
2. WRITING JAVA CODE

Starting to write Java code ... 1
The CodePad in BlueJ .. 1
Variables .. 2
Operators ... 4
Expressions ... 5
Statements ... 6
Output .. 7
Wrap up .. 7
Appendix:Java operator precedence ... 8

Starting to write Java code
In the previous lecture you saw that a class is created by writing Java source code.
You will soon see how to create a complete Java class, but before that you need to
learn a little bit about how to write Java code.

A programming language is like a natural language that we speak or write in that it
has components (in a natural language these would be the words, sentences,
paragraphs, and so on) and rules, or syntax. When you speak you need to follow the
rules or the person you are speaking to will not understand you. When you write a
program, you also need to follow the rules for the programming language, otherwise
the computer will not be able to understand.

When you listen to someone speak you can often work out or guess what they mean
even if they don’t follow the rules of language very closely. Computers can’t do that
with instructions, though, so programming language syntax is very strict.

 As you saw previously, Java code is actually translated into something that the
computer can execute. This process is called compiling, and also does the job of
checking that your syntax is correct.

In this lecture you will see some short fragments of Java code that will demonstrate
the basic components and rules of the language. Once you are familiar with these
you will be ready to write classes, and then programs that make use of classes.

The CodePad in BlueJ
You can experiment with short fragments of Java code using the CodePad feature in
BlueJ. You need to have a project open in BlueJ – you can open the empyproject
project that is available for this lecture. This project has no classes, but it allows you
use the CodePad, and you need it open to try out all the examples in this lecture.

Select Show CodePad from the View menu, and the CodePad will appear as a
separate area to the right of the object bench. You can type something here and
immediately see its effect. To try this out, type the following and press Enter.

3 + 2

 M1I322909: PROGRAMMING 1

 2

This simply causes two numbers to be added and the result should be displayed.

These lectures notes and some later ones contain some practice exercises using the
CodePad. In each lecture, the first exercise will tell you what project to open in BlueJ
and the other exercises will assume that the project is still open. The exercises in this
lecture assume that the project emptyproject is still open.

Variables
In the previous lecture you saw some examples of information (or data) that is stored
and used in a program. Objects have properties, for example, and information is
passed to methods as parameters. You will see many other uses for information in
programs throughout this module.

In general, programs store information using variables. Variables are stored in the
computer’s memory, and can be retrieved from that memory when needed by the
program.

Variable names
A variable is an item of information which has a value and is named by an identifier.
It is called a variable because its value may change as the program runs. By giving it
an identifier you can always refer to it by name, so that its value can be retrieved
from memory.

A variable name in Java must be a legal identifier – a series of characters that begins
with a letter. Example: myVariable. The name cannot contain spaces. The name
must not be a Java keyword (e.g. class), or true, false or null.

By convention variable names start with a lower case character. If the name consists
of more than one word, each following word begins with an uppercase letter.

Types
A variable has a type that determines what kind of values it can hold. As you saw in
the previous lecture there can be many different types of data in a program, such as
numbers (integers, floating point numbers), characters, and so on.

It is important for the type of a variable to be defined, as the computer needs to store
its value. As the value may change, the computer needs to reserve enough space in
memory to store any valid value of that type. If a variable is an integer, then the
space reserved must be able to hold the minimum and maximum possible values for
an integer and any value in between, for example.

In Java, some types of information are stored as primitive types. This means that a
single piece of information is stored as the value for a variable which has a primitive
type. Java has a key word to identify each type. Primitive data types include:

 M1I322909: PROGRAMMING 1

 3

keyword description
byte Byte-length integer
short Short integer
int Integer
long Long integer
float Single-precision floating point
double Double-precision floating point
char A single Unicode character
boolean A Boolean value (true or false)

There are different sizes of integer types. A byte uses a single byte of memory and
can only store values within the range -128 to 127. The other integer types use more
bytes of memory to store each value and can store larger numbers. Float and double
types store floating point numbers, and differ in the number of decimal places of
precision they can store.

