
Computing – Maths Summer School

Dr David Hodge, School of Computing, Engineering and Built Environment

August 2023

Contents

1 Introduction 2

2 An Introduction to Graph Theory 3
2.1 Introduction . 3
2.2 Definitions . 4
2.3 The Handshaking Lemma . 9
2.4 Connected Graphs . 10
2.5 Common Graphs . 11
2.6 Walks, Trails & Paths . 19
2.7 Eulerian and Hamiltonian Graphs . 23
2.8 Digraphs (Directed Graphs) . 28
2.9 Underlying Graph . 30
2.10 Adjacency Matrices . 32
2.11 Adjacency Matrices & Paths . 41
2.12 Weighted Graphs . 43
2.13 Isomorphisms between Graphs . 45
2.14 Vertex (Graph) Colouring . 48
2.15 Summary . 50

1

Chapter 1

Introduction

This document contains the notes for the Graph Theory topic in the Maths Summer
School for Computing direct entry to Year 3. A full set of notes in PDF format can
be obtained here: PDF version. This PDF version will may not contain all embedded
elements (videos and interactives) but links will be provided where they occur.

To help draw your attention to various key elements in the notes you will find some
colour-coded boxes. Everything in boxes is likely to be particularly useful to read.

Though if interested you will find the content is approximately:

Laws and Rules

Examples

Warnings

Comments

Definitions

Practice questions

The notes also contain superscripts like this one1. Their purpose is generally to provide
further information which while strictly not necessary2 might prove useful if you want a
further explanation of a particular point. Mostly they provide a little more context or
example to clarify something in a sentence.

There are some accompanying exercises to attempt which will be made available sepa-
rately, they can be found currently only in PDF format here: Bonus Exercise Sheet.

1you found it!
2hence it’s hidden away

2

Chapter 2

An Introduction to Graph
Theory

2.1 Introduction
In recent years graph theory has become established as an important area of mathematics
and computer science. The origins of graph theory however can be traced back to Swiss
mathematician Leonhard Euler and his work on the Königsberg bridges problem (1735),
shown schematically in Figure 1.

Figure 2.1: Bridges of Königsberg

Königsberg was a city in 18th century Germany (it is now called Kaliningrad and is a
Russian semi-exclave) through which the river Pregel flowed. The city was built on both
banks of the river and on two large islands in the middle of the river. Seven bridges
were constructed so that the city’s inhabitants could travel between the four parts of the
city; labelled 𝑃 , 𝑄, 𝑅 and 𝑆 in the diagram. The people wondered whether or not it
was possible for someone to walk around the city in such a way that each bridge was
crossed exactly once with the person ending up at their starting point. All attempts
to do so ended in failure. In 1735 however Euler presented a solution to the problem by
showing that it was impossible to perform such a journey. Euler reasoned that anyone

3

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 4

standing on a land mass would need a way to get on and off. Therefore each land mass
would require an even number of bridges. In Königsberg each land mass had an odd
number of bridges explaining why all seven bridges could not be crossed without crossing
one more than once. In formulating his solution Euler simplified the bridge problem by
representing each land mass as a point and each bridge as a line as shown in Figure 2.2,
leading to the introduction of graph theory and the concept of an Eulerian graph. A
closely related problem showed that if the journey started at one land mass and ended at
another, crossing each bridge exactly once, then only those two land masses could have
an odd number of bridges.

Two other well-known problems from graph theory are:

• Graph Colouring Problem: How many colours do we need to colour a map so
that every pair of countries with a shared border have different colours?

• Travelling Salesman Problem: Given a map of several cities and the roads
between them, what is the shortest route for a travelling salesman to visit (pass
through) each of the cities exactly once?

Some of the applications of graph theory include:

• communication network design
• planning airline flight routes
• using GPS to find the shortest path between two points
• design of electrical circuits
• modelling of the World Wide Web.

2.2 Definitions
The Königsberg bridge problem can be represented diagramatically by means of a set of
points and lines. The points 𝑃 , 𝑄, 𝑅 and 𝑆 are called vertices, the lines are called edges,
and the whole diagram is called a graph.

P

S

R

Q

Figure 2.2: Graphical representation of the Königsberg bridge problem

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 5

2.2.1 Vertices and Edges

(Very formal definition)
A graph, 𝐺, is a mathematical structure which consists of:

• a vertex set 𝑉 = 𝑉 (𝐺) whose elements are called vertices of 𝐺a.
• an edge set 𝐸 = 𝐸(𝐺) of unorderedb pairs of distinct vertices called edges of

𝐺. Note that 𝐸 is actually a multiset in that some unordered pairs can be
repeated to represent more than one edge joining the same two vertices.

• a relation that associates with each edge two vertices, which are not neces-
sarily distinct, called its endpoints.

aa list of the vertices and their names
bmeaning: the order doesn’t matter

Such a graph is denoted 𝐺 = {𝑉 (𝐺), 𝐸(𝐺)}, or just simply 𝐺 = {𝑉 , 𝐸}.

Example 1
Consider the graph 𝐺 shown in the diagram below.

1

2

3

4

d e

f

h g

Figure 2.3: Graph with four vertices and five edges

The set 𝑉 consists of the four vertices, 1, 2, 3 and 4, i.e.

𝑉 (𝐺) = {1, 2, 3, 4} .

The set 𝐸 consists of the five edges,

𝑑 = {1, 2} , 𝑒 = {1, 4} , 𝑓 = {2, 4} , 𝑔 = {3, 4} , ℎ = {2, 3}

i.e. 𝐸(𝐺) = {𝑑, 𝑒, 𝑓, 𝑔, ℎ} .
Hence,

𝐺 = {𝑉 (𝐺), 𝐸(𝐺)} = {{1, 2, 3, 4} , {𝑑, 𝑒, 𝑓, 𝑔, ℎ}}
Each edge is associated with two vertices called its endpoints.
For example, in Figure 2.4, vertices 1 and 2 are the endpoints of 𝑑 and 𝑑 is said
to connect vertices 1 and 2.

An edge-endpoint function on a graph 𝐺 defines a correspondence between edges and their
endpoints.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 6

Example 2
The edge-endpoint function for the graph in Figure 3 is given in the following
table:

Edge Endpoints

d { 1, 2 }

𝑒 { 1, 4 }

f { 2, 4 }

g { 3, 4 }

𝐻 { 2, 3 }

Now for a couple of new definitions:

Definition of undirected
An undirected graph is a graph in which the edges have no orientationa. Hence,
in an undirected graph the edge set is composed of unordered vertex pairsb. In
Figure 2.4 for example, the edge {1, 2} is considered identical to the edge {2, 1}.
This is the principle of unorderedness, the order doesn’t matter.
See later for the definition of directed.

adirection
bundirected means the edges have no arrows on them

Definition of adjacent and incident
If 𝑋 and 𝑌 are vertices of a graph, 𝐺, then 𝑋 and 𝑌 are said to be adjacent if
they are joined by an edge (or more than one edge).
An edge in a graph that joins two vertices is said to be incident to both vertices.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 7

Example 3
We start by redrawing Figure 2.4:

1

2

3

4

d e

f

h g

Figure 2.4: Graph with four vertices and five edges

we have the following adjacent vertices:
• vertices 1 and 2 are adjacent
• vertices 1 and 4 are adjacent
• vertices 2 and 3 are adjacent
• vertices 2 and 4 are adjacent
• vertices 3 and 4 are adjacent

The edges that are incident with pairs of vertices as follows:
• edge d is incident to vertices 1 and 2
• edge 𝑒 is incident to vertices 1 and 4
• edge f is incident to vertices 2 and 4
• edge g is incident to vertices 3 and 4
• edge 𝐻 is incident to vertices 2 and 3

Definition of parallel edges
Two edges connecting the same vertices are called multiple or parallel edges.

These notes are slightly unusual in consider parallel edges at this stage. Many
authors do not allow parallel edged and reserve their study for later. In such texts
graphs which allow more than one edge to join a pair of vertices are instead called
multigraphs.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 8

Example 4
In Figure 2.5 edges 𝑓 and 𝑔 are parallel edges:

1

2

3

4

d e

h

f

g

Figure 2.5: A graph containing parallel edges

Now for some final definitions before we can first start to discuss properties of graphs.

Definitions of order, size and degree
The order of a graph, 𝐺, denoted |𝑉 (𝐺)|, is the number of vertices contained in
𝐺.
In Figure 2.5, |𝑉 (𝐺)| = 4.
The size of a graph, 𝐺, denoted |𝐸(𝐺)|, is the number of edges contained in 𝐺.
In Figure 2.5, |𝐸(𝐺)| = 5.
The degree of a vertex 𝑋, written 𝑑𝑒𝑔(𝑋), is the number of edges in 𝐺 that are
incident with 𝑋.
In Figure 2.5, 𝑑𝑒𝑔(1) = 2, 𝑑𝑒𝑔(2) = 2, 𝑑𝑒𝑔(3) = 3 and 𝑑𝑒𝑔(4) = 3.
Any vertex of degree zero is called an isolated vertex and a vertex of degree one is
an end-vertexa.

awhen we discuss trees, it’s also called a leaf

Example 5
In the graph below vertex 5 is an isolated vertex and vertex 3 is an end-vertex.

