎝

3 −3
0 6

⎞⎟
⎠

iv. 2 ⎛⎜
⎝

1 4
−1 6

⎞⎟
⎠

+ 3 ⎛⎜
⎝

0 −2
4 1

⎞⎟
⎠

= ⎛⎜
⎝

2 14
10 15

⎞⎟
⎠

3. Calculate the following matrix products:

i. ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎛⎜
⎝

−1 −2
2 1

⎞⎟
⎠

= ⎛⎜
⎝

−1 −2
0 −3

⎞⎟
⎠

ii. ⎛⎜
⎝

1 3
2 1

⎞⎟
⎠

⎛⎜
⎝

1 0 −3
1 2 −2

⎞⎟
⎠

= ⎛⎜
⎝

4 6 −9
3 2 −8

⎞⎟
⎠

iii. (1 1
2 3)

⎛⎜⎜⎜⎜⎜
⎝

1 4
−1 1

2

0 1

⎞⎟⎟⎟⎟⎟
⎠

= ( 1
2

29
4 )

iv. (3 −2 5)
⎛⎜⎜⎜⎜⎜
⎝

2
0
7

⎞⎟⎟⎟⎟⎟
⎠

= (41)

11.2 Matrix properties
1. Calculate the following products:

i. ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎡⎢
⎣

⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎛⎜
⎝

−1 −2
2 1

⎞⎟
⎠

⎤⎥
⎦

= ⎛⎜
⎝

0 −2
4 −2

⎞⎟
⎠

ii. ⎡⎢
⎣

⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎛⎜
⎝

−1 −2
2 1

⎞⎟
⎠

⎤⎥
⎦

⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

= ⎛⎜
⎝

−4 −2
8 2

⎞⎟
⎠

iii. One product was ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

⎛⎜
⎝

0 −2
4 2

⎞⎟
⎠

and the other was ⎛⎜
⎝

0 −2
4 2

⎞⎟
⎠

⎛⎜
⎝

1 0
2 1

⎞⎟
⎠
. Notice that one is

𝐴𝐵 and the other is 𝐵𝐴, the order has been swapped. However, the answers are different. This
illustrates the general rule that if you swap the order of multiplication you get a different answer.
There are special cases where the result is the same but they are rare.

2. Answer the following two questions about squaring matrices:

i. Which of the following matrices can be squared? 𝐴 = ⎛⎜
⎝

1 0
2 1

⎞⎟
⎠

and 𝑀 = ⎛⎜
⎝

1 0 −3
1 2 −2

⎞⎟
⎠

Squaring

means to multiply by itself, so we’re being asked if 𝐴𝐴 and 𝑀𝑀 are allowed. Only 𝐴𝐴 meets the
shape conditions.

ii. In general, considering all possible matrices, which matrices can be squared? In general, it is
hopefully clear from the previous example that only matrices whose number of rows match their
number of columns can be multiplied by themselves, i.e. matrices we call square matrices. i.e. 𝑚-
by-𝑛 matrices where 𝑚 = 𝑛.

3. For the matrix 𝐴 = ⎛⎜
⎝

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

⎞⎟
⎠
,

i. Calculate 𝐴𝑇 and (𝐴𝑇 )𝑇 . 𝐴𝑇 =
⎛⎜⎜⎜⎜⎜
⎝

𝑎 𝑑
𝑏 𝑒
𝑐 𝑓

⎞⎟⎟⎟⎟⎟
⎠

and (𝐴𝑇 )𝑇 = ⎛⎜
⎝

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

⎞⎟
⎠
.
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ii. How does (𝐴𝑇 )𝑇 compare to 𝐴? (𝐴𝑇 )𝑇 = 𝐴 as is always the case for all matrices.

4. Let 𝐴 = ⎛⎜
⎝

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

⎞⎟
⎠

and 𝐵 = ⎛⎜
⎝

𝑢 𝑣 𝑤
𝑥 𝑦 𝑧

⎞⎟
⎠
.

i. Evaluate 𝐴𝑇 + 𝐵𝑇 and (𝐴 + 𝐵)𝑇 . 𝐴𝑇 + 𝐵𝑇 =
⎛⎜⎜⎜⎜⎜
⎝

𝑎 + 𝑢 𝑑 + 𝑥
𝑏 + 𝑣 𝑒 𝑦
𝑐 + 𝑤 𝑓 𝑧

⎞⎟⎟⎟⎟⎟
⎠

ii. Comment on your answer. These two calculations give the same answer. One adds before flipping
the matrix, the other flips them both first then adds them. They both end up in the same place.

