Q1. (i). Which of the following graphs are connected?
(a).

(b).

c).

(d).

(ii). If a graph is not connected state its connected components.
(iii). Which are simple graphs and which are multigraphs?

Q2. Sketch the following graphs:
(i). 4-regular on 6 vertices
(ii). $\quad K_{5}$
(iii). $\quad C_{6}$
(iv). $\quad K_{6}$
(v). $\quad K_{2,3}$
(vi). $\quad K_{4,4}$.

Q3. (i). Define the terms walk, trail and path on a graph.
(ii). Find a walk, closed walk, trail, closed trail (circuit), path and a closed path (cycle) on the graph below.

Q4. (i). Define the term Euler circuit on a graph and find an Euler circuit on each of the graphs below if one exists. If none exist explain why not.
(ii). Define the term Hamiltonian cycle on a graph and find a Hamiltonian cycle on each of the graphs below if one exists. If none exist explain why not.

Q5. Sketch the undirected graph G defined below and construct an adjacency matrix for G.

$$
\begin{aligned}
G=\{V, E\}=\{\{1,2,3,4,5\}, & \{\{1,2\},\{1,3\},\{1,5\},\{1,5\}, \\
& \{2,3\},\{2,3\},\{3,4\},\{3,5\},\{4,5\}\}\} .
\end{aligned}
$$

Q6. Consider the adjacency matrix

$$
A=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

(i). Sketch the associated undirected graph, G, clearly labelling all the vertices.
(ii). Write down the degree sequence for G.
(iii). Show that the Handshaking Lemma holds for G.
(iv). Is G Eulerian? Justify your answer and give an Euler circuit if appropriate.
(v). Is G Hamiltonian? Justify your answer and give a Hamiltonian cycle if appropriate.
(vi). Removal of an edge from G results in a bipartite graph. Identify which edge should be removed and sketch the resulting graph.
(vii). How many edges need to be added to G to obtain a complete graph? Identify which edges need to be added and sketch the resulting graph.

Q7. Given a graph, G, its complementary graph denoted \bar{G}, is obtained from G by replacing edges with non-edges and non-edges by edges. If G is given by the graph below sketch its complementary graph, \bar{G}.

Q8. A graph, G, is k-regular if all vertices have degree k. Calculate the degree sum for a k-regular graph with n vertices and the number of edges in G.

Q9. In a simple graph, with at least two vertices, there are at least two vertices of the same degree. This result is not true for multigraphs. Sketch a three vertex multigraph with all vertices of different degree.

Q10. Consider the graph, G below. Explain why G does not have a Hamiltonian cycle.

Q11. Consider the graph, G, below,

(i). Is G Eulerian? Either state an Euler circuit on G or explain why G is not Eulerian.
(ii). Is G Hamiltonian? Either state a Hamiltonian cycle on G or explain why G is not Hamiltonian.

Q12. Sketch a simple graph G whose vertices all have even degree but G is not Eulerian.

Q13. Consider the graph G below,

(i). Is G Eulerian? Either state an Euler circuit on G or explain why G is not Eulerian..
(ii). Is G Hamiltonian? Either state a Hamiltonian cycle on G or explain why G is not Hamiltonian.

Q14. Determine whether the complete graphs K_{77} and K_{32} are Eulerian.

Q15. Determine an adjacency matrix and an incidence matrix for the graph shown below,

Q16. An adjacency matrix for an undirected graph, G is given by,

$$
A=\left(\begin{array}{llll}
2 & 1 & 1 & 3 \\
1 & 0 & 2 & 1 \\
1 & 2 & 0 & 1 \\
3 & 1 & 1 & 0
\end{array}\right)
$$

Without drawing G, and using only the matrix A, answer the following:
(i). How many edges does G have?
(ii). How many paths of length 2 join Vertices 1 and 4.

Q17. How many edges does a tree, T, with 5000 vertices have?

Q18. Determine which complete bipartite graphs, $K_{m, n}$ are trees.

Q19. (i). Determine the conditions on r and s that will guarantee that the complete bipartite graph, $K_{r, s}$ will have an Euler circuit.
(ii). How many edges and vertices does the complete bipartite graph $K_{r, s}$ have? Give you answer in terms of r and s.

Q20. Explaining your answer state whether a graph on 7 vertices can have each vertex of degree 5.

Q21. Consider a graph G on 12 vertices where each vertex has degree 7. How many edges does G have? Explain your answer.

Q22. (i) Sketch the digraph

$$
D=\{\{1,2,3,4\},\{\{1,2\},\{1,4\},\{2,3\},\{2,4\},\{3,2\},\{3,4\},\{4,1\}\}\} .
$$

(ii) Determine an adjacency matrix for D.
(iii). Calculate the in-degree and out-degree of each vertex.
(iv). State the Handshaking (Di)Lemma and show that it holds for D.
(v). State what it means for a digraph to be Eulerian.
(vi). Is the digraph, D, Eulerian? Explain your answer.
(vii) Calculate the matrix A^{3} and explain the meaning of the entry at position $(1,2)$ in A^{3}.

Q23. Consider the following adjacency matrix, A, for a digraph, D

$$
A=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Without drawing D, and using only the matrix A answer the following:
(i). Calculate the in-degree and out-degree of each vertex.
(ii). Determine whether D is Eulerian. Explain your answer.
(iii). How many arcs (edges) are there in D ? Explain your answer.

Q24. Determine an adjacency matrix for the digraph below.

Q25. Consider the following adjacency matrix

$$
A=\begin{aligned}
& \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right) .
$$

(i). Sketch the associated digraph, D, clearly labelling the vertices.
(ii). Determine whether the digraph is Eulerian and state an Euler circuit if one exists.

Q26. (i). In a cycle graph, C_{n}, state how the number of vertices is related to the number of edges.
(ii). Sketch the cycle graphs C_{5} and C_{6}.

Q27. Consider the following multigraph, G.

(i). Write down an adjacency matrix for G. (Note that for an undirected graph we define a loop to contribute 2 to the degree of a vertex).
(ii). Interpret the row sum of the entries in row j of the adjacency matrix.
(iii). What is the degree of Vertex 3? Explain your answer.

Q28. (i) Sketch the complete graph K_{5} and label the vertices P, Q, R, S and T.
(ii). Construct an adjacency matrix for K_{5}.
(iii). Describe an adjacency matrix for the general complete graph, K_{n}.
(iv). Interpret the row sum of the entries in row j of the adjacency matrix for K_{n}.
(v). How many l's are contained in the adjacency matrix for a general K_{n} ?
(vi). Interpret the result in part (v).

Q29. Let $A=\{1,2,3,4,5,6\}$ and define the relation R as follows,

$$
\begin{aligned}
& R=\{(1,1),(1,4),(1,5),(2,3),(2,4),(2,5), \\
& \\
& (3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,5)\} \text { on } A .
\end{aligned}
$$

(i). \quad Sketch the digraph, D, that represents R.
(ii). Determine an adjacency matrix for R.

Q30. (i). Sketch the directed (digraph) and undirected graphs corresponding to the following adjacency matrix.

$$
A=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) .
$$

(ii). For the undirected graph determine the degree of each vertex. Then for the digraph determine the in-degree and out-degree of each vertex.
(iii). For both undirected and directed graphs determine whether they are Eulerian and/or Hamiltonian.

Q31. Explain why it is not possible to have the following adjacency matrix for a simple graph, (a simple graph is undirected, unweighted and has no loops or parallel edges),

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Q32. Determine whether the two graphs below are isomorphic.

Q33. What is the chromatic number of a cycle graph, C_{n} ?