1

2

3

45

d

e

f

g

Figure 2.6: A Graph containing an isolated vertex

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 9

2.3 The Handshaking Lemma

Definition of odd and even vertices
A vertex is said to be even or odd according to whether its degree is an even or
odd number.
So in Figure 2.4, vertices 2 and 4 are odd while vertices 1 and 3 are even.
And in Figure 2.6, vertices 1, 2 and 5 are even (with degrees 2, 2, 0 respectively),
and vertices 3 and 4 are odd.

If the degrees of all the vertices in a graph, 𝐺, are summed then the result is an even
number. Furthermore, this value is twice the number of edges, as each edge contributes 2
to the total degree sum. This result is important enough to be called a lemma, and given
a name.

The Handshaking Lemma
In any undirected graph the sum of the vertex degrees is equal to twice the number
of edges, i.e.

∑
𝑋∈𝑉 (𝐺)

𝑑𝑒𝑔(𝑋) = 2 |𝐸(𝐺)|

Proof : In a graph 𝐺 an arbitrary edge {𝑋, 𝑌 } contributes 1 to 𝑑𝑒𝑔(𝑋) and 1
to 𝑑𝑒𝑔(𝑌). Hence the degree sum for the graph is even and twice the number of
edges.

A corollary of the Handshaking Lemma states that the number of odd vertices in a
graph must be even. So, for example, we cannot have a graph with 5 even vertices
and 5 odd vertices as the degree sum would be an odd number, contradicting the
Handshaking Lemma.

So having defined the degree of a vertex it now turns out that it can be useful to inspect
the full list of degrees of a graph to check we haven’t made an error and to get a first idea
of what sort of graph it is.

Definition of degree sequence

The degree sequence of an undirected graph 𝐺 is a bracketed list of the degrees of all the
vertices written in ascending order with repetition as necessary.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 10

Example 6
The degree sequence of the graph in the diagram below is (1, 2, 2, 3, 4).

A

B

C

D

E

Figure 2.7: A graph to illustrate degree sequence

Note that some texts define the degree sequence of a graph as the degrees of the vertices
written in descending order with repetition as necessary. In the above case we would have
(4, 3, 2, 2, 1).

2.4 Connected Graphs
We begin with a definition:

A graph is said to be connected if it cannot be expressed as the union of two
separated graphs. If a graph is not connected it is said to be disconnected.

This is not a very helpful definition but at least gives the starting idea. We will later
also define connected (in a totally equivalent way) as a graph where you can get from any
vertex to any other vertex by walking along the edges.

The graph on the left below is connected since it is “in one piece” while the graph on
the right is disconnected as it contains two distinct components. See Section 4 for an
alternative definition of connected.

A

B

C

D

E

P

Q

R

S

T

Figure 2.8: Two graphs, each inside a dotted rectangle

When discussing connectedness we sometimes describe a vertex as a cut-vertex or cut-
point, to mean that complete removal of that vertex (and all edges incident to it) would
leave the remaining graph disconnected.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 11

An edge whose removal would leave to a disconnected graph is known as a cut-edge or
bridge.

Example 7 Consider the following graph:

1 2

34

5

6

7

8

Figure 2.9: A graph to illustrate cut-vertices and cut-edges

Removal of Vertex 2 would disconnect the graph, so Vertex 2 is known as a cut-
vertex. The resulting graph is shown below in Figure 2.10.
Similarly the edge {2, 6} is a cut-edge (or bridge) because it’s removal would also
disconnect the graph. However, in this case the new disconnected graph would
contain more edges than Figure 2.10 because the edges {1, 2}, {2, 3} and {2, 4}
are not being removed.

1

34

5

6

7

8

Figure 2.10: Figurereffig:exuncutgraph with Vertex 2 removed

2.5 Common Graphs
In this section we briefly look at different types of common graphs, and common graph
properties. Until we reach Section 2.5.6 we shall outlaw the use of parallel edges, so any
two vertices are either joined by a single edge, or they are not joined at all.

2.5.1 Regular Graphs

A graph 𝐺 is called regular if all vertices of 𝐺 have the same degree. A regular
graph where all vertices have degree 𝑘 is referred to as a 𝑘-regular graph.

We can dive straight into some examples:

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 12

Example 8

Figure 2.11: A 0-regular graph

Figure 2.12: A 1-regular graph

Figure 2.13: Two 2-regular graphs

Practice
Sketch a 2-regular graph on 5 vertices.

i. The Handshaking Lemma tells us that the total degree of any graph is an
even number, i.e. twice the number of edges. Hence, it is impossible to
construct a 𝑘-regular graph, where 𝑘 is odd, on an odd number of vertices.

For example, we cannot have a 3-regular graph on 5 vertices as this would give a
degree sum of 15, violating the Handshaking Lemma.

ii. A 0-regular graph is called an empty graph.
iii. Cycle graphs (see Section 2.5.3) are 2-regular graphs. Also called loops or

bands.
iv. 3-regular graphs are sometimes called cubic graphs.

Practice
There is only one 3-regular graph on 4 vertices. Can you sketch it?
There are two 3-regular graphs on 6 vertices. Can you sketch them?
There is no 3-regular graphs on 7 vertices. Why?

2.5.2 Complete Graphs
First the definition:

A complete graph, denoted 𝐾𝑛, is a graph with 𝑛 vertices all of which are adjacent
to each other.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 13

Figure 2.14: Complete graphs on 2, 3, 4, 5, 6 and 7 vertices. Courtesy of Wolfram.

The complete graph 𝐾𝑛 is regular and each of the 𝑛 vertices has degree exactly 𝑛 − 1.
Hence the sum of the degrees is also easy to calculate, it is 𝑛(𝑛 − 1), and so by the
Handshaking Lemma the number of edges is 𝐾𝑛 is, 𝑛(𝑛−1)

2 .

Practice
Check that the two properties stated above hold for the complete graphs shown.

2.5.3 Cycle Graphs
Now for a very popular and useful type of graph for modelling, the cycle graph. But first
we shall define the noun cycle in a different way.

A cycle on a graph starts at any vertex, travels through the graph along edges
without repeating vertices or edges before ending on the start vertex. In Figure
2.7, BAEB and AEDBA are both cycles while AEDBEA is not a cycle since the
vertex E is repeated.
A cycle graph, denoted 𝐶𝑛, is a graph on 𝑛 vertices, {𝑣0, 𝑣1, . . ., 𝑣𝑛−1}, with
exactly these 𝑛 edges

{𝑣0, 𝑣1} , {𝑣1, 𝑣2} , . . ., {𝑣𝑛−1, 𝑣0} .

i.e.𝐶𝑛 contains a single cycle through all the vertices. The resemblance to a loop or rubber
band means these are often called loops or bands.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 14

Example 9

Figure 2.15: 𝐶1

Figure 2.16: 𝐶2

Figure 2.17: 𝐶3

Figure 2.18: 𝐶4

Figure 2.19: 𝐶5

The first two cycle graphs here are a little silly, and are not often discussed as they contain
a self-loop and parallel edges, respectively.

In general a graph that contains no loops or parallel edges is called a simple graph.

You may also note that in every cycle graph, every vertex has degree 2 (as long as we treat
𝐶1 as having degree 2 as well).

2.5.4 Bipartite Graphs
Bipartite graphs are much easy to understand from pictures than from the formal defini-
tion, but we should at least start with the definition.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 15

A bipartite graph, 𝐺(𝑉) is a graph whose vertices can be partitioned into two
disjoint subsets 𝑉1 and 𝑉2, where there are no edges joining vertices that are in
the same subset. A vertex in one of the subsets may be joined to all, some, or
none of the vertices in the other subset – see the diagrams below.
If the sets 𝑉1 and 𝑉2 are explicitly known we sometimes write 𝐺(𝑉) = 𝐺(𝑉1, 𝑉2)).

In the case of a bipartite graph where every vertex of 𝑉1 is joined to every vertex of
𝑉2 then 𝐺 is called a complete bipartite graph and is usually denoted 𝐾𝑟,𝑠. Where
𝑟 and 𝑠 are the number of vertices in 𝑉1 and 𝑉2 respectively.

A bipartite graph is usually shown with the two subsets as top and bottom rows of vertices
or with the two subsets as left and right columns of vertices like in Figures 2.20 and 2.21.

V1

V2

A B

C D E F G

Figure 2.20: A bipartite graph

V1

V2

A B

C D E F G

Figure 2.21: Another bipartite graph

Figure 2.21 is the complete bipartite graph, 𝐾2,5 with 2 + 5 = 7 vertices and 2 × 5 = 10
edges. In general, a complete bipartite graph 𝐾𝑟,𝑠 has 𝑟 + 𝑠 vertices and 𝑟 × 𝑠 edges.

We can think about the topic of regularity in the context of bipartite graphs too. A
complete bipartite graph 𝐾𝑟,𝑠 is regular1 if and only if 𝑟 = 𝑠. The complete bipartite
graph 𝐾3,3 shown below is regular as each vertex has degree 3.

1remember this means all vertices have the same degree

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 16

A B C

D E F

Figure 2.22: The complete bipartite graph 𝐾3,3

A complete bipartite graph of the form 𝐾1,𝑠 is called a star graph and 𝐾1,4is shown below.