11.3 Matrix determinants and inverses
1. Calculate the determinants of each of the following matrices:

i. ⎛⎜
⎝

1 1
0 1

⎞⎟
⎠
, Det = 1 × 1 − 1 × 0 = 1.

ii. ⎛⎜
⎝

3 −2
4 5

⎞⎟
⎠
, Det = 3 × 5 − 4 × (−2) = 23.

iii. ⎛⎜
⎝

6 −3
−4 2

⎞⎟
⎠
, Det = 6 × 2 − (−3) × (−4) = 0

iv.
⎛⎜⎜⎜⎜⎜
⎝

1 1 0
0 1 1
1 0 1

⎞⎟⎟⎟⎟⎟
⎠

, Determinant equals… 1det⎛⎜
⎝

1 1
0 1

⎞⎟
⎠

− 1 det⎛⎜
⎝

0 1
1 1

⎞⎟
⎠

+ 0 det⎛⎜
⎝

0 1
1 0

⎞⎟
⎠

= 2

v.
⎛⎜⎜⎜⎜⎜
⎝

1 2 1
3 2 1
2 3 2

⎞⎟⎟⎟⎟⎟
⎠

, Determinant equals… 1det⎛⎜
⎝

2 1
3 2

⎞⎟
⎠

− 2 det⎛⎜
⎝

3 1
2 2

⎞⎟
⎠

+ 1 det⎛⎜
⎝

3 2
2 3

⎞⎟
⎠

= −2

vi.
⎛⎜⎜⎜⎜⎜
⎝

2 1 1
1 2 2
2 4 4

⎞⎟⎟⎟⎟⎟
⎠

, Determinant equals… 2det⎛⎜
⎝

2 2
4 4

⎞⎟
⎠

− 1 det⎛⎜
⎝

1 2
2 4

⎞⎟
⎠

+ 1 det⎛⎜
⎝

1 2
2 4

⎞⎟
⎠

= 0

2. For each matrix in the previous question, determine its inverse or explain why you know it doesn’t have
an inverse. (You may use a computer for 3-by-3 matrix inverses)

Matrices (c) and (f) have determinants equal to zero. That means these are the ones which cannot be
inverted (i.e. have no inverse). The inverses of the others (a), (b), (d) and (e) are:

⎛⎜
⎝

1 −1
0 1

⎞⎟
⎠

1
23

⎛⎜
⎝

5 2
−4 3

⎞⎟
⎠

1
2

⎛⎜⎜⎜⎜⎜
⎝

1 −1 1
1 1 −1

−1 1 1

⎞⎟⎟⎟⎟⎟
⎠
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1
2

⎛⎜⎜⎜⎜⎜
⎝

−1 1 0
4 0 −2

−5 −1 4

⎞⎟⎟⎟⎟⎟
⎠

3. For the matrix 𝐴 = ⎛⎜
⎝

4 5
2 3

⎞⎟
⎠
, use the standard formula to determine its inverse (written 𝐴−1) and

calculate the two products 𝐴𝐴−1 and 𝐴−1𝐴. Comment on your results. det(𝐴) = 4 × 3 − 5 × 2 =
12 − 10 = 2 ≠ 0 so there is an inverse. And

𝐴−1 = 1
2

⎛⎜
⎝

3 −5
−2 4

⎞⎟
⎠

Both 𝐴𝐴−1 and 𝐴−1𝐴 are equal to 𝐼2 = ⎛⎜
⎝

1 0
0 1

⎞⎟
⎠
. A matrix multiplied by its own inverse (either way

around) always equals an identity matrix, of the right shape.

4. For the matrix 𝐴 = ⎛⎜
⎝

4 1 3
2 1 2

⎞⎟
⎠

calculate the product 𝐴𝐴𝑇 . Can you always multiply a matrix by its

own transpose? 𝐴𝑇 =
⎛⎜⎜⎜⎜⎜
⎝

4 2
1 1
3 2

⎞⎟⎟⎟⎟⎟
⎠

so

𝐴𝐴𝑇 = ⎛⎜
⎝

4 1 3
2 1 2

⎞⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

4 2
1 1
3 2

⎞⎟⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

26 15
15 9

⎞⎟
⎠

Yes! This is always possible, because each row length of 𝐴 matches the column length in 𝐴𝑇 because
they are started life as the same rows!

5. Let 𝐴 = ⎛⎜
⎝

2 5
1 4

⎞⎟
⎠

and 𝐵 = ⎛⎜
⎝

4 −5
0 3

⎞⎟
⎠
.

i. First calculate 𝐴−1 and 𝐵−1.

𝐴−1 = 1
3

⎛⎜
⎝

4 −5
−1 2

⎞⎟
⎠

and 𝐵−1 = 1
12

⎛⎜
⎝

3 5
0 4

⎞⎟
⎠

ii. Next evaluate, by hand, 𝐴𝐵, (𝐴𝐵)−1 and 𝐵−1𝐴−1

𝐴𝐵 = ⎛⎜
⎝

8 5
4 7

⎞⎟
⎠

and so (𝐴𝐵)−1 = 1
36

⎛⎜
⎝

7 −5
−4 8

⎞⎟
⎠

What about 𝐵−1𝐴−1? That turns out to match (𝐴𝐵)−1 exactly.

iii. Comment on whether you were expecting these final two evaluations to be equal.