Another useful data type for variables is String. A string stores a collection of
characters, so it is not a primitive type.

Java also allows variables which have object types. Object type variables don’t store
single values. Instead, they hold references to objects. We will look at object types
later in the module.

Declaring a variable
To give a variable a type and a name, and make sure space is reserved for it in
memory, you write a variable declaration, e.g.

int myVariable;

Note that a variable declaration is a statement in Java that needs to end in a semi-
colon. We will look at statements in more detail shortly.

Initialising a variable
Variables can be initialised with an assignment statement when they are declared,
e.g.

int myVariable = 10;

Other types of variable
Here are some examples of how to declare and initialise other types of variable. Note
the way the value is written in each case. For example, float values can be written
as a decimal number followed by the letter f, while double values can be just the
number. char values are enclosed in single quotes, String values in double
quotes. boolean variables can only have the values true and false.

float myFloat = 10.1f;
double myDouble = 10.1;
boolean myBoolean = true;
char myChar = 'j';
String myString = "java";

 M1I322909: PROGRAMMING 1

 4

CodePad – try the following in the CodePad
• Declare and initialise an int variable
• Type the name of the variable – you should see the value it holds
• Declare and initialise examples of each of the other variable types listed

above
• For each one type the name of the variable and check that it holds the value

you initialised it with

Operators
A variable is not much use unless you do something with it, so now we want to start
to write code that does more than simply assign values. Firstly, you need to learn
about operators. An operator performs a function on one, two or three operands.
An operand can be, for example, a variable name or a literal value. Java operators
include the following:

Arithmetic operators
Operator Example Description
+ x + y Adds x and y, also concatenates strings
- x - y Substracts y from x
* x * y Multiplies x by y
/ x / y Divides x by y
% x % y Gives remainder on dividing x by y
Shortcut operators
++ x++ Increments x by 1; gives value of x before increment
++ ++x Increments x by 1; gives value of x after increment
-- x-- Decrements x by 1; gives value of x before decrement
-- --x Decrements x by 1; gives value of x after decrement

Note that if an integer and a floating-point number are used as operands to a single
arithmetic operator, the result is floating point.

Relational operators
Operator Example Description
> x > y Returns true if x is greater than y
>= x >= y Returns true if x is greater than or equal to y
< x < y Returns true if x is less than y
<= x <= y Returns true if x is less than or equal to y
== x == y Returns true if x is equal to y
!= x != y Returns true if x is not equal to y

 M1I322909: PROGRAMMING 1

 5

Conditional operators
Operator Example Description
&& a && b Returns true if a and b are true
|| a || b Returns true if a or b is true
! !a Returns true if a is false

Assigning using operators
You can assign a new value to a variable once it has been declared. The new value
replaces the currently value if the variable has been initialised. The basic assignment
operator is =, e.g.

x = 3 assigns a value to a variable, replacing its current value

x = y assigns the value of variable y to variable x

The = sign has a special meaning in Java programming which is different to its
meaning in maths. It assigns the value on its right hand side to the variable
named on its left hand side. It does not simply mean that the two sides are equal.

In Java there are also some shortcut assignment operators. For example

x = x + 3

which adds 3 to the value of the variable x, can be written as

x += 3

Similarly, we can have x-=1, x*=10, x /=2, x %= 3

If you simply want to increment or decrement a variable by 1 you can use one of the
shortcut arithmetic operators, for example

x++

Unlike the other arithmetic operators, ++ and – can assign a new value to a variable
without the use of an assignment operator.

Expressions
An expression is a series of items, which can include literal values, variables,
operators and method calls that evaluates to a single value. You sometimes need
to use brackets to ensure that operators are applied in the order you want where this
differs from the default operator precedence – for example * and / are applied
before + and - by default in an expression (for reference, there is a complete table of
operator precedence at the end of this document).