Figure 2.23: The star graph 𝐾1,4

Recall that the locations of the vertices in a diagram of a graph are not fixed. As long
as the edges are maintained the vertices can be re-arranged to make the graph easier
to understand. To this end identifying that a graph is bipartite can allow a much easier
diagram representation, from which the edge connections are simpler to understand. Here
is a nice example of the following nice idea.

If all the vertices of a graph can be coloured with two colours in such a way that no
two identically coloured vertices are joined by an edge, then the graph is bipartite.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 17

Example 10

P Q

RS

T U

VW

Figure 2.24: A graph on eight vertices, with four highlighted.

The eight vertices in the first image here can be grouped as 𝑉1 = {𝑃 , 𝑅, 𝑈, 𝑊}
and 𝑉2 = {𝑄, 𝑆, 𝑇 , 𝑉 } and then re-arranged to form the following image:

P

Q

R

S T

U

V

W

Figure 2.25: The same graph as Figurereffig:exMorris but with vertices moved.

It is now easy to see that the graph is actually just a 3-regular bipartite graph.

Having now seen this idea of moving the vertices around to draw the same graph differently
we can introduce a definition we will return to much later, in Section 2.13.

Two graphs with the same number of vertices and edges, with their edges connected
in the same way are said to be isomorphic.

It is easy to see that with this definition, that if two graphs have different degree sequences
then they must be connected differently, and they are not isopmorphic.

2.5.5 Tree Graphs

A connected graph which contains no cycles in called a tree.
A collection of separate trees (including the case of just one tree!) is called a forest.

This means a forest is actually just any graph with no cycles. Note that a connected
graph on 𝑛 vertices has fewest edges when it is a tree2 (as it has no cycles) and most
edges when it is a complete graph. Below is a forest with three components.

2this is an alternative definition for tree if you prefer it

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 18

Figure 2.26: Three trees, or one forest.

In Figure 2.26, if one edge were added to connect the first tree to the second tree, and
another edge from the second tree to the third tree then one large tree would be formed.

There are in fact a few different, but completely equivalent, ways to define what we mean
by a tree. Here is a theorem which summarises the options.

Tree equivalence theorem
Let 𝑇 be a graph with 𝑛 > 1 vertices. The following statements are equivalent:

• 𝑇 is a tree.
• 𝑇 is cycle-free and has 𝑛 – 1 edges.
• 𝑇 is connected and has 𝑛 – 1 edges.
• 𝑇 is connected and contains no cycles.
• 𝑇 is connected and each edge is a bridge.
• Any two vertices of 𝑇 are connected by exactly one path.
• 𝑇 contains no cycles, but the addition of any new edge creates exactly one

cycle.

You are free to use any of these definitions when working with trees, as long as you state
which one you are using.

Look through the equivalent definitions above and see if you can see why a tree
with 𝑛 vertices must have 𝑛 − 1 edges under each definition.

2.5.6 Multigraphs
Figure 2.27 shows the graph 𝐺 = {𝑉 , 𝐸} where

𝑉 = {𝐴, 𝐵, 𝐶, 𝐷},

and

𝐸 = {{𝐴, 𝐵}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}, {𝐶, 𝐷}, {𝐷, 𝐷}}.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 19

A

B

C

D

Figure 2.27: An example of a multigraph

A multigraph is a graph that allows the existence of loops and parallel (multiple)
edges. Note that not all texts allow multigraphs to have loops and in the case
when graphs include loops some authors call them pseudographs.
We shall refer to a graph with parallel edges and/or loops as a multigraph. We
study them because when using graphs to model computer networks it is frequently
useful to be able to use such loops.
A loop is an edge that links a vertex to itself. In Figure 2.27 the edge {D, D} is a
loop and connects vertex D to itself.
If two vertices are joined by more than one edge then these edges are called parallel
edges. In Figure 2.27 the two identical edges {𝐶, 𝐷} are parallel edges.

Having now defined loops and parallel edges we should make a small note about their
implications for certain definitions introduced earlier, in particular how they impact upon
the degrees of vertices. We do this to make certain natural results and theorems to apply
in all cases.

We define a loop to contribute 2 to the degree of the vertex at which it resides, this
means the Handshaking Lemma holds for multigraphs.
Similarly parallel edges count separately when calculating vertex degrees, hence
vertex 𝐶 has a degree of 3.
In Figure 2.27, Vertex D therefore has degree 5. The degree sum of the graph
is 1 + 3 + 3 + 5 = 12 which is twice the number of edges as required by the
Handshaking Lemma.

As a final warning some authors use the word multigraph to allow parallel edges
but still outlaw loops.

2.6 Walks, Trails & Paths
We begin a new section now, after having discussed a range of standard graphs and their
properties we can now discuss things you do with graphs. Once a graph is used to model
some real world situation we care about questions to can ask about the graph which may
be of real-world use to us. A number of very popular questions about graphs concern
how well different vertices are connected to each other, and how easy it is to traverse the
entire graph while walking around the edges. To this end we will now introduce three
more pieces of terminology.

Warning: When first reading these terms they often sound very similar, but they
are in fact describing distinct things.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 20

2.6.1 Walks

A walk of length 𝑘 on a graph 𝐺 is an alternating sequence of vertices (𝑣𝑖) and
edges (𝑒𝑖):

𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2, 𝑒3, … , 𝑒𝑘, 𝑣𝑘

where 𝑣𝑖 and 𝑣𝑖+1 are the ends of the edge 𝑒𝑖+1, e.g. 𝑒2 joins 𝑣1 and 𝑣2.
Note that a walk of length 𝑘 mentions 𝑘 + 1 vertex names and 𝑘 edges.
So the length of a walk is actually the number of edges in the walk not the number
of visits to vertices.

For convenience, and ease of reading, we normally omit the edges used on a walk and just
list the vertices so that the walk given above is written as

𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘−1, 𝑣𝑘.

Example 11
A valid walk on the graph in Figure 2.28 is 1, 5, 4, 3, 7, 1, 6 and has length 𝐿 = 6.

1

2

34

5

6

7

Figure 2.28: A graph to illustrate walks

Note

A walk can repeat vertices and repeat edges. There are no limitations on what a walk
can do, beyond being forced to follow edges present.

A walk is said to be closed if its first and last vertices are the same, i.e. 𝑣0 = 𝑣𝑘.

A closed walk, of length 8, on Figure 2.28 is given by: 1, 5, 4, 3, 7, 1, 6, 5, 1.

2.6.2 Trails

A trail is a walk where all edges used are distinct, but vertices may be repeated.

So the rules to call something a trail are more restrictive than for a walk, and note that
a trail is always a walk. It is just one where never uses the same edge twice during the
*walk.

An example of a trail on Figure 2.28 would be: 1, 5, 4, 3, 7, 1, 6, 5.
In perfect symmetry with our definition from walks, we can also define closed for trails.

A trail is closed if the walk it describes is closed, i.e. it starts and ends at the same
vertex.
We invent a new word for a closed trail, we call it a circuit.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 21

So, an example circuit on Figure 2.28 is given by: 1, 2, 3, 1, 5, 4, 3, 7, 1. Note that no
edges are repeated but we are allowed to repeat vertices.

2.6.3 Paths
Finally the most restricted walk will be called a path.

A path is a trail where all vertices used are distinct.
Note that distinct vertex visits means that the edges used are bound to be distint
too. This means that actually we could alternatively say:
A path is a walk where all edges and all vertices are distinct.

Unsurprisingly we will also use the adjective closed for paths as well, to describe paths
which return to their starting vertex.

Note that we need to slightly modify our definition of a path when discussing closed
paths. A path is allowed to start and end at the same vertex (this doesn’t count
as visiting the vertex twice as we never actually visit it to start with).

An example of a path on Figure 2.28 is given by: 1, 5, 4, 3, 7.

A closed path is called a cycle.
A cycle on Figure 2.28 is given by: 1, 2, 3, 4, 5, 1. Note that no vertices or edges
are repeated.

2.6.4 Interactions
Therefore, all paths are trails and all trails are walks.

We can also use the word open to mean the opposite of closed, i.e. not ending and starting
at the same vertex.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 22

Figure 2.29: An illustration of the overlap between walks, trails, paths, closed and open.
Courtesy of mathspace.co

The information given above can be summarised in the following table:

Repeated
Vertices
allowed?

Repeated
Edge(s)
allowed?

Open Closed Name

Yes Yes Yes Open Walk

Yes Yes Yes Closed Walk

Yes No Yes Trail

Yes No Yes Circuit (Closed Trail)

No No Yes Path

No No Yes Cycle (Closed Path)

Now that we have defined the term path we can provide an alternative definition, to that
given Section 2.4, for a graph to be connected.

Alternative definition of connected

A graph is connected if given any two vertices 𝑣𝑖 and 𝑣𝑗 there is a walk3 from 𝑣𝑖 to 𝑣𝑗.

Returning to the example in Section 2.4, reproduced below for completeness, there is
clearly a path between all the vertices in the graph on the left and so it is connected.

3could also use trail or path here, they all have the same implication!

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 23

However, in the graph on the right we are unable to, for example, find a path from vertex
S to vertex P and so the graph is disconnected.