Yes we were, because one of the always true equations for matrix inverses is as follows:

(𝐴𝐵)−1 = 𝐵−1𝐴−1
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6. Consider the following matrix 𝐴 = ⎛⎜
⎝

1 2
𝑘 3

⎞⎟
⎠

where 𝑘 is a constant.

i. Determine which value(s) of 𝑘 allow 𝐴 to be invertible.

det(𝐴) = 3 − 2𝑘, and the matrix is invertible as long as det(𝐴) ≠ 0. So, as long as 𝑘 ≠ 3
2 .

ii. Calculate the inverse of 𝐴 (note your answer will contain 𝑘)
Assuming 3 − 2𝑘 isn’t zero, i.e. that 𝑘 ≠ 3

2 then

𝐴−1 = 1
3 − 2𝑘

⎛⎜
⎝

3 −2
−𝑘 1

⎞⎟
⎠

.

7. Let 𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

1 −2 1
−3 2 −1
2 −1 0

⎞⎟⎟⎟⎟⎟
⎠

.

i. Calculate the determinant of 𝐴.

det(𝐴) = 2
ii. Find the inverse of 𝐴 (using your computer).

𝐴−1 = − 1
2

⎛⎜⎜⎜⎜⎜
⎝

1 1 0
2 2 2
1 3 4

⎞⎟⎟⎟⎟⎟
⎠

iii. By hand, calculate the matrix products 𝐴𝐴−1 and 𝐴−1𝐴.

Both of these will equal 𝐼3.

iv. Did your results agree with what you were expecting?

Hopefully you realized that the answer was going to be 𝐼3 before you finished the by-hand calcu-
lation. Ideally, before you even started.

8. Given that 𝐷 =
⎛⎜⎜⎜⎜⎜
⎝

2 0 0
0 5 0
0 0 4

⎞⎟⎟⎟⎟⎟
⎠

, find the inverse matrix 𝐷−1 without using a computer.

𝐷−1 =
⎛⎜⎜⎜⎜⎜
⎝

1
2 0 0
0 1

5 0
0 0 1

4

⎞⎟⎟⎟⎟⎟
⎠

The method for this is often called by inspection, because it’s possible to ‘spot’ that this is a matrix
which multiplied by the original to give 𝐼3. Though you probably won’t spot it unless you’ve seen the
pattern before!

9. (Hardest) Let 𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

4 0 9
0 5 + 𝑘 −3
0 2 𝑘

⎞⎟⎟⎟⎟⎟
⎠

be a matrix, where 𝑘 is a constant.

i. Calculate the determinant of 𝐴 (your answer will contain 𝑘).
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det(𝐴) = 4 det⎛⎜
⎝

5 + 𝑘 −3
2 𝑘

⎞⎟
⎠

− 0 det⎛⎜
⎝

0 −3
0 𝑘

⎞⎟
⎠

+ 9 det⎛⎜
⎝

0 5 + 𝑘
0 2

⎞⎟
⎠

But only the first term here isn’t zero, so the answer is det(𝐴) = 4 ((5 + 𝑘) (𝑘) + 6) which simplifies
into

det(𝐴) = 4 (𝑘2 + 5𝑘 + 6) = 4(𝑘 + 2)(𝑘 + 3).

ii. Use your determinant formula to determine all values of 𝑘 when the matrix is invertible.

By factorizing the determinant it becomes easy to see when the matrix will be invertible, as we
just need to solve to find when det(𝐴) = 0 and all the other cases will be invertible. In this case
we can easily spot that 𝑘 = −2 or 𝑘 = −3 both cause non-invertibility. Hence all 𝑘 except for −3
and −2 allow 𝐴 to be inverted.

11.4 Solving simultaneous of equations
1. Consider the following system of simultaneous equations:

2𝑥 − 5𝑦 = 2
3𝑥 − 7𝑦 = 1

i. Express these simultaneous equations in matrix form, i.e. as 𝐴𝑥 = 𝑏, where 𝐴 is a square matrix,
and both 𝑏 and 𝑥 are single column matrices.

⎛⎜
⎝

2 −5
3 −7

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= ⎛⎜
⎝

2
1
⎞⎟
⎠

so to fit with 𝐴𝑥 = 𝑏 we use

𝐴 = ⎛⎜
⎝

2 −5
3 −7

⎞⎟
⎠

, 𝑏 = ⎛⎜
⎝

2
1
⎞⎟
⎠

and, as usual, we use the somewhat awkward notation of 𝑥 = ⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

(Note that are two different

𝑥’s, one the name of a column vector/matrix, 𝑥, and the other the first unknown variable, 𝑥.
ii. Determine the inverse, 𝐴−1, of your matrix 𝐴.

