
4. ADDING METHODS TO CLASSES

Methods ... 1
Defining a method ... 1
Calling a method ... 3
Scope of variables... 4
Getter and setter methods .. 5
Conditionals .. 6
Wrap up .. 7
Code for Bicycle class .. 8

Methods
Once an object has been created, what might the program want to do with it? It might
want to:

• use the value stored in any of the object’s fields
• change the value stored in any of the object’s fields

You have seen how fields are defined in the code for a class, and how the values
stored in those fields can be accessed.

However, one of the most important features of object-oriented programming is that
objects don’t just store information – they can also perform actions. So, once an
object has been created the program might (and almost certainly will) also want to:

• ask the object to perform any of its actions by calling a method

When you call a method you can think of this as sending a message to that object.
A message asks an object to perform an action. The action may be simply an
instruction to do something, with no response needed. Alternatively, the action can
be like a question that requires a response. In the latter case, the method needs to
return a value.

In this lecture you will learn how to write code within a class to define the methods for
that class. You will also see code that calls methods. As you will see in more detail in
the next lecture, objects can send messages to each other, by calling methods, and
this is how they collaborate with each other

Defining a method
Now let’s see how a method is defined. In lecture 1 you saw that there is a method
called speed in the example Bicycle class that returns a value representing the
road speed of the bicycle. Here’s the code for that method:

 M1I322909: PROGRAMMING 1

 2

 public double speed()
 {
 // speed is pedal RPM * wheel circumference /60 * gear
 double wheelCircumference = 3.14 * this.wheelDiameter;
 return this.pedalRpm * wheelCircumference / 60 *
 this.gear;
 }

From this, you can see that the method has a code block, just like a constructor, and
has a header that contains the name of the method. Methods and constructors look
quite similar, but there are some important differences:

Constructor Method
Called only once, when
object is created

Can be called many times
after the object has been
created

has to have the same
name as the class

can’t have the same name
as the class

Doesn’t return anything
so has no return type

Can have a return value
so need to specify return
type (void if no response
required)

So the method speed has a return type of double, which is specified before the
name of the method. If a method does not return a value (because it performs an
action that doesn’t require a response) you need to specify void as the return type.

This method has no parameters, as it doesn’t need to be supplied with any additional
information to do its job. You need to specify a parameter list for every method,
which declares parameters just like in a constructor, but in this case the list is empty
so is just written as empty round brackets ().

Note the name of the method. By convention in Java, method names start with
lower case characters, so you should stick to this when naming methods.

The combination of the name and the parameter list of a method is known as its
signature. You can have more than one method with the same name, as long as the
signatures are different. This is called method overloading, and is similar to the
constructor overloading you saw in lecture 2.

Let’s look inside the code block now, to see the code that runs when the method is
called. This code defines a set of instructions that carry out an action that an instance
of this class can do. In lecture 1 we said that a bicycle can calculate its speed by
using the values of its pedalRpm and gear properties. You can ask it to do so by
calling the method speed. So the speed method needs to do a calculation. Note that
the first line inside the method, starting with //, is simply a comment that explains
how the calculation is done.

You will learn more about writing expressions to do calculations later, so don’t worry
about the details of the method just yet. There are a couple of things that are
important to note at the moment, though.

 M1I322909: PROGRAMMING 1

 3

The calculation is done in two steps. First, the circumference of the wheel is
calculated from the wheel diameter (which is stored in the object as a field). The
calculated value is assigned to a double variable wheelCircumference, which is
declared inside the method. A variable declared inside a code block, for example a
method, is a local variable – it only exists inside that block. If you try to use it
outside that block, the compiler will report an error.

double wheelCircumference = 3.14 * this.wheelDiameter;

The second step completes the calculation and produces the result we want the
method to return. Instead of assigning this to a variable, we simply use the return
key word to indicate that this value should be returned. A method which has a
return type other than void must include a return statement like this.

Calling a method
You saw in lecture 3 how to create an object and a variable that refers to the object,
for example:

Bicycle bicycle1 = new Bicycle(0.5, 5);

You can call the speed method of this object as in this expression:

bicyle1.speed()

You saw code similar to this in lecture 1 when you called the method in BlueJ and
looked at the equivalent code. Note that the method is called when the expression is
evaluated.

Remember, bicycle1 is a variable that refers to an object. To call a method of an
object you use the dot notation mentioned earlier - you write object name.method
name(parameter values).

When a method returns a value you usually want to use that value in some way. For
example, you could write a statement to declare a variable and assign the value that
is the result of the method call to that variable. The variable type must match the
method return type:

double currentSpeed = bicycle1.speed();

This statement evaluates the expression that calls the speed method. Sometimes
you call a method directly in a statement. This is common when the method does not
return a value. For example, the Bicycle class has a method changeGear that has
the return type void, and would usually be called with a statement like this:

bicycle1.changeGear(1);

You saw previously that when creating an object your code must supply a valid
parameter list. This is also the case for calling methods. The supplied parameters
must match the number and types of the parameters declared in the method.

declare assign

 M1I322909: PROGRAMMING 1

 4

Additionally, if you assign the return value of a method to a variable, the variable type
must match the return type of the method. If either of these conditions is not met
the compiler will find the mistake and report it as a compiler error.

For example, the following are not valid method calls for a Bicycle object:

double currentSpeed = bicycle1.speed(2);
int currentSpeed = bicycle1.speed();
int newGear = bicycle1.changeGear(0);
bicycle1.changeGear(0, 1);

Can you see what is wrong with each of these? You will need to look at the listing of
the Bicycle class at the end of this lecture to see the code for the changeGear
method.

CodePad – open the bicycle project for lecture 4 and try the following in the
CodePad
• Declare a Bicycle variable, and initialise it by instantiating a new object
• Enter a call to the object’s speed method as an expression – note that the

expression is evaluated by calling the method
• Enter a statement that declares a variable of type double and assign to it the

value returned by the object’s speed method
• Enter the name of the variable to see its value

Scope of variables
You have now seen quite a few variables, and learned that variables can be used in
different ways. The use of variables is related to their scope. Scope is the extent in
the code within which a variable exists and can be used in that code. For
example, the scope of a local variable is limited only to the block in which the
variable was declared, whereas a field is a variable which belongs to the whole
object and can be used in any method. Note that the speed method uses the values
of several fields to do its calculation as well as declaring a local variable to help with
the calculation.

Variable Scope
local variable the block in which the variable was

declared
field (instance
variable)

any code in the class which contains the
field

parameter the constructor or method which declares
the parameter

 M1I322909: PROGRAMMING 1

 5

Getter and setter methods
As well as adding methods, we have changed the field declarations of the Bicycle
class slightly. They now have the keyword private in their declarations. Let’s see
why. It might be useful to be able to find and use the value of, for example, the
wheelDiameter field of a bicycle object. You could use dot notation to access this
value:

int diameter = bicycle1.wheelDiameter;

If you can access a variable, you can also assign a new value to it, for example

bicycle1.wheelDiameter = 0.3;

This might not be useful, and in fact, you might want code to only be able to read the
value, and not to be able to write new data to the field. You don’t necessarily want
anyone to be able to come along and put a smaller or larger wheel on your bike! You
may want to make this field read-only.

The problem is that you can’t get one without the other – if you can access a variable
you can change it. So, marking