

School of Engineering and Built Environment

PROGRAMMING 1

M1I322909

03/02/16 JP

 M1I322909: PROGRAMMING 1

 2

1. INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

Introduction ... 2
Objects ... 4
Classes .. 4
Creating objects .. 5
Inspecting an object .. 7
Calling a method ... 8
Data types .. 8
Return values .. 9
Programming objects ... 10
Object interaction .. 10
Source code... 11
Wrap up .. 13

Introduction

The difference between a computer and other devices is that a computer can be
programmed. For example, a very basic toaster is not a computer – it contains a
simple electrical circuit designed to do one job only: toasting bread for a set length of
time. A computer, on the other hand, can be instructed in principle to do any job. The
designer of the computer does not know what jobs it will be required to do after it has
been built.

Programs
To get a computer to do a job, you need to give it instructions in a language that it
can understand. Computers are able to understand, a range of languages that have
more limited vocabulary and stricter rules than the natural languages that humans
speak. These are known as programming languages. The language you will be
learning to use in this module is called Java.

You often want a computer to do the same job over and over again. Most jobs
require a sequence of many instructions to be carried out. Rather than requiring a
user to issue these instructions every time, it is better to assemble them into a
collection of instructions, known as a program, which can be executed, or run, each
time the job needs to be done. The text that defines the instructions is known as
program code. Programs are often known as software, in contrast to the physical
components of a computer, which are known as hardware.

Programming is the process of developing a program by writing code in a
programming language, and is one of the key skills needed by a Computing
professional.

Computers everywhere
In the early 1960’s there were a few thousand computers in the world, and these
were large systems that would each fill an entire room. Nowadays, as well as the
billions of personal computers and laptops which are in use, computers are all

 M1I322909: PROGRAMMING 1

 3

around us in places which are not all obvious. Many people carry phones which are
actually sophisticated computers which can run a huge range of programs, or apps.
Computers are embedded in many everyday products, such as cars, washing
machines, televisions and so on (including some more expensive digital toasters!),
and these computers have been programmed to provide ways of controlling the
functions of these items. When you browse the web, for example to shop online, you
are interacting, not just with the device you are holding or sitting in front of, but also
over the internet with powerful computers known as servers which are programmed
to provide the functions of the web sites you use.

In all these cases, the computer will not do anything useful unless it is programmed
to do so. For example, when you use the on-screen schedule guide on a modern
television you are running a program which a programmer has written to instruct the
computer that is built into the television.

Computers and programs
Every computer is designed to provide a basic set of capabilities:

• Executing instructions
• Storing information needed while executing instructions
• Communicating with external devices, such as keyboards, screens,

permanent storage devices, networks

A programming language lets you, as a programmer, write program code which
makes use of these capabilities to perform some useful function. You are likely to
learn about the components that computers have in order to provide these
capabilities elsewhere in your course (for example in the module Fundamentals of
Computing).

Software engineering
A program can be just a few lines of code that perform a simple task. However, many
of the programs that are written today are very complex. Building complex software is
in some ways like building a complex physical structure such as a bridge or an
aircraft, and should be done similarly using an engineering process involving:
analysing what the software needs to be able to do; designing a solution to meeting
those needs; implementing the software according to the design; and testing to make
sure it all works.

 M1I322909: PROGRAMMING 1

 4

This process is called software engineering, and you may learn more about this
elsewhere (for example in the module Fundamentals of Software Engineering).
Programming is essentially one – a very important aspect! – of the process of
implementing software. However, programming is also closely related to other parts
of the software engineering process, and in this module you will learn how to apply
some important software engineering techniques.

Objects
Java, like many of the most widely-used languages, is an object-oriented
programming language, and a program written in Java is an object-oriented
program. This means that Java allows you to create in the computer a model of
some part of the world. This model is built up from objects, and is at the core of an
object-oriented program.

Objects in many cases represent “things” which exist in the real world. For example,
a program that allows customers to buy books online will use objects representing
customers, books and orders. A word processor program will deal with objects
representing words and paragraphs. A computer game may deal with objects
representing characters and scenes.

When an object-oriented program is running, it creates objects which do their own
jobs and also work together, or collaborate, to perform the required actions. In the
real world there are many examples of components that work together like this,
whether it is parts of a machine or people in a team. Just like in the real world, the
success of a program depends on all the objects doing their job, and also, crucially,
on the communication between them.

Classes
An OO program creates the objects it needs as it runs. Often there will be more than
one object of the same type created. A game may have several characters of the
same type, for example, and a word processor will need to deal with many words.
These objects will be similar, and will be able to do the same things, but will also
have properties that distinguish each one from others of the same type.