𝐴−1 = ⎛⎜
⎝

−7 5
−3 2

⎞⎟
⎠

iii. Use 𝐴−1 to find the solution to the simultaneous equations.

The solution is always 𝑥 = 𝐴−1𝑏 so

⎛⎜
⎝

𝑥
𝑦
⎞⎟
⎠

= ⎛⎜
⎝

−7 5
−3 2

⎞⎟
⎠

⎛⎜
⎝

2
1
⎞⎟
⎠

= ⎛⎜
⎝

−9
−4

⎞⎟
⎠

so 𝑥 = −9, 𝑦 = −4.
2. A system of equations is given by

2𝑥 − 𝑦 + 3𝑧 = 13
𝑥 − 2𝑦 − 3𝑧 = −4

4𝑥 − 2𝑦 − 3𝑧 = 8
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i. Express these simultaneous equations in the matrix form

𝐴𝑥 = 𝑏.

𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

2 −1 3
1 −2 −3
4 −2 −3

⎞⎟⎟⎟⎟⎟
⎠

𝑥 =
⎛⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟⎟⎟
⎠

, 𝑏 =
⎛⎜⎜⎜⎜⎜
⎝

13
−4
8

⎞⎟⎟⎟⎟⎟
⎠

.

ii. Determine the matrix 𝐴−1 (use a computer, it will exist in this case).

𝐴−1 = 1
27

⎛⎜⎜⎜⎜⎜
⎝

0 −9 9
−9 −18 9
6 0 −3

⎞⎟⎟⎟⎟⎟
⎠

.

iii. Use your result in the previous part to solve this system of equations for 𝑥, 𝑦, 𝑧.
As usual 𝑥 = 𝐴−1𝑏 so

⎛⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟⎟⎟
⎠

= 1
27

⎛⎜⎜⎜⎜⎜
⎝

0 −9 9
−9 −18 9
6 0 −3

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

13
−4
8

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

4
1
2

⎞⎟⎟⎟⎟⎟
⎠

.


	Introduction
	Summary of chapters
	Algebra
	Vectors
	Introduction to Matrices

	Algebra
	Operations and expressions
	Common algebra mistakes
	Division of algebraic expressions
	Exponential Functions and Logarithms
	Operations and their inverses
	Manipulating formulae and solving equations
	Linear equations: additional tips
	Quadratic equations
	Completing the square
	The Quadratic formula
	Solubility of quadratic equations
	Simultaneous linear equations
	Further practice exercises
	Summary of chapter

	Vectors
	Scalars and vectors
	Notation for vectors
	Cartesian/Rectangular notation
	Polar notation
	Converting between Cartesian and Polar notations
	Vector addition and subtraction
	Multiplying a vector by a scalar
	Relative position vectors
	The \underline{i}, \underline{j} notation for vectors
	The Scalar (or Dot) product of two vectors
	Applications of the Scalar Product
	Vectors in more than 2 dimensions
	The Vector Product of two vectors
	Applications of the Vector Product
	Further practice exercises
	Summary of chapter

	Introduction to Matrices
	Terminology
	Algebra operations
	Special matrices, quantities and procedures
	The inverse of a matrix
	Properties of inverse matrices
	How to solve a 2-by-2 linear system using a matrix
	3-by-3 matrices
	Larger matrices
	Summary of chapter

	Algebra exercises
	Expansion of brackets and powers
	Simplifying fractions
	Exponentials and Logarithms
	Re-arranging formula to make a variable the subject
	Factorizing quadratics
	Solving equations – variety of learned methods

	Vectors exercises
	Vector sketching
	Vector format conversion
	Vector addition, subtraction and multiplication
	Scalar Products and Relative Positions
	Scalar Product further applications
	3-dimensional vectors (mixture of topics)
	3D vector applications

	Matrices exercises
	Matrix algebra
	Matrix properties
	Matrix determinants and inverses
	Solving simultaneous of equations

	Algebra exercises – Solutions
	Expansion of brackets and powers
	Simplifying fractions
	Exponentials and Logarithms
	Re-arranging formula to make a variable the subject
	Factorizing quadratics
	Solving equations – variety of learned methods

	Vectors exercises - Solutions
	Vector sketching
	Vector format conversion
	Vector addition, subtraction and multiplication
	Scalar Products and Relative Positions
	Scalar Product further applications
	3-dimensional vectors (mixture of topics)
	3D vector applications

	Matrices exercises - Solutions
	Matrix algebra
	Matrix properties
	Matrix determinants and inverses
	Solving simultaneous of equations