For example:

x <= 12 evaluates to Boolean true if x is less

than or equal to 12

 M1I322909: PROGRAMMING 1

 6

x * y * z evaluates to result of multiplication

(y > 3) && (y < 10) evaluates to Boolean true if y is

between 4 and 9

x + 3 * y evaluates to 42 (3 * y is evaluated

first)

(x + 3) * y evaluates to 150 (x+3 is evaluated first)

++x increments x and evaluates to the new

value

CodePad
• Clear the CodePad – you can do this by clicking the Compile button
• Declare and initialise int variables x=12, y=10, z=38
• Enter the expressions listed above and check that they have the values

expected (note that you don’t type a semicolon (;) when entering an
expression). Do them in order – the last one changes the value of x!

Statements
A statement forms a complete unit of execution that instructs the computer to
perform an action such as assigning a variable. A statement is terminated with a
semicolon (;). You have already used statements to declare and initialise variables,
but there are many other actions that can be performed using statements.

For example:

x = x + 10; assignment

x--; decrementing

double y = 12.345; declaration and assignment

CodePad – clear the CodePad and try the following:
• Declare and initialise int variable x=0
• Enter the statements listed above (note that you do type the ; when entering a

statement) – entering a statement in CodePad causes that statement to be
executed

• How can you see the effects of entering these statements?

Note that an expression represents a value, while a statement actually does
something. A statement may contain expressions. For example:

 M1I322909: PROGRAMMING 1

 7

x + 10

is an expression whose value is 10 more than the value of the variable x, while

x = x + 10;

is a statement which assigns the value of that expression to the variable x. A
statement does not have a value.

Output
It is often necessary for a program to print output for the user. In Java you can print
like this:

System.out.println(“hello”);

System.out.println writes its output to a separate window called the Terminal
Window. It works in any Java program, not just in the CodePad.

CodePad - Clear the CodePad and try the following:
• Declare and initialise int variable x=3
• Enter a statement to print the string “hello”
• Enter a statement to print the value of the variable x

Wrap up
You’ve been introduced in this lecture to the following concepts:

Variables, Operators, Expressions, Statements, Output

In the next lecture you will start to learn how to write the source code to create your
own classes, making use of the Java language concepts in this lecture.

 M1I322909: PROGRAMMING 1

 8

Appendix:Java operator precedence
Note that this is a complete listing of operator precedence, and includes some
operators which you have not yet seen in the lectures.

Precedence Operator Type Associativity

15 ()
[]
·

Parentheses
Array subscript
Member selection

Left to Right

14 ++
--

Unary post-increment
Unary post-decrement

Right to left

13 ++
--
+
-
!
~

(type)

Unary pre-increment
Unary pre-decrement
Unary plus
Unary minus
Unary logical negation
Unary bitwise complement
Unary type cast

Right to left

12 *
/

%

Multiplication
Division
Modulus

Left to right

11 +
-

Addition
Subtraction

Left to right

10 <<
>>

>>>

Bitwise left shift
Bitwise right shift with sign extension
Bitwise right shift with zero extension

Left to right

9 <
<=
>

>=
instanceof

Relational less than
Relational less than or equal
Relational greater than
Relational greater than or equal
Type comparison (objects only)

Left to right

8 ==
!=

Relational is equal to
Relational is not equal to

Left to right

7 & Bitwise AND Left to right
6 ^ Bitwise exclusive OR Left to right
5 | Bitwise inclusive OR Left to right
4 && Logical AND

Left to right

3 || Logical OR Left to right
2 ? : Ternary conditional Right to left
1 =

+=
-=
*=
/=

%=

Assignment
Addition assignment
Subtraction assignment
Multiplication assignment
Division assignment
Modulus assignment

Right to left

	2. Writing Java code
	Starting to write Java code
	The CodePad in BlueJ
	Variables
	Variable names
	Types
	Declaring a variable
	Initialising a variable
	Other types of variable

	Operators
	Arithmetic operators
	Relational operators
	Conditional operators
	Assigning using operators

	Expressions
	Statements
	Output
	Wrap up
	Appendix:Java operator precedence

