SAMPLE PROBLEM 2/7

The rigid structural member is subjected to a couple consisting of the two $100-\mathrm{N}$ forces. Replace this couple by an equivalent couple consisting of the two forces \mathbf{P} and $-\mathbf{P}$, each of which has a magnitude of 400 N . Determine the proper angle θ.

Solution. The original couple is counterclockwise when the plane of the forces is viewed from above, and its magnitude is

$$
[M=F d] \quad M=100(0.1)=10 \mathrm{~N} \cdot \mathrm{~m}
$$

The forces \mathbf{P} and $-\mathbf{P}$ produce a counterclockwise couple

$$
M=400(0.040) \cos \theta
$$

Equating the two expressions gives

$$
\begin{aligned}
10 & =(400)(0.040) \cos \theta \\
\theta & =\cos ^{-1} \frac{10}{16}=51.3^{\circ}
\end{aligned}
$$

Ans.

Helpful Hint

(1) Since the two equal couples are parallel free vectors, the only dimensions which are relevant are those which give the perpendicular distances between the forces of the couples.

Dimensions in millimeters

SAMPLE PROBLEM 2/8

Replace the horizontal 80 -lb force acting on the lever by an equivalent system consisting of a force at O and a couple.

Solution. We apply two equal and opposite $80-\mathrm{lb}$ forces at O and identify the counterclockwise couple
$[M=F d]$

$$
M=80\left(9 \sin 60^{\circ}\right)=624 \mathrm{lb}-\mathrm{in}
$$

Ans.
(1) Thus, the original force is equivalent to the $80-\mathrm{lb}$ force at O and the $624-\mathrm{lb}-\mathrm{in}$. couple as shown in the third of the three equivalent figures.

Helpful Hint

(1) The reverse of this problem is often encountered, namely, the replacement of a force and a couple by a single force. Proceeding in reverse is the same as replacing the couple by two forces, one of which is equal and opposite to the $80-\mathrm{lb}$ force at O. The moment arm to the second force would be $M / F=$ $624 / 80=7.79 \mathrm{in}$., which is $9 \sin 60^{\circ}$, thus determining the line of action of the single resultant force of 80 lb .