In order to know how to create an object of some type, the program needs to have a
template which specifies what an object of that type can do. This template is called a
class. In fact, when you write the code for a program, you are actually writing the
classes that are used to create objects. An object is a single instance of a class –
there can be many objects of the same type.

A class specifies the following for the objects it is used to create:

• The name of the type of object (e.g. Customer)
• The properties which each object will have (e.g. name)
• The actions which each object can perform (e.g. change password)
• The way in which each object is linked with other objects (e.g. with Order

objects)

 M1I322909: PROGRAMMING 1

 5

Working with objects
Let’s see how this works by creating and working with some actual Java objects. For
now we will use classes that have already been written – later on you will learn to
write your own classes in Java. Note that the steps you follow here introduce quite a
few of the really important ideas of object-oriented programming, and there is a lot to
take in! Don’t worry, we will look again at all these ideas and how you make use of
them to write your own programs as we go through the module.

Using BlueJ
You will use the BlueJ Integrated Development Environment (IDE) throughout this
module to create objects, classes and programs in Java. To get the most out of
reading these notes you should follow through the example activities with BlueJ
as you do so.

GETTING HOLD OF BLUEJ

BlueJ is installed on the PCs in the computer labs on campus (it may be
in a virtual machine). If you want to use it on your own computer it is
easy to install. You will also need to install the Oracle Java SDK which
BlueJ needs to create and run Java programs (and to run at all, as it is a
Java program itself). You can find the installer and full instructions at
www.bluej.org

With BlueJ your work is organised in projects. A project called bicycles has already
been created (you can download this from GCU Learn as a ZIP archive and extract
the contents). A project is contained in a folder and looks like this when you open it in
BlueJ using the Project>Open Project menu option and browse to the project folder.

The main area of the BlueJ window shows the classes that belong to the project, in
this case there are classes called Bicycle and Rider. You will see shortly how
these classes were created, but for now we’ll just use them.

classes

 M1I322909: PROGRAMMING 1

 6

The example classes
The presence of a Bicycle class in the project means that objects of that type can
be created (and the same applies to Rider). But why would we want to create a
bicycle object in a program? As we said earlier, objects often model some part of
the world. What do we mean by “model”? An object which models a real-world “thing”
(or entity) should behave in some way like the real thing. It doesn’t have to do
everything that the real thing can do, but needs to model the behaviour that is
relevant to the program that will need to use the object.

Software objects representing bicycles might be useful in, say, a bike simulator
program or a game program that involves bikes. The user or player would use some
input device to give commands corresponding to the actions, changing gear for
example, of a real rider on a bike, and the “model” bike should respond like a real
bike would to those actions.

Not everything about a real entity will be relevant. To take a different example, a
customer object in an online bookstore program represents a real person, and it is
not necessary to include, say, the customer’s favourite colour in the model as it is not
relevant to buying books. The customer’s favourite author might be included in the
model, though, as this might help the program recommend new books to buy.

In the example you are looking at here, our Bicycle objects will simply model the
way that the road speed of a real bike responds to change in pedalling speed
(revolutions per minute, or RPM) and gear selection. This is a very simple model,
which doesn’t include complications such as steering (everything in this particular
“world” happens in a straight line!)

Creating an object
Let’s try creating some objects. To create a Bicycle object (an instance of the
Bicycle class) in BlueJ syou right-click on the class and select the option shown
below.

A dialog box asks you for some information about the object you want to create - for
example how many gears will this particular bicycle have? We will use the values
shown below:

 M1I322909: PROGRAMMING 1

 7

The new object is created and shown in BlueJ in the Object Bench at the foot of the
main window as a red rectangle. Note that the rectangle shows the name of this
particular object (bicycle1) and the name of the class it was created from
Bicycle. By convention, we give classes names that begin with capitals and objects
names that begin with lower case characters. If you create another object from the
Bicycle class in the same way, this object will also appear in the Object Bench,
with another name (for example bicycle2) and the same class name – you can try
this for another one or two bicycle objects.

Inspecting an object
So what can you do with this object? Firstly, let’s see what it looks like. If you right-
click on the object, and choose Inspect from the pop-up menu, you will see a more
detailed picture of the object. This shows the properties and their values for this
particular object.

You can create another bicycle object, which will have the same set of properties, but
may have different values for these, for example 7 gears instead of 5. Note that
some properties have been set up automatically when the object was created – all
bicycles are in gear 1 and being pedalled at 300rpm to start with. The other values
are the ones that were specified when you created the object.

name of new object,
BlueJ suggests a
default value

 M1I322909: PROGRAMMING 1

 8

Calling a method
Let’s make the bicycle object do something. You usually make a real bicycle change
gear by moving a lever – how do we make this model object change gear? Right-
clicking on the object also gives you the option to make the object perform one of its
actions. These actions are performed by calling methods, and each menu choice is
the name of a method. Calling the method changeGear is the model equivalent of
moving a real gear lever.

