SAMPLE PROBLEM 1/3

For the vectors \mathbf{V}_{1} and \mathbf{V}_{2} shown in the figure,
(a) determine the magnitude S of their vector sum $\mathbf{S}=\mathbf{V}_{1}+\mathbf{V}_{2}$
(b) determine the angle α between \mathbf{S} and the positive x-axis
(c) write \mathbf{S} as a vector in terms of the unit vectors \mathbf{i} and \mathbf{j} and then write a unit vector \mathbf{n} along the vector sum \mathbf{S}
(d) determine the vector difference $\mathbf{D}=\mathbf{V}_{1}-\mathbf{V}_{2}$

Solution (a) We construct to scale the parallelogram shown in Fig. a for adding \mathbf{V}_{1} and \mathbf{V}_{2}. Using the law of cosines, we have

$$
\begin{aligned}
S^{2} & =3^{2}+4^{2}-2(3)(4) \cos 105^{\circ} \\
S & =5.59 \text { units }
\end{aligned}
$$

(b) Using the law of sines for the lower triangle, we have

$$
\begin{aligned}
& \frac{\sin 105^{\circ}}{5.59}=\frac{\sin \left(\alpha+30^{\circ}\right)}{4} \\
& \sin \left(\alpha+30^{\circ}\right)=0.692 \\
& \left(\alpha+30^{\circ}\right)=43.8^{\circ} \quad \alpha=13.76^{\circ}
\end{aligned}
$$

(c) With knowledge of both S and α, we can write the vector \mathbf{S} as
2) Then $\quad \mathbf{n}=\frac{\mathbf{S}}{S}=\frac{5.43 \mathbf{i}+1.328 \mathbf{j}}{5.59}=0.971 \mathbf{i}+0.238 \mathbf{j}$

Ans.

Ans.
(d) The vector difference \mathbf{D} is

$$
\begin{aligned}
\mathbf{D} & =\mathbf{V}_{1}-\mathbf{V}_{2}=4\left(\mathbf{i} \cos 45^{\circ}+\mathbf{j} \sin 45^{\circ}\right)-3\left(\mathbf{i} \cos 30^{\circ}-\mathbf{j} \sin 30^{\circ}\right) \\
& =0.230 \mathbf{i}+4.33 \mathbf{j} \text { units }
\end{aligned}
$$

Ans.
The vector \mathbf{D} is shown in Fig. b as $\mathbf{D}=\mathbf{V}_{1}+\left(-\mathbf{V}_{2}\right)$.

Ans.

Ans.

Helpful Hints

(1) You will frequently use the laws of cosines and sines in mechanics. See Art. C/6 of Appendix C for a review of these important geometric principles.
(2) A unit vector may always be formed by dividing a vector by its magnitude. Note that a unit vector is dimensionless.

