52 Chapter 2 Force Systems

SAMPLE PROBLEM 2/7

The rigid structural member is subjected to a couple consisting of the two 100-N forces. Replace this couple by an equivalent couple consisting of the two forces **P** and $-\mathbf{P}$, each of which has a magnitude of 400 N. Determine the proper angle θ .

Solution. The original couple is counterclockwise when the plane of the forces is viewed from above, and its magnitude is

[M = Fd] $M = 100(0.1) = 10 \text{ N} \cdot \text{m}$

The forces \mathbf{P} and $-\mathbf{P}$ produce a counterclockwise couple

$$M = 400(0.040)\cos\theta$$

Equating the two expressions gives

 $10 = (400)(0.040)\cos\theta$

$$\theta = \cos^{-1} \frac{10}{16} = 51.3^{\circ}$$

Helpful Hint

1 Since the two equal couples are parallel free vectors, the only dimensions which are relevant are those which give the perpendicular distances between the forces of the couples.

SAMPLE PROBLEM 2/8

Replace the horizontal 80-lb force acting on the lever by an equivalent system consisting of a force at O and a couple.

Solution. We apply two equal and opposite 80-lb forces at O and identify the counterclockwise couple

[M = Fd]

a

 $M = 80(9 \sin 60^\circ) = 624$ lb-in.

Ans.

Ans.

Thus, the original force is equivalent to the 80-lb force at O and the 624-lb-in. couple as shown in the third of the three equivalent figures.

Helpful Hint

1 The reverse of this problem is often encountered, namely, the replacement of a force and a couple by a single force. Proceeding in reverse is the same as replacing the couple by two forces, one of which is equal and opposite to the 80-lb force at O. The moment arm to the second force would be M/F = 624/80 = 7.79 in., which is 9 sin 60°, thus determining the line of action of the single resultant force of 80 lb.

80 lb