When you call the method you are prompted for some additional information about
the action you want to be performed. With a real bicycle you can change gear up or
down by moving the lever in one direction or another. With the model, you choose
the direction by entering a 0 or a 1. This additional piece of information is known as a
parameter of the method call.

Call the method with a direction parameter value of 1, and inspect the object
again. You should see that the gear property has changed. What happens if you
change up repeatedly? Or change down repeatedly? Does this behaviour make
sense in terms of a real bicycle?

Data types
What kind of information is the direction parameter? The method call dialog asks
you to enter an int value, which means the value should be a whole number, or
integer. int is the type of the parameter data.

 M1I322909: PROGRAMMING 1

 9

When you inspect the object, you can see that most of the properties are also int
values. However, the wheelDiameter is a different type, as the size of a wheel
should not necessarily be an integer. The data type of wheelDiameter is called
double, which means the value can be a floating-point number with a fractional part.

Java supports a number of data types for the information used in programs, including
numbers, characters, true/false, and many others, and you will learn more about
these shortly.

Return values
Calling the changeGear method had no immediate visible effect. You had to inspect
the object to see that it had made a difference. The method was essentially an
instruction to the bicycle. The bicycle carries out the instruction but does not respond
to the user to say it has been done.

Sometimes you want an object to respond to a method call, so that the method call is
more like a question than an instruction. Let’s say you want to know how fast the
bicycle is actually going. This will depend on how rapidly it is being pedalled and also
what gear it is in (increasing the gear will cause the road wheel to turn more times for
each rotation of the pedals, so that the bicycle goes faster). Our bicycle can calculate
its speed by using the values of its pedalRpm and gear properties. You can ask it to
do so by calling the method speed.

Call the speed method. When you do so, you are not prompted for any parameters,
as this operation doesn’t need any additional information. What you do see is the
response, or return value, of the method call. This is a value of type double. Note
that the return type is shown before the name of the method in the method call menu.
What is the return type of changeGear, and what do you think this means?

Try changing gear and checking the speed of the bicycle? Try also changing the
pedal RPM – can you find a method that allows you to do this? What information is
needed as a parameter for this method? Does the bicycle behave as it should – in
other words, is the bicycle object a reasonable approximation to the behaviour of a
real bicycle?

Sometimes it makes sense for a method to have both parameters and a return type.
When you change gear on a real bicycle you may be able to get an immediate
response to the action that tells you what gear the bicycle is, such as a numeric
indicator or simply the physical position of the lever. It might improve our model of
the bicycle if the changeGear method returned a value that indicated the new value
of gear. What would be the return type of the method if it were modified to do this?

 M1I322909: PROGRAMMING 1

 10

WHAT’S GOING ON IN THE COMPUTER?

How is Java making use of the capabilities of the computer while you
manipulate the bicycle object?

• Executing instructions – a method is a set of instructions, and the
computer executes these instructions when the method is called

• Storing information needed while executing instructions -
parameter values and the properties of the object need to be
stored so that they can be used by the instructions as the method
runs

Programming objects
So far you have seen how to create objects and call their methods using BlueJ’s
menus. This is useful when learning about object-oriented programming and creating
and testing classes.

However, as we said earlier, a Java program creates and uses objects as it runs. A
program will do so as a result of running instructions written in Java code. You can
see the equivalent Java code when you are working in BlueJ by opening the
Terminal window, and switching on the Record Method Calls option. Creating a
Bicycle object and calling some methods will produce the following in the Terminal:

The first line shows that you create an object with the word new, and specify the
object name and type (class name). The following lines call methods of the object.

You will learn to write your own code using the Java language soon.

Object interaction
Most object-oriented programs need more than one type of object. So far you have
only created bicycles. If you look at the project in BlueJ you will see there is another
class, Rider, so it looks like you can put a rider onto each bicycle. Let’s create a
rider object using this class. First, create a bicycle object bicycle1 as before in the
Object Bench, and then right-click the Rider class and select the option:

new Rider(string name, Bicycle bicycle);

 M1I322909: PROGRAMMING 1

 11

The dialog box prompts you for information to initialise the object. These items of
information are actually parameters for a constructor that belongs to the Bicycle
class – a constructor is similar to a method but is called only when a new object is
created. The name parameter is straightforward as its type is String (remember to
put quote marks round the string value).

The other parameter represents the bicycle object that the new rider object will be
riding. This is an example of one object that is related to another object. What is the
type of this parameter? It is not one of the basic data types mentioned earlier.
Instead, it is the name of the class from which the related object was created,
namely Bicycle.