A

B

C

D

E

P

Q

R

S

T

Figure 2.30: Two graphs, each inside a dotted rectangle

2.7 Eulerian and Hamiltonian Graphs
This section considers special ways of traversing graphs. Examples of graph traversal
problems are the Königsberg bridges and Travelling Salesman problems.

2.7.1 Eulerian Graphs

An Euler circuit on a graph, 𝐺, is a circuit (closed trail) that uses every edge of
𝐺 exactly once. Note that we are allowed to use the same vertex multiple times,
but we can only use each edge once.
A graph is Eulerian if it has an Euler circuit.

An Euler trail through a graph, 𝐺 is an open trail that passes exactly once through
each edge of 𝐺.
We say that 𝐺 is semi-Eulerian if it has an Euler trail. Note that every Eulerian
graph is semi-Eulerian.

It is worth taking a moment to notice the difference between Eulerian and semi-
Eulerian, i.e the different between an Euler circuit and an Euler trail. You are
recommended to look back at Figure 2.29 to identify what makes a trail also a
circuit, i.e. it is closed.
Note the careful wording of the definitions. Since any circuit is always a traila,
saying a graph is Eulerian means it is bound to be also semi-Eulerian.
However, if all trails which visit all the edges must start and end at different
vertices then the graph is only semi-Eulerian and not Eulerian. Overall, to say a
graph is semi-Eulerian is a less demanding statement than to say it is Eulerian.

ajust one that starts and ends at the same vertex

Eulerian even-degree graph theorem
Let 𝐺 be a connected graph. Then 𝐺 is Eulerian if and only if every vertex of 𝐺
has even degree.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 24

Corollary to the Eulerian even-degree graph theorem:
A connected graph is semi-Eulerian if and only if there are 0 or 2 vertices of odd
degree.

Note that if a semi-Eulerian graph has two vertices of odd degree then any Euler trail
must have one of them as its initial vertex and the other as its final vertex. Think about
it! One way to try it is to attempt to find an Euler circuit and notice how many visits
you need to make to each vertex. Try it out in the examples below.

Example 12

1 2

34

5

Figure 2.31: A non-Eulerian graph (meaning not Eulerian and not even semi-
Eulerian).

Why non-Eulerian?: Four vertices have odd degrees.

1 2

34

5 6

Figure 2.32: A semi-Eulerian graph

Why semi-Eulerian?: Exactly two vertices have odd degree (vertices 1 and 4
both have degree 3). So any Euler trail present must begin at one of these and
end at the other. For example, 12632514534 but there many others.

1 2

34

5

Figure 2.33: An Eulerian graph

Why Eulerian?: The quick answer is that all vertices have even degree (all
degree 2). Another way would be to demonstrate an Euler circuit, such as this
one: 1253451.

The table below provides simple rules that count the number of odd degree vertices in a
graph to decide whether or not it has an Euler circuit or Euler trail.

No. of Odd Vertices For a Connected Graph

0 There is at least one Euler circuit.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 25

1 Not possible

2 No Euler circuit but at least 1 Euler trail.

More than 2 No Euler circuits or Euler trails.

The following algorithm is optional but it provides a relatively simple method for finding
an Euler circuit when one exists.

2.7.2 Fleury’s Algorithm
If 𝐺 is an Eulerian graph then using the following procedure, known as Fleury’s Algorithm,
it is always possible to construct an Euler circuit of 𝐺.

Starting at any vertex of 𝐺 traverse the edges of 𝐺 in an arbitrary manner according to
the

following rules:

1. Erase edges as they are traversed and if any isolated vertices appear erase them.
2. At each step use a bridge/cut-edge only if there is no alternative (i.e. don’t cut

yourself off from an area by crossing a bridge)

We can now solve the Königsberg bridge problem.
Since every vertex in the Königsberg graph in Figure 2.2 has an odd degree it is
not possible to find an Euler circuit of this graph. It is therefore impossible for
someone to walk around the city in such a way that each bridge is crossed exactly
once and they end up at their starting point.

2.7.3 Hamiltonian Graphs
While the mathematician’s study of graphs concerned their edges, and finding trails
through graphs using all the edges. There is a totally analogous question you can ask
concerning the vertices. The mathematician William Hamilton studied4 this problem and
his name is given to the property we shall study.

A Hamiltonian cycle on a graph, 𝐺, is a cycle (closed path) that uses every vertex
of 𝐺 exactly once. Note that we do not need to use all the edges. A graph is called
Hamiltonian if it has a Hamiltonian cycle.

Note that if your walk around a graph is a path, i.e. it doesn’t repeat any vertices
then it couldn’t possible repeat any edges either. Else it would also repeat the
vertices at the ends of such edges.
So in the same way that trails were walks that could not repeat edges, and paths
were trails that could not repeat verticesa, then a Hamiltonian cycleb will visit
every vertex once but not repeat any edges or vertices

aand not edges either
balso a Hamiltonian circuit by some authors

4though he wasn’t the first

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 26

A trail that passes exactly once through each vertex of 𝐺 and is not closed is called
a Hamiltonian trail.
We say that a graph 𝐺 is semi-Hamiltonian if it has at least one Hamiltonian trail.

Note that every Hamiltonian graph is automatically semi-Hamiltonian, this is exactly
analogous to the Eulerian / semi-Eulerian relationship from Section 2.7.1.

While we have a theorem that provides necessary and sufficient conditions for a
connected graph to be Eulerian (i.e. ‘𝐺 is Eulerian if and only if every vertex of 𝐺
has even degree’) there is no such similar characterisation for Hamiltonian graphs
– this is one of the unsolved problems in graph theory. In general, it is much harder
to find a Hamiltonian cycle than it is to find an Eulerian circuit.
Having said this, for small graphs, using pen and paper it is generally quite simple
to identify if a graph is Hamiltonian or not. Indeed if you can find a Hamiltonian
cycle then you’ve already proven a graph is Hamiltonian.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 27

Example 13

1 2

34

Figure 2.34: A non-Hamiltonian graph (meaning not Hamiltonian and not even
semi-Hamiltonian).

Why non-Hamiltonian?: You can quickly check all the possibilities. The issue
lies with the fact that upon leaving vertex 4 you are stuck.

1 2

34

Figure 2.35: A semi-Hamiltonian graph

Why semi-Hamiltonian?: We can easily spot a Hamiltonian trail: for example,
2143 or 2134.

1 2

34

Figure 2.36: A Hamiltonian graph

Why Hamiltonian?: Again there is no known theory, just that if you can find
a Hamiltonian cycle then is is Hamiltonian.
Here we can find 12341 fairly easily. Notice that this Hamiltonian cycle doesn’t
use all the edges (indeed it cannot else it would repeat vertices).

The famous Travelling Salesperson Problem (TSP) searches for the most efficient
(least total distance) Hamiltonian cycle. That is, a route that visits every city
on some map (each exactly once) with minimal total distance travelled. This
obviously has real-world applications. However, since finding Hamiltonian cycles
is a very difficult problem for large graphs it is not all that surprising that this
remains an unsolved problem.

Here’s a potential useful memory aid for this chapter:

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 28

An Eulerian circuit traverses every Edge in a graph exactly once, and may repeat
vertices.
A Hamiltonian cycle, on the other hand, visits each Vertex in a graph exactly
once but does not need to use every edge.
The fact that Euler and Edge begin with the same letter can be useful for re-
membering. Both Hamilton and Euler studied the principle of ‘visiting the entire
graph’ just meant to visit every vertex and the other to visit every edge.

2.8 Digraphs (Directed Graphs)
The graphs that we have been studying up to now have all been undirected graphs in
the sense that the edges have no orientation/direction/arrows. In this section we extend
the notion of a graph to include graphs in which “edges have a direction”. These kind of
graphs are known as directed graphs, or digraphs for short.

As shown in the diagram below the direction of an edge is signified by a small arrow
drawn on the edge and the purpose is to state that movement between two vertices is
only possible in the specified direction. The terminology for digraphs is essentially the
same as for undirected graphs except that it is commonplace to use the term arc instead
of edge.

Digraphs can be used to model real-life situations such as flow in pipes, traffic on roads,
route maps for airlines and hyperlinks connecting web-pages. For example, a hyperlink is
a one-directional edge (an arc) which takes you from one site to another, unless you add
a link on the resulting page back to the previous page then you cannot get back (without
using separate in-built browser functions).

Example 14
Figure 2.37 below shows a digraph on four vertices with six arcs.

A

D

C

B

x
z

u

y

w v

Figure 2.37: A directed graph (or digraph)

Considering the arc labelled 𝑥, we say that 𝑥 goes from A to D with A being the
initial vertex and D the terminal vertex of 𝑥.

Note that with digraphs it is now very important when describing an edge, which
vertex you mention first, the order now matters. So when listing edges of digraphs
we generally use the (𝐴, 𝐵) bracket notation, rather than {𝐴, 𝐵} since we use (
and) normally in maths when the order of elements matter.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 29

2.8.1 In-degree and Out-degree
Previously the degree of a vertex was just the number of edge ends incident at that
vertex. Now it makes sense to count in-coming directed edges and out-going directed
edges separately. Hence the following definitions.

The in-degree of a vertex is the number of arcs that terminate at that vertex.
For example, the in-degree of vertex C in Figure 2.37 is 2.
The out-degree of a vertex is the number of arcs that originate at that vertex.
For example, the out-degree of vertex B in Figure 2.37 is 3.

