SAMPLE PROBLEM 1/3

- For the vectors \mathbf{V}_1 and \mathbf{V}_2 shown in the figure,
- (a) determine the magnitude S of their vector sum $\mathbf{S} = \mathbf{V}_1 + \mathbf{V}_2$
- (b) determine the angle α between **S** and the positive *x*-axis
- (c) write **S** as a vector in terms of the unit vectors **i** and **j** and then write a unit vector \mathbf{n} along the vector sum \mathbf{S}
- (d) determine the vector difference $\mathbf{D}=\mathbf{V}_1-\mathbf{V}_2$

Solution (a) We construct to scale the parallelogram shown in Fig. a for adding \mathbf{V}_1 and \mathbf{V}_2 . Using the law of cosines, we have

$$S^2 = 3^2 + 4^2 - 2(3)(4) \cos 105^{\circ}$$

 $S = 5.59$ units Ans.

(b) Using the law of sines for the lower triangle, we have

$$\frac{\sin 105^{\circ}}{5.59} = \frac{\sin(\alpha + 30^{\circ})}{4}$$
$$\sin(\alpha + 30^{\circ}) = 0.692$$
$$(\alpha + 30^{\circ}) = 43.8^{\circ} \qquad \alpha = 13.76^{\circ}$$

(c) With knowledge of both S and α , we can write the vector **S** as

$$S = S[\mathbf{i} \cos \alpha + \mathbf{j} \sin \alpha]$$

= 5.59[\mathbf{i} \cos 13.76° + \mathbf{j} \sin 13.76°] = 5.43\mathbf{i} + 1.328\mathbf{j} \sum inits
$$\mathbf{n} = \frac{S}{\alpha} = \frac{5.43\mathbf{i} + 1.328\mathbf{j}}{5.50} = 0.971\mathbf{i} + 0.238\mathbf{j}$$

(d) The vector difference ${\bf D}$ is

 \overline{S}

2 Then

$$\mathbf{D} = \mathbf{V}_1 - \mathbf{V}_2 = 4(\mathbf{i} \cos 45^\circ + \mathbf{j} \sin 45^\circ) - 3(\mathbf{i} \cos 30^\circ - \mathbf{j} \sin 30^\circ)$$

= 0.230\mathbf{i} + 4.33\mathbf{j} units

The vector **D** is shown in Fig. *b* as $\mathbf{D} = \mathbf{V}_1 + (-\mathbf{V}_2)$.

5.59

Helpful Hints

Ans.

- 1 You will frequently use the laws of cosines and sines in mechanics. See Art. C/6 of Appendix C for a review of these important geometric principles.
- 2 A unit vector may always be formed by dividing a vector by its magnitude. Note that a unit vector is dimensionless.