So what do you put in the prompt? You can’t somehow squeeze the whole bicycle
object into that text box, so instead you enter the name of the object, bicycle1.
This name represents the whole object – we say that it is a reference to the object.
In BlueJ you can either type the object name or simply click on the object in the
Object Bench and its name will be copied to the prompt. Click OK and the new rider
object rider1 will be added to the Object Bench.

The two objects in the Object Bench are now related to each other. To observe this
in action, inspect bicycle1 and note its property values. Then, call the method
speedUp of rider1. Not much will happen obviously as this method does not return
a value. However, you can inspect bicycle1 again and note the change that has
happened. This shows that an action by one object has caused the related object
to perform one of its own actions. Try experimenting with other methods of
rider1 and note the effect on bicycle1.

In this example you used an object as a constructor parameter. Method parameters
can also be objects. To test this, create another bicycle object, bicycle2, and call
the changeBicycle method of rider1 so that the rider is now riding the
bicycle2. Then, check by inspecting that calls to the methods of rider1 now
affect bicycle2, not bicycle1.

Source code
You have seen how to create objects in BlueJ as instances of classes. The classes
define what properties and actions these objects can have. Sometimes when you are
writing a program you can take classes that someone has created and use them, as
you have seen in these examples. Most often, though, you need to create your own
classes which allow you to define exactly what kind of objects your program can

 M1I322909: PROGRAMMING 1

 12

use, and what properties and actions they can have. In many cases you will use a
combination of your own classes and classes that have already been written.

You create a class by writing Java source code. In fact, when you write an object-
oriented program you are mainly writing or modifying classes. You will learn in detail
how to write source code to define a class shortly. For now, let’s try to make a simple
change to the Bicycle class. Right-click on the class and select the Open Editor
option. A BlueJ editor window should open, showing the source code for this class.

Find this line of code (highlighted in the screenshot):

this.pedalRpm = 300;

and change the number from 300 to 400 (there are actually two lines which contain
this same code – choose the first one). The way the Bicycle class is displayed in
the BlueJ window will now have changed – it will now be shown cross-hatched. This
indicates that the source code for the class has been changed and not yet compiled.
Click the Compile button in the editor. You should (hopefully) see a message “Class
compiled – no syntax errors” at the bottom of the editor, and the Bicycle class
should be display without cross-hatching. You should then be able to create a new
bicycle object, inspect it and observe the effect of your code edit.

Why do you need to compile the code? Well, we said earlier that to program a
computer you need to give it instructions in a language it understands. Unfortunately,
the computer doesn’t actually understand Java (or any other programming language,
in fact). It only really understands very simple instructions which consist of binary
numbers, called machine code. It is very difficult for human programmers to create
useful programs by writing these instructions. Programming languages such as Java
are known as high-level languages, which can be translated, or compiled, by another
program called a compiler into machine code that the computer can execute.
Because programming languages have strict rules (syntax) it is feasible to translate
source code to machine code – it would be unfeasible to compile instructions given in
natural language. It is much easier to write useful programs using a high-level
language than using machine code.

 M1I322909: PROGRAMMING 1

 13

The compiler doesn’t just translate – it also checks that your source code obeys the
rules of the programming language. If your code breaks any rules it can’t be
translated into machine code successfully, and the compiler will give you one or
more error messages. Seeing a compiler error message is not something to get
upset about. All programmers, from novices to professionals, encounter
compiler errors as they write code. An important part of programming is reading
error messages, identifying the errors and fixing them. This can seem frustrating to
beginners, but in fact is a process of the programmer working together with the
compiler to craft perfect code!

Let’s try to break a rule and see how the compiler helps. In the code editor for the
Bicycle class find the line of code you change before. Delete the semi-colon from the
end of the line and click Compile. You will see an error message at the foot of the
editor, and the line you edited will be highlighted.

This error message gives a pretty strong clue to what is wrong – in Java, there is a
rule that statements must end with a semi-colon. You can fix this and re-compile –
you should see the “no syntax errors” message again. However, some compiler error
messages can be a bit more difficult to interpret than this. BlueJ has a button with a ?
to the right of the error message, and clicking on this can sometimes give more
useful information about the error.

Wrap up
You’ve been introduced in this lecture to the following concepts:

Computers and Programming, Objects, Classes, Methods, Parameters, Data
types, Return values, Object interaction, Source code and Compilers

In the next lecture you will start to learn how to write your own Java code

	PROGRAMMING 1
	M1I322909
	1. Introduction to Object-Oriented Programming
	Introduction
	Objects
	Classes
	Working with objects
	Creating an object
	Inspecting an object
	Calling a method
	Data types
	Return values
	Programming objects
	Object interaction
	Source code
	Wrap up

	getting hold of BlueJ
	what’s going on in the computer?