2.8.1.1 The Handshaking (Di)Lemma

The Handshaking Lemma has a much simpler to understand version for digraphs:

The Handshaking Lemma for Digraphs
In any digraph the sum of the out-degrees, equals the sum of the in-degrees, equals
the number of arcs.

This is very obvious once you notes that every arc contributes exactly once to the out-
degree total and exactly once to the in-degree total (because it has two ends!).

We can also define equivalent versions of the degree sequence for digraphs.

The in-degree sequence of a digraph is a bracketed list of the in-degrees of all the
vertices in ascending order with repetition as necessary.
The out-degree sequence of a digraph is a bracketed list of the out-degrees of all
the vertices in ascending order with repetition as necessary.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 30

Example 15
Consider the following digraph.

A

B

C

D

Figure 2.38: A directed graph (or digraph)

1. Determine the in-degree and out-degree of the vertices and show that the
Handshaking (Di)Lemma holds

2. Write down the in-degree and out-degree sequences.
Answers:

1. We create this table of in-degrees and out-degrees:

Degree type A B C D Total

Out-degree 3 3 2 0 8

In-degree 1 2 2 3 8

The sum of the out-degrees (8) equals the sum of the in-degrees (8) and these
values both equal the number of edges (8).
The Handshaking (Di)Lemma therefore holds.

2. From the table in part (1), the in-degree sequence is (1, 2, 2, 3) and the out-
degree sequence is (0, 2, 3, 3).

2.9 Underlying Graph
The underlying graph of a digraph is the undirected graph obtained when the arrows are
removed from the digraph (but the edges are kept), i.e. when you choose to ignore the
directions mandated by the arrows.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 31

Example 16
The graph underlying the digraph in Figure 2.37 is the undirected graph shown
below.

A

D

C

B

Figure 2.39: The underlying (undirected) graph derived from Figure
reffig:digraphex1.

Note that we have basically just removed the arrows, so what we may have been
calling directed arcs we now just call edges again.

Earlier we discussed the idea of a connected graph, in Section 2.4. This concept could
become complicated for digraphs if we choose to study them. However, a perfectly useful
definition that works well for working with digraphs is actually very straightforward, and
reduces the problem to the one we have already studied.

Definition of connected for digraphs
We will say a digraph is connected if the underlying graph (i.e. the one with the
arrows removed) is connected (using our earlier definition for connected from undi-
rected graphs).
Note this will contrast with the following section, Section 2.9.1, where we discuss
walks, trails and paths for digraphs where we will demand that the directions given
by the arrows are always respected.

2.9.1 Walks, Trails and Paths on Digraphs
The concept of walks, trails and paths carries over from undirected graphs to digraphs in
a very simple fashion. We just must remember that on a digraph we can only move along
an edge in a single direction, i.e. the direction in which the arrow is pointing.

Arrows must be obeyed!

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 32

Find a walk, trail and path on the digraph shown below.

1

2

34

5

6

7

Figure 2.40: A sample digraph to illustrate walks, trails and paths

Reminder of definitions
A walk has no restrictions other than following directed edges. It can repeat edges
and vertices if it wishes.
A trail is a walk which cannot repeat any edge used.
A path is a trail (or walk) which cannot repeat any vertex visit (except for starting
and ending at the same vertex, which is allowed and would make it closed).

Sample solutions to exercise in Figure 2.40:
• One example of a walk is given by: 1, 5, 6, 1, 7, 3, 1, 5, 6.
• One example of a trail is given by: 1, 5, 6, 1, 7, 3.
• One example of a path is given by: 1, 5, 6.

All other terminology carries across too, so we can discuss open or closed walks, paths
and trails. We will return to discuss the adjectives Eulerian and Hamiltonian for directed
graphs in Sections 2.10.3 and 2.10.4, but first we shall make a practical diversion.

2.10 Adjacency Matrices
We now move onto a more practically useful topic for the applications of matrices in
computing and many other areas. Most work with networks and graphs nowadays involves
the use of computers. Up to now we have only considered graphs where the number of
edges and vertices is relatively small so that they can be easily be shown in diagram form.
However, as graphs become large it is no longer feasible to display them visually. When
storing a graph on a computer it is useful to represent it in matrix form. It turns out
that there are nice algorithms for calculating paths, trails and circuits, for example, using
matrices and just standard matrix multiplication methods. This

2.10.1 Adjacency Matrix of an Undirected Graph
In Section 2.2.1 we defined an undirected graph to be a graph in which the edges have no
arrows. Hence, all edges are bidirectional. For example, in the graph shown in Figure
2.39 the edge {𝐴, 𝐵} is considered identical to the edge {𝐵, 𝐴}.
Given the way we will define adjacency matrices we will provide definitions for undirected
and directed graphs separately, but you will see they are really the same if you consider
bidirectional edges at providing one edge in each direction.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 33

If 𝐺 is a graph with 𝑛 vertices, its adjacency matrix, normally called 𝐴, is defined
as an 𝑛 × 𝑛 matrix whose ij-th entry is the number of edges joining vertex 𝑖 and
vertex 𝑗.

Recall that when working with matrices the rule is always Rows fiRst, Columns seCond.
So in the definition above a single edge joining vertex 7 to vertex 3, in a graph with 10
vertices, means a 1 is placed in Row 7, Column 2 of the adjacency matrix. Let’s see a full
example.

Example 17
Determine an adjacency matrix for following graph.

1 2

3 4

Figure 2.41: A graph used to illustrate an adjacency matrix

Solution:
This graph has 4 vertices and so the adjacency matrix will have dimension, 4 × 4.
It’s standard practice to include the names of the vertices along the left and top
of the matrix so that we know which rows correspond with which vertices. Here’s
our template we need to fill:

1 2 3 4
1
2
3
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We can start with row 1. This contains information about edges that leave vertex
1 and join to other vertices.

• No edges connect vertex 1 to vertex 1, so the entry in Row1/Column1 is a
0.

• 1 edge connects vertex 1 to vertex 2, so the entry in Row1/Column2 is a 1.
• 2 edges connect vertex 1 to vertex 3, so the entry in Row1/Column3 is a 2.
• No edges connect vertex 1 to vertex 4, so the entry in Row1/Column4 is a

0.
Here is row 1 completed:

1 2 3 4
1
2
3
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 0
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Next for row 2. We look at what edges leave vertex 2 and join to other vertices.
• 1 edge connects vertex 2 to vertex 1, so the entry in Row2/Column1 is a 1.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 34

• No edges connect vertex 2 to vertex 2, so the entry in Row2/Column2 is a
0.

• 1 edge connects vertex 2 to vertex 3, so the entry in Row2/Column3 is a 1.
• 1 edge connects vertex 2 to vertex 4, so the entry in Row2/Column4 is a 1.

So, here are the first two rows completed:

1 2 3 4
1
2
3
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 0
1 0 1 1
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

You should complete the final two rows yourself, and reach the following matrix:

1 2 3 4
1
2
3
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 0
1 0 1 1
2 1 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This is the adjacency matrix for the graph in Figure 2.41.

There are a number of points worth noting arising from this example, and other
similar ones.

• A graph can be represented by several adjacency matrices as different la-
belling of the vertices produces different matrices. In our case we used the
natural row and column labelling 1, 2, 3, 4. While you should always use the
same order for columns and rows, if the vertices have other names you might
choose any order. For example, if vertices are called Frog (F), Cat (C) and
Rabbit (R) there may be no natural order and various template options exist,
such as:

𝐹 𝐶 𝑅
𝐹
𝐶
𝑅

⎛⎜⎜⎜⎜⎜
⎝

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎞⎟⎟⎟⎟⎟
⎠

and

𝐶 𝑅 𝐹
𝐶
𝑅
𝐹

⎛⎜⎜⎜⎜⎜
⎝

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎞⎟⎟⎟⎟⎟
⎠

• In the matrix 𝐴, the entry 𝑎𝑖𝑗 records the number of edges joining vertices 𝑖
and 𝑗. So for most standard graphs you will study, every entry will be either
a 0 or a 1 since it is only multigraphs and graphs with loops where you can
get values above 1. The example in Figure 2.41 is unusual in this regard, in
that it contains parallel edges.

• For an undirected simplea graph:
Sum of Row 𝑗 = Sum of Column 𝑗 = Degree of vertex 𝑗 .

• The adjacency matrix for an undirected graph is always going to be symmet-
ric, i.e. 𝐴 = 𝐴𝑇 .

• The entries on the main diagonal are all 0 unless the graph has any loops.
athis means no parallel edges

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 35

Now that we have a definition of an adjacency matrix, and know how to construct one from
a picture of a graph. There is another skill which we can develop, namely to construct a
picture of a graph given its adjacency matrix.

When doing this you may not always place your vertices in the most ideal positions
when you begin your sketch. Placing them non-ideally could result in lots of criss-
crossing edges in your final picture, so feel free to have a glance at the full matrix
first to try and avoid this and draw your vertices as nicely spread as possible,
then you hopefully won’t need to redraw your graph later to make it look more
aesthetically pleasing.

Example 18
Given the adjacency matrix below, construct the associated (multigraph), 𝐺.

