
 M1I322909: PROGRAMMING 1

 page 1

LAB 1: CREATING OBJECTS

In this lab you will use BlueJ to create and manipulate some Java objects. In an object-
oriented program objects often model some kind of real-world “things”. The objects in
this lab represent shapes (circles, rectangles, etc.). These objects can also draw visual a
representation of themselves so that you can see the effect of anything you do with
them.

You should attempt the steps for each task and try to answer the questions that follow
some of the steps. It is recommended that you keep a lab note book as you work
through the labs and take note of your answers to the questions in each lab.

Related reading
Lecture Notes - 1: Introduction to Object-Oriented Programming

Working with BlueJ and lab code
The software, including BlueJ, that you need for the lab exercises in this module is
installed in a Windows 8.1 Virtual Machine (VM) on each PC in the computer labs. Once
you have logged in to the PC you can start the appropriate VM as follows:

 click on the VMware icon on the desktop – this should open the folder containing
the VMs that are on the PC. Each VM is in its own folder.

 find the VM folder whose name begins with SEBE-VM-Win8.1x64Ent
 open this VM folder and find the file whose type is VMware virtual machine

configuration. double-click on this file. VMware Player should start and load the
VM. You can view the VM full screen once it has started if you wish.

BlueJ is available on the VM from the Programs item in the Start menu.

You may also want to install BlueJ on your own computer for your personal use. BlueJ is
free to download from www.bluej.org, and runs on Windows, MacOS and Linux. You
will probably need to download and run the version of the BlueJ installer that includes
the JDK (Java Development Kit – you’ll learn more about that later in the module) as that
is not usually present on Windows or MacOS by default.

Most lab exercises will require you to download starter code from GCULearn. In most
cases the code will be in the form of a ZIP archive containing one or more BlueJ
projects. Once you have downloaded the appropriate ZIP archive you can extract the
contents by right-clicking and selecting 7-zip > Extract files... from the pop-up menu.
You can then start BlueJ and use the File>Open Project option to navigate to the folder
where you extracted the project and open it.

Note that no hard copies of lab tasks will be given out, so you will need to access them
through GCULearn while working in the labs. You can do so in the same VM as you are
running BlueJ. Alternatively you can view the lab task on the host PC, switch between
host and VM as required.

 M1I322909: PROGRAMMING 1

 page 2

Task 1 : Creating and manipulating objects

Getting started

1. Start BlueJ and use the File>Open Project option to open the project shapes.
You can find this project in the examples folder inside the BlueJ application
folder. On the lab VMs this is C:\Program Files (x86)\BlueJ\examples.
Alternatively, you can download the code from GCULearn.

When the project is opened, BlueJ should look like the screenshot above. There
are four classes shown in the main area of the BlueJ window.

2. You may see the classes cross-hatched. This means that they need to be
compiled before use. Click the Compile button to compile all the classes. You
should ignore any warning dialog that is shown1.

Creating objects

3. Right-click on the Circle class and select new Circle() from the menu. Accept
circle1 as the name of the instance in the dialog which is shown. You should now
see a Circle object named circle1 in the Object Bench.

4. Similarly, create a Square object in the Object Bench with a suitable name.

1 You can switch off this warning by selecting Tools>Options>Preferences, choose Miscellaneous
tab, and uncheck “Show compiler warnings when…..”

 M1I322909: PROGRAMMING 1

 page 3

5. Right-click on circle1 and choose Inspect from the menu. You should see the
Object Inspector dialogue which shows the fields of the object.

Q1.1 What colour is the circle? What colour is the square?

6. You can see the objects in the Object Bench, but now you will get each one also
to create a visual representation of itself. Call the makeVisible method of each
object – to call a method you right-click on the object and select the method
name from the menu. You should see a new “picture” window that displays the
representations of the shapes.

Calling methods

7. Call the moveDown method of circle1.

Q1.2 What change do you see when you inspect the object? What happens
in the picture?

8. Call a method or methods to move the circle object so that it lines up directly
below the square.

Q1.3 What method(s) did you use? How many times? Could you have
achieved this without the picture being visible?

9. Call the moveHorizontal method of square1. This method needs some additional
information – how far you want to move. Enter a value of 100. Observe the effect
by inspecting and on the picture.

10. Move the square 10 pixels down and 50 pixels to the left, with one method call for
each.

Q1.4 What method(s) did you use? How did you specify the direction (up or
down, left or right)?

11. Call the changeColor method of circle1 (note US spelling of color!). Enter the
value “green” and observe the effect.

 M1I322909: PROGRAMMING 1

 page 4

Q1.5 What is the data type of the parameter for this method call? What
happens if you enter green, without quotes? What happens if you enter a
number, again without quotes?

Creating more objects

12. Create another circle object, named circle2, in the Object Bench, and make it
visible in the picture.

Q1.6 How many Circle classes do you see in BlueJ? How many circle
objects? How many circle objects do you think it would be possible to
create?

13. Inspect the objects in the Object Bench. Look at the field names and field values.

Q1.7 What do the circle objects have in common? How do they differ? What
makes a circle different from a square?

14. You can also create objects using code. Select the View>Show Code Pad option.
The Code Pad area is displayed to the right of the Object Bench. Enter the
following code in the Code Pad

new Triangle()

You should see the following. Drag the new triangle object to the Object Bench
using the object symbol in the margin, and accept the instance name triangle1.
Make the triangle object visible in the picture.

Q1.8 What key word in code is used when creating an object?

Task 2 : Working with interacting objects

Getting started

1. Close the shapes project and open the project picture. You can find this project in
the same examples folder inside the BlueJ application, or download from
GCULearn. Compile the project if necessary.

This project contains the same shape classes as the previous one, but there is
also an additional class Picture.

 M1I322909: PROGRAMMING 1

 page 5

Creating interacting objects

2. Create an instance of the class Picture with name picture1 in the Object Bench.

3. Call the draw method of picture1. You should see a very simple picture of a
house made up from simple shapes. These shapes are instances of the Circle,
Square and Triangle classes you saw in Task 1.

Q2.1 How many objects, including the picture object are there? How many
objects did you directly create? How do you think the other objects were
created?

4. Inspect the picture object in the Object Bench. Its fields are all instances of one
or other of the shape objects.

Q2.2 How would you describe the relationship between the picture object
and the other objects?

Calling methods

5. With the Object Inspector for the picture object open, select the square object
that represents the wall of the house and click the Inspect button. You should see
another Object Inspector, for that object.

Q2.3 What colour is the wall (square) object?

6. Call the setBlackAndWhite method of the picture object. Inspect the picture
object again, and from there inspect the wall object.

Q2.4 What field of that object has changed? What method does a square
object provide to change its colour? What method did you call? How did
the square’s method get called?

 M1I322909: PROGRAMMING 1

 page 6

Task 3 : Modifying source code
In this final task you will try to make some changes to the Java code in the shapes
project and observe the effect of the changes. You will learn much more about how to
write code as you progress through the module, but you can try this task now if you are
feeling adventurous.

1. Continue to work with the shapes project. Open the code editor for the Picture
class (right-click on the class and select Open Editor). Look for the code that
defines the colour of the sun in the picture. This code will be inside a block of
code that defines a method called draw. Change the code so that the sun will be
blue rather than yellow.

2. Compile the class by clicking the Compile button in the code editor, and test
your change by creating a new picture object and calling its draw method, i.e.
the method you have just modified. Note that every time you compile code, all
existing objects are removed from the object bench and the picture window is
closed.

3. Add a door to the house. This should be a square the same size and color as the

window, and should be at the bottom of the wall, like this:

To do this you will need to add a new line:

private Square door;

immediately after the similar line which declares the window field, and then add
code into the draw method to create and position the door. Test your change - it
may take some trial and error to get the position right.

4. Add code at the end of the draw method to make the sun set. It should move
slowly downwards until it disappears from the picture. Hint: use the method
slowMoveVertical of Circle. Test your change by creating a picture and calling
the draw method.

5. Separate out the code to make the sun set into a new method sunset so that it
can be called at any time. Test your change by creating a picture and calling the
draw method and then the sunset method.

