SAMPLE PROBLEM 1/1

Determine the weight in newtons of a car whose mass is 1400 kg . Convert the mass of the car to slugs and then determine its weight in pounds.

Solution. From relationship $1 / 3$, we have

$$
W=m g=1400(9.81)=13730 \mathrm{~N}
$$

Ans.
From the table of conversion factors inside the front cover of the textbook, we see that 1 slug is equal to 14.594 kg . Thus, the mass of the car in slugs is

$$
m=1400 \mathrm{~kg}\left[\frac{1 \text { slug }}{14.594 \mathrm{~kg}}\right]=95.9 \text { slugs }
$$

Ans.

Finally, its weight in pounds is

$$
W=m g=(95.9)(32.2)=3090 \mathrm{lb}
$$

Ans.
As another route to the last result, we can convert from kg to lbm. Again using the table inside the front cover, we have

$$
m=1400 \mathrm{~kg}\left[\frac{1 \mathrm{lbm}}{0.45359 \mathrm{~kg}}\right]=3090 \mathrm{lbm}
$$

The weight in pounds associated with the mass of 3090 lbm is 3090 lb , as calculated above. We recall that 1 lbm is the amount of mass which under standard conditions has a weight of 1 lb of force. We rarely refer to the U.S. mass unit lbm in this textbook series, but rather use the slug for mass. The sole use of slug, rather than the unnecessary use of two units for mass, will prove to be powerful and simple-especially in dynamics.

Helpful Hints

(1) Our calculator indicates a result of 13734 N. Using the rules of signifi-cant-figure display used in this textbook, we round the written result to four significant figures, or 13730 N . Had the number begun with any digit other than 1 , we would have rounded to three significant figures.

A good practice with unit conversion is to multiply by a factor such as $\left[\frac{1 \text { slug }}{14.594 \mathrm{~kg}}\right]$, which has a value of 1 , because the numerator and the denominator are equivalent. Make sure that cancellation of the units leaves the units desired; here the units of kg cancel, leaving the desired units of slug.
(3) Note that we are using a previously calculated result (95.9 slugs). We must be sure that when a calculated number is needed in subsequent calculations, it is retained in the calculator to its full accuracy, ($95.929834 \ldots$) until it is needed. This may require storing it in a register upon its initial calculation and recalling it later. We must not merely punch 95.9 into our calculator and proceed to multiply by 32.2 -this practice will result in loss of numerical accuracy. Some individuals like to place a small indication of the storage register used in the right margin of the work paper, directly beside the number stored.

SAMPLE PROBLEM 1/2

Use Newton's law of universal gravitation to calculate the weight of a $70-\mathrm{kg}$ person standing on the surface of the earth. Then repeat the calculation by using $W=m g$ and compare your two results. Use Table $\mathrm{D} / 2$ as needed.

Solution. The two results are

$$
\begin{aligned}
& W=\frac{G m_{e} m}{R^{2}}=\frac{\left(6.673 \cdot 10^{-11}\right)\left(5.976 \cdot 10^{24}\right)(70)}{\left[6371 \cdot 10^{3}\right]^{2}}=688 \mathrm{~N} \\
& W=m g=70(9.81)=687 \mathrm{~N}
\end{aligned}
$$

The discrepancy is due to the fact that Newton's universal gravitational law does not take into account the rotation of the earth. On the other hand, the value $g=$ $9.81 \mathrm{~m} / \mathrm{s}^{2}$ used in the second equation does account for the earth's rotation. Note that had we used the more accurate value $g=9.80665 \mathrm{~m} / \mathrm{s}^{2}$ (which likewise accounts for the earth's rotation) in the second equation, the discrepancy would have been larger (686 N would have been the result).

Helpful Hint

(1) The effective distance between the mass centers of the two bodies involved is the radius of the earth.