1 2 3 4
1
2
3
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 2 0 1
2 2 1 1
0 1 0 1
1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Solution:
The matrix has dimension 4×4 and so the graph has 4 vertices. Their names have
already been provided too, via the row and column labels.
Note that a loop is defined to contribute 2 to the degree of a vertex. So the 2 in
second row, second column, is fulfilled by drawing a single edge joining vertex 2
to itself. This is a conventional definition that we discussed earlier in Multigraphs
Section 2.5.6 to keep the Handshaking Lemma working.
We begin by loosely drawing four vertices, we go with a square arrangement for
lack of any other knowledge.
We proceed as follows processing one row of the matrix 𝐴 at a time:

• Entry in Row1/Column1 is a ‘0’ so 0 edges connect vertex 1 to vertex 1.
• Entry in Row1/Column2 is a ‘2’ so 2 edges connect vertex 1 to vertex 2.
• Entry in Row1/Column3 is a ‘0’ so 0 edges connect vertex 1 to vertex 3.
• Entry in Row1/Column4 is a ‘1’ so 1 edge connects vertex 1 to vertex 4.

So temporarily we have drawn this graph:

1 2

3 4

Figure 2.42: Our graph 𝐺 having drawn only the edge from vertex 1 so far.

Next for row 2 (i.e. edges that leave vertex 2):
• Entry in Row2/Column1 is a ‘2’ so 2 edges connect vertex 2 to vertex 1.
• Entry in Row2/Column2 is a ‘2’ so vertex 2 has a self-loop.
• Entry in Row2/Column3 is a ‘1’ so 1 edge connects vertex 2 to vertex 3.
• Entry in Row2/Column4 is a ‘1’ so 1 edge connects vertex 2 to vertex 4.

We don’t need to draw edges which have already been drawn.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 36

1 2

3 4

Figure 2.43: Our graph 𝐺 having drawn only the edges from vertices 1 and 2 so
far.

Now for rows 3 and 4 of the adjacency matrix:
• Entry in Row3/Column1 is a ‘0’ so 0 edges connect vertex 3 to vertex 1.
• Entry in Row3/Column2 is a ‘1’ so 1 edge connects vertex 3 to vertex 2.
• Entry in Row3/Column3 is a ‘0’ so 0 edges connect vertex 3 to vertex 3.
• Entry in Row3/Column4 is a ‘1’ so 1 edge connects vertex 3 to vertex 4.
• Entry in Row4/Column1 is a ‘1’ so 1 edge connects vertex 4 to vertex 1.
• Entry in Row4/Column2 is a ‘1’ so 1 edge connects vertex 4 to vertex 2.
• Entry in Row4/Column3 is a ‘1’ so 1 edge connects vertex 4 to vertex 3.
• Entry in Row4/Column4 is a ‘0’ so 0 edges connect vertex 4 to vertex 4.

The graph corresponding to the adjacency matrix is therefore:

1 2

3 4

Figure 2.44: Our graph 𝐺 having drawn all the edges.

Here is a more ‘standard’ example. A graph with no parallel edges or loops, i.e. a simple
graph.

Example 19
Here is the adjacency matrix of a graph on 5 vertices:

1 2 3 4 5
1
2
3
4
5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 1
1 0 0 0 1
0 0 0 1 0
0 0 1 0 1
1 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Here is one sketch of it.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 37

1 2

34

5

Figure 2.45: A sketch of the graph with adjacency matrix above.

Look through the edges present, and not present in the graph and check you can
see how they correspond with the entries of the adjacency matrix.

There are three things worthy of note about the adjacency matrix of all simple
graphs like that in Figure 2.45:

• every entry of the matrix is either a 0 or a 1,
• the adjacency matrix is symmetric,
• the matrix diagonal from top left to bottom right (the leading diagonal) is

all zeroes.
You should think about all three and convince yourself they will always be true
for such graphs.

2.10.2 Adjacency Matrix of a directed graph
We have formally only looked at adjacency matrices of undirected graphs so far, i.e. where
edges have no arrows. The definition for directed graphs is essentially the same, but each
directed edge only contributes a single 1 to the adjacency matrix now.

For undirected graphs the edge from vertex 4 to vertex 2 appeared in the adjacency matrix
as both a 1 in Row 4, Column 2 and also in Row 2, Column 4.

For a directed graph a directed edge from vertex 4 to vertex 2 only contributes to Row 4,
Column 2, since it is an edge from 4 to 2 and not an edge from 2 to 4.
So for simple graphs (no parallel edges, and no loops):

The adjacency matrix of a digraph having 𝑛 vertices is a 𝑛 × 𝑛 matrix.
For each directed edge from a vertex 𝑣𝑖

a to a vertex 𝑣𝑗
b we place a 1 in the i-th

row and j-th column. Otherwise we place a 0 in that position.
i.e.

Entry (𝑖, 𝑗) in the matrix = {0 if arrow from 𝑖 to 𝑗
1 if NO arrow from 𝑖 to 𝑗

We used generic names 𝑣𝑖 and 𝑣𝑗 here in case the vertices are not numbered
1, 2, 3, ….
In the case that our directed graph has loops or parallel edges, each separated
directed edge contributes +1 to its corresponding matrix entry. Thus four arcs
from vertex 3 to vertex 2 will create an entry in the matrix of value 4 in row 3,
column 2. So entries could be larger than 1.

athe i-th vertex
bthe j-th vertex

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 38

Example 20
Determine an adjacency matrix for the digraph shown below,

1
2

3
4

Figure 2.46: A directed graph to illustrate adjacency matrices

Solution:
• The digraph has 4 vertices and so the adjacency matrix will have dimension

4 × 4;
• There is an arc from vertex 1 to vertex 2, so the entry in Row1/Column2 is

a 1;
• There is an arc from vertex 2 to vertex 3, so the entry in Row2/Column3 is

a 1;
• There is an arc from vertex 3 to vertex 2, so the entry in Row3/Column2 is

a 1;
• There is an arc from vertex 3 to vertex 4, so the entry in Row3/Column4 is

a 1;
• There is an arc from vertex 4 to vertex 1, so the entry in Row4/Column1 is

a 1;
• All other entries in the adjacency matrix will be zero

From the calculations above an adjacency matrix for the digraph is therefore:

1 2 3 4
1
2
3
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0
0 0 1 0
0 1 0 1
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

• The total number of 1’s in an adjacency matrix equals the number of arcs in
the digraph.

• In general, the adjacency matrix is not symmetric for a digraph;
• The number of 1’s in row 𝑖 of an adjacency matrix corresponds to the out-

degree of this i-th vertex;
• The number of 1’s in column 𝑗 of an adjacency matrix corresponds to the

in-degree of this j-th vertex.

2.10.3 Eulerian Digraphs
Recalling now our definition of Eulerian, for a digraph this will mean finding a path which
follows the arrows and visits every edge of the graph exactly once.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 39

Definition of an Eulerian digraph
A digraph 𝐺 is Eulerian if it is connected and there exists a closed trail (circuit)
which uses each arc exactly once.
Vertices however, can be repeated. This definition is essentially the same as for
undirected graphs, see Section 2.7.1, except that we can only traverse the graph
in the direction of the arrows.

We have a similar theorem which allows us to quickly identify if a digraph is Eulerian or
not.

Eulerian in-out degree theorem
Let 𝐺 be a connected digraph. Then 𝐺 is Eulerian if and only if the in-degree of
each vertex equals its out-degree.
It is worth comparing this with the Eulerian even-degree graph theorem from
2.7.1.

We shall illustrate the concepts with an extended example.

Example 21
Consider the following digraph, 𝐷.

1 2

3

45

Figure 2.47: A directed graph to illustrate Eulerian paths

1. Determine an adjacency matrix for 𝐷.
2. Is 𝐷 Eulerian? Either state an Euler circuit or explain why 𝐷 is not Eulerian.

Solution:
1. The digraph has 5 vertices and so the adjacency matrix will have dimension

5 × 5.
The adjacency matrix is as follows:

𝐴 =

1 2 3 4 5
1
2
3
4
5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 1 0 0 1
1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Here are the full gory details:
• There is an arc from vertex 1 to vertex 2, so the entry in Row1/Column2 is

a 1;
• There is an arc from vertex 2 to vertex 3, so the entry in Row2/Column3 is

a 1;
• There is an arc from vertex 2 to vertex 4, , so the entry in Row2/Column4

is a 1;

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 40

• There is an arc from vertex 3 to vertex 4, , so the entry in Row3/Column4
is a 1;

• There is an arc from vertex 4 to vertex 2, , so the entry in Row4/Column2
is a 1;

• There is an arc from vertex 4 to vertex 5, so the entry in Row4/Column5 is
a 1;

• There is an arc from vertex 5 to vertex 1, so the entry in Row5/Column1 is
a 1;

• All other entries in the adjacency matrix will be zero.
2. Recall that the row sums of 𝐴 give the out-degrees while the column sums

provide the in-degrees of the vertices. We construct the following table:

Vertex Out-degree In-degree

1 1 1

2 2 2

3 1 1

4 2 2

5 1 1

This digraph is Eulerian as the out-degree of each vertex is the same as its in-
degree. i.e. Colloquially every vertex has the same number of arrows coming in as
going out.
Can we find an Euler circuit? Just try!
An example Euler circuit is given by: 1, 2, 3, 4, 2, 4, 5, 1.

