SAMPLE PROBLEM 2/1

The forces $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3}, all of which act on point A of the bracket, are specified in three different ways. Determine the x and y scalar components of each of the three forces.

Solution. The scalar components of \mathbf{F}_{1}, from Fig. a, are

$$
\begin{aligned}
& F_{1_{x}}=600 \cos 35^{\circ}=491 \mathrm{~N} \\
& F_{1_{y}}=600 \sin 35^{\circ}=344 \mathrm{~N}
\end{aligned}
$$

Ans.
Ans.
The scalar components of \mathbf{F}_{2}, from Fig. b, are

$$
\begin{aligned}
& F_{2_{x}}=-500\left(\frac{4}{5}\right)=-400 \mathrm{~N} \\
& F_{2_{y}}=500\left(\frac{3}{5}\right)=300 \mathrm{~N}
\end{aligned}
$$

Ans.
Ans.
Note that the angle which orients \mathbf{F}_{2} to the x-axis is never calculated. The cosine and sine of the angle are available by inspection of the 3-4-5 triangle. Also note that the x scalar component of \mathbf{F}_{2} is negative by inspection.

The scalar components of \mathbf{F}_{3} can be obtained by first computing the angle α of Fig. c.

$$
\alpha=\tan ^{-1}\left[\frac{0.2}{0.4}\right]=26.6^{\circ}
$$

(1) Then,

$$
\begin{aligned}
& F_{3_{x}}=F_{3} \sin \alpha=800 \sin 26.6^{\circ}=358 \mathrm{~N} \\
& F_{3_{y}}=-F_{3} \cos \alpha=-800 \cos 26.6^{\circ}=-716 \mathrm{~N}
\end{aligned}
$$

Ans.
Ans.
Alternatively, the scalar components of \mathbf{F}_{3} can be obtained by writing \mathbf{F}_{3} as a magnitude times a unit vector $\mathbf{n}_{A B}$ in the direction of the line segment $A B$. Thus,

2

$$
\begin{aligned}
\mathbf{F}_{3}=F_{3} \mathbf{n}_{A B}=F_{3}=\frac{\stackrel{\rightharpoonup}{A B}}{\overrightarrow{A B}} & =800\left[\frac{0.2 \mathbf{i}-0.4 \mathbf{j}}{\sqrt{(0.2)^{2}+(-0.4)^{2}}}\right] \\
& =800[0.447 \mathbf{i}-0.894 \mathbf{j}] \\
& =358 \mathbf{i}-716 \mathbf{j} \mathbf{N}
\end{aligned}
$$

The required scalar components are then

$$
\begin{aligned}
& F_{3_{x}}=358 \mathrm{~N} \\
& F_{3_{y}}=-716 \mathrm{~N}
\end{aligned}
$$

Ans.
Ans.
which agree with our previous results.

Helpful Hints

(1) You should carefully examine the geometry of each component determination problem and not rely on the blind use of such formulas as $F_{x}=F \cos \theta$ and $F_{y}=F \sin \theta$.
(2) A unit vector can be formed by dividing any vector, such as the geometric position vector $\overrightarrow{A B}$, by its length or magnitude. Here we use the overarrow to denote the vector which runs from A to B and the overbar to determine the distance between A and B.