The same definition for semi-Eulerian carries over from previously. It is left as an exercise
for the reader to see why what the requirement is for a digraph to be semi-Eulerian (but
not Eulerian). Here is the answer to think about:

• For all expect two vertices the in-degree and out-degree must match exactly;
• One of these two vertices has an in-degree exactly 1 higher than its out-degree;
• The other of these two vertices has an out-degree exactly 1 higher than its its-degree;

2.10.4 Hamiltonian Digraphs
Now for the Hamiltonian version on directed graphs. Recall we will be looking for a path
which follows the arrows but this time visits every vertex of the graph exactly once. This
will necessarily force us to never use any edge more than once. Note, however, that we
don’t need to use all edges.

A digraph 𝐺 is Hamiltonian if it is connected and there exists a closed cycle which
visits every vertex exactly once.
This definition is essentially the same as the for undirected graphs, see Section
2.7.3, except that we can only traverse the graph in the direction of the arrows.

Just as for Hamiltonian graphs with undirected edges there is no known result to determine
if a graph is actually Hamiltonian beyond finding such a cycle.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 41

Example 22
Consider the same graph as in Figure 2.48 which we repeat here for convenience:

1 2

3

45

Figure 2.48: A directed graph to illustrate Eulerian paths

A Hamiltonian cycle for this digraph can be found to be 1, 2, 3, 4, 5, 1.
We have been able to visit each vertex exactly once and return to our starting
vertex.

2.11 Adjacency Matrices & Paths
Now we will see the power of using matrices to represent graphs. Adjacency matrices can
be used to determine the number of paths of different lengths between vertices without
having to manually and systematically count them all.

We first nite that in an adjacency matrix the entry at position (𝑖, 𝑗) corresponds to the
number of paths of length 1 between vertex 𝑣𝑖 and vertex 𝑣𝑗. Note the weird choice of
phrase here, path of length 1 just means a single arc, but can be made more general to
longer lengths in a moment.

It is also possible to construct matrices that provide information on paths of length other
than 1 between vertices.

First a little motivation, note that if we want to count all the paths of length 2
from vertex A to vertex B in a graph, we need to:

• consider all possible edges out of vertex A;
• see where each such edges goes;
• see whether for each such destination, there is an edge immediately to vertex

B;
• add together all the examples found.

Imagine instead we have the adjacency matrix of this graph, where rows 1 and 2
corresponds to vertices A and B respectively. To find paths of length 2 we can do
the following:

• look at row 1a of the matrix for places where it is not zero;
• for each entry above that is not zero, identify which column it is in;
• for each such column, look at the matching row number and see if there is

an edge straight to vertex B (i.e. in column 2);
• add up all the examples found.

We shall not go into the details here, but this latter process is actually just equiv-
alent to multiplying the matrix 𝐴 by itself and looking for the entry in row 1
column 2!

athe A row

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 42

Theorem for counting paths
The matrix 𝐴2 = 𝐴×𝐴 contains in its entries the number of paths of length exactly
2 from each vertex to each other vertex.
And in general, if we calculate the 𝑘-th power of the adjacency matrix 𝐴 then the
entry at position (𝑖, 𝑗) of the matrix 𝐴𝑘 indicates the number of paths of length 𝑘
between vertex 𝑣𝑖and vertex 𝑣𝑗.
This is a pretty amazing fact, and it is just a result of our clever definition for
matrix multiplication.

Example 23
Let 𝐷 be a digraph with 5 vertices as shown:

1 2

3

45

Figure 2.49: A directed graph to illustrate path counting

An adjacency matrix is given by

𝐴 =

1 2 3 4 5
1
2
3
4
5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

If a path of length 1 exists between two vertices (i.e. vertices are adjacent) then
there is a 1 in the corresponding position in the adjacency matrix, 𝐴. Here, for
example, inspection of 𝐴 reveals the following paths of length 1:

• from vertex 1 to vertices 2, 4 and 5
• from vertex 2 to vertex 4
• from vertex 3 to vertex 5
• from vertex 5 to vertex 2.

There are no paths of length 1 from vertex 4 to any of the other vertices.
But if we want a path of length 2 from, say, vertex 1 to vertex 2, we are looking for
a 1 in the first rowa and a 1 in the correspnding position of the second columnb.
Here is the calculation:

𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 43

The scalar product of row 1 with column 2 results in the entry present in row 1
columns 2 of the answer. This value, in entry (1, 2) of 𝐴2 tell us how many paths
there are of length 2 from vertex 1 to vertex 2. In this case there is only 1 path.
What is this path? If we look carefully at the calculation of the (1, 2) entry of 𝐴2

we see the value 1 appeared because 𝐴1,4 = 1 and 𝐴4,2 = 1 multiplied together to
give 1. i.e. the path 1 → 4 → 2.
Indeed the calculation of the whole of 𝐴2 has found for us all paths of length 2 in
the graph between any combinations vertices!
The only paths of length 2 in the entire digraph are:

• from vertex 1 to vertex 2,
• from vertex 1 to vertex 4,
• from vertex 3 to vertex 2
• from vertex 5 to vertex 4.

In general, the matrix of path length 𝑘 is generated by multiplying the matrix of
path length 𝑘 − 1 by the matrix of path length 1, i.e. the adjacency matrix, 𝐴.
This is because in general 𝐴𝑘 = 𝐴𝑘−1 × 𝐴.
To find the number of paths of length exactly 4 starting form the third vertex
ending at the first vertex we calculate the (3, 1) entry of 𝐴4.

athe vertex 1 row
bthe vertex 2 column

For graphs with more arcs one could expect the powers of 𝐴, including 𝐴2 to contain
values larger than 1 to indicated many paths between the same vertices (of the same
length). Indeed for graphs in which the vertices are well interconnected you will often
find the values in higher powers of 𝐴 increase without limit.

Finally in this section, a short word on the topic of connectedness. At the end of Section
2.9 we defined connected for directed graphs to be the same as for undirected graphs by
considering the underlying graph created by just removed the arrows on the arcs.

It was hinted in Section 2.9 that the topic of connectedness is deeper than presented
there. Here we are at least able to take a very brief glimpse into that topic. If
we wish to continue to respect the arrows but still talk about connectedness then
we can talk about a graph being strongly connected if there is a path from every
vertex to every other vertex which respects the arrows.
Study of this property can be conducted by looking at 𝐴, 𝐴2, 𝐴3, … to see if every
matrix entry is not zero at some point in the sequence, indicating there is a path
of some length between every two vertices.

2.12 Weighted Graphs
The final few sections of these notes provide very short introductions to a few distinct
interesting applications of graph theory. In this section we introduce the advanced idea
of attaching weights to edges. Until now all graphs we have studied are unweighted.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 44

A weight on an edge of a graph is just a non-negative value associated with that
edge.
If the edge is called 𝑒 its weight is often denoted 𝑤(𝑒).
Weights on edges very commonly model real-world characteristics of the edges,
especially when the vertices represent real locations, e.g.

• the length of the road that the edge represents; or
• the time it takes to travel along the road the edge represents.

The term weight is historical in origin, and not many applications of graphs actu-
ally represent actual weight/mass nowadays.

If a graph 𝐺 is a graphical representation of a map and we are required to find the
length of the shortest path from town 𝐴 to town 𝐿, say, then we can label each
edge with a weight which correspondings to the length of the journey between the
two towns incident to that edge. Then to find the minimal length path between
vertices 𝐴 and 𝐿 we look for a path from 𝐴 to 𝐿 of minimal cumulative weight.
The famous Travelling Salesperson Problem (TSP) is a well-known version of this
problem.

Example 24
The shortest path from 𝐴 to 𝐿 has length 17 and is shown in bold in the figure.

Figure 2.50: A graph taken from *Introduction to Graph Theory, Fourth Edition,
Wilson R.J., 1996*.

Finding the shortest path between two places on a weighted graph is actually not
a difficult problem. A number of algorithms have been devised for solving this
problem, the most famous of which is likely Dijkstra’s algorithm. This algorithm
works by finding the shortest path to the target from all locations, starting from
the neighbours of the final target.
Dijkstra’s algorithm is extremely quick to run on a computer and is used as a
pathing algorithm inside a very wide range of computer games as well as to many
other applications.

2.12.1 Adjacency Matrix of Weighted Graphs
When using weighted graphs with computers the natural way to store the information
about the weights on the edges remains to use matrices.

Consider the following graph:

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 45

P Q

R

ST

6

2

3

4

6

7

Figure 2.51: A graph to illustrate an adjacency matrix for a weighted graph

The weighted graph presented in Figure 2.51 has 5 vertices and the values written half-way
along the edges are the corresponding edge weights.

There are then two matrices of use when studying this graph, first the standard adjacency
matrix:

𝐴 =

𝑃 𝑄 𝑅 𝑆 𝑇
𝑃
𝑄
𝑅
𝑆
𝑇

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

However, it is also possible to capture both the edges and their weights in a single matrix.
For this purpose the following weighted adjacency matrix is used:

𝐴 =

𝑃 𝑄 𝑅 𝑆 𝑇
𝑃
𝑄
𝑅
𝑆
𝑇

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 6 0 0 7
6 0 2 3 0
0 2 0 4 0
0 3 4 0 6
7 0 0 6 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

It is easy to see that this second matrix contains more information, and the first matrix
can be derived from it by replacing all non-zero values with ones. For this reason this
latter matrix is the one usually used in calculations regarding such graphs.

We mention this because there is an opportunity for ambiguity here. We have included
multigraphs in our studies and this latter matrix could also be used to represent a standard
multigraph with a lot of parallel edges. Hence it is important to always know what type
of graph is being considered when looking at an adjacency matrix representing a graph.

2.13 Isomorphisms between Graphs
This is a highly theoretical topic and very difficult to study for graphs with large numbers
of vertices.

(First the formal, but way too technical mathematical definition, which no doubt contains
some symbols you may not have come across before!)

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 46

Technical definition of isomorphism
Graphs 𝐺 and 𝐻 are said to be isomorphic (essentially the same graph) if there
is a one-one and onto function Φ satisfying,

Φ ∶ 𝑉 (𝐺) → 𝑉 (𝐻) such that edge {𝐴, 𝐵} ∈ 𝐸(𝐺)
⇕

edge {Φ(𝐴), Φ(𝐵)} ∈ 𝐸(𝐻),
where,

• 𝐸(𝐺) and 𝐸(𝐻) are the lists of edges in 𝐺 and 𝐻 respectively;
• Φ is just come function which pairs up vertices between 𝐺 and 𝐻, denoted

𝑉 (𝐺) and 𝑉 (𝐻) respectively; and
• ⟺ means if and only if.

In much plainer English here is an easier to understand definition:

Friendlier definition of isomorphism
Two graphs 𝐺 and 𝐻 are said to be isomorphic if…
There is a way to match up (i.e. pair up) the vertices of 𝐺 and the vertices of 𝐻
in such a way that the number of edges joining any two vertices in 𝐺 equals the
number of edges joining the corresponding vertices in 𝐻.

Finally, the friendliest version yet:

𝐺 and 𝐻 are isomorphic if there is a way to label (they might change, they
might not) the vertices of 𝐻 to match those of 𝐺 after which the graphs 𝐻 and

𝐺 have the same adjacency matrix.

Example 25
These graphs 𝐺1 and 𝐻1 below are isomorphic.

G1:

1

23

4 5

H1:

1

2

3

4

5

Figure 2.52: Two isomorphic graphs, 𝐺1 and 𝐻1 respectively

We normally need to think up a way to rename the vertices of one graph so that
its adjacency matrix matches that of the other graph. But in this case, it turns
out that the existing names already work!
One shortcut to this is to start by looking at the degrees of the vertices, since they
will need to match after renaming.
Here is the adjacency list for 𝐺1:

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 47

Vertex Adjacent vertices Degree

1 2, 3, 4, 5 4

2 1, 3, 4 3

3 1, 2, 5 3

4 1, 2 2

5 1, 3 2

So the degree sequence is (2, 2, 3, 3, 4).
Looking carefully at 𝐻1 we see that the vertices as originally named have exactly
all the same adjacent vertices, so 𝐺1 and 𝐻1 already have identical adjacency
matrices and so are isomorphic.

You may like to think of this whole idea as an answer to the question:

Can I relabel the vertices, and move them around so that these two graphs looks
identical?

Example 26
Consider the following two graphs:

G:
A B

C D

E

H:

A B

C

D

E

Figure 2.53: Two isomorphic graphs, 𝐺 and 𝐻 respectively

Here if we rename the vertices as follows:

G Vertex H Vertex

A D

B A

C E

D B

E C

Then the two graphs becomes identical (they have the same adjacency matrix), so
𝐺 and 𝐻 are isomorphic.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 48

Example 27
One way to show graphs are not isomorphic is just to illustrate that they have
different degree sequences. This is because renaming vertices has no affect upon
the degree sequence. So you cannot turn one degree sequence into another just be
renaming the vertices. With different degree sequences the adjacency matrix row
sums are bound to be different so the matrices themselves must be different.
The graphs 𝐺2 and 𝐻2 below are not isomorphic as they have different degree
sequences.

One final bonus topic, combines our work in Section 2.9 and Section 2.13 with a bonus
new definition.

A subgraph 𝐺′ of a graph 𝐺 is a new graph which is derived from 𝐺 by removing
any number of edges and vertices from 𝐺, but adding nothing new.
Removing a vertex removes all edges that are incident to it.

Practice
Find a subgraph of 𝐺 in Figure 2.53 which is isomorphic to 𝐶3.
Can you find a subgraph of 𝐺 in Figure 2.53 which is isomorphic to 𝐶4?

2.14 Vertex (Graph) Colouring
The most well-known graph colouring problem is the Four Colour Problem which was
first proposed in 1852 when Francis Guthrie noticed that four colours were sufficient to
colour a map of the counties of England so that no two counties with a border in common
had the same colour. Guthrie conjectured that any map, no matter how complicated,
could be coloured using at most four colours so that adjacent regions (regions sharing
a common boundary segment, not just a point) are not the same colour. Despite many
attempts at a proof it took until 1976 when two American scientists, Appel and Haken,
using graph theory, produced a computer-based proof to what had become known as the
Four Colour Theorem.

In graph theory terms vertex (graph) colouring problems require the assignment of colours
(usually represented by integers) to the vertices of the graph so that no two adjacent
vertices are assigned the same colour (integer).

A 𝑘-colouring of a graph is a colouring in which only 𝑘 colours (numbers) are used.
The chromatic number for a graph is the minimum number of colours (numbers)
required to produce a vertex colouring of the graph.
The chromatic number of a graph 𝐺 is denoted by the Greek letter 𝜒(𝐺) (chi).

A graph with no edges has chromatic number 1 since you colour every vertex the same
colour and none of them are adjacent!

The complete graph 𝐾𝑛, however, has chromatic number 𝑛, can you see why 𝑛 − 1 is not
enough?

Identifying the chromatic number in these two cases is straightforward. In general, how-
ever, determining the exact chromatic number of a graph is a hard problem and no efficient
method exists. The only approach that would identify the chromatic number of a graph
𝐺 with absolute certainty would involve investigating all possible colourings. Clearly as
graphs become larger this method becomes impractical, even using the most powerful
computers that are available. The best that can be done is to determine lower and upper

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 49

bounds on the chromatic number and techniques such as looking for the largest complete
subgraph in 𝐺 (for a lower bound) and the Greedy algorithm (for an upper bound) en-
ables us to do so. The Greedy algorithm however is very inefficient but is adequate for
‘small’ graphs with the aid of a computer.

Example 28
We shall colour this graph with the minimal number of colours.

Figure 2.54: A graph to illustrate chromatic number

First an actual colouring, using colours and then using integers:

1 2

3

12

Colours/Integers:

= 1

= 2

= 3

Figure 2.55: Vertices of Figure
reffig:chromaticex1a coloured with just 3 colours and then coloured with three
integers.

These illustrations show how to label the vertices using just three distinct
colours/integers in such a way that no joined vertices share a colour/integer.
With some thought you can appreciate that it cannot be done with only 2 colours.
Hence for this graph 𝐺 the chromatic number is 3, i.e. 𝜒(𝐺) = 3.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 50

[breakable=true,skin=enhanced jigsaw]
Practice
Try and colour the vertices of the following graphs (i.e. label the vertices of the
graph with as few different numbers as possible so that no two adjacent vertices
have the same number)

K5:

Figure 2.56: 𝐾5 ready for colouring

W :

Figure 2.57: A W-shaped graph ready for colouring

X:

Figure 2.58: Another bi-partite graph ready for colouring

B:

Figure 2.59: A more difficult graph to colour

2.15 Summary
This unit has provided an introduction to the important topic of graph theory and you
should now be able to:

• identify different types of general graphs including: undirected and directed graphs,
simple graphs and multigraphs.

• understand basic terminology associated with graphs, including: connected, vertices,
edges, arcs, adjacent, incident, degree sequence, in-degree, out-degree, etc.

CHAPTER 2. AN INTRODUCTION TO GRAPH THEORY 51

• identify different types of specific graphs: regular graphs, complete graphs, cycle
graphs, bipartite graphs, tree graphs and weighted graphs.

• state the Handshaking Lemmas for both undirected graphs and digraphs.
• identify walks trails and paths on undirected graphs and digraphs.
• determine whether or not a graph (undirected or digraph) is Eulerian and identify

an Euler circuit if one exists.
• determine whether or not a graph (undirected or digraph) is Hamiltonian and, for

“small” graphs, identify a Hamiltonian cycle if one exists.
• construct adjacency matrices for undirected graphs and digraphs.
• construct an undirected graph or digraph given an adjacency matrix.
• understand what is meant by isomorphic graphs.
• understand what is meant by a graph colouring and the chromatic number of a

graph.

	Introduction
	An Introduction to Graph Theory
	Introduction
	Definitions
	The Handshaking Lemma
	Connected Graphs
	Common Graphs
	Walks, Trails & Paths
	Eulerian and Hamiltonian Graphs
	Digraphs (Directed Graphs)
	Underlying Graph
	Adjacency Matrices
	Adjacency Matrices & Paths
	Weighted Graphs
	Isomorphisms between Graphs
	Vertex (Graph) Colouring
	Summary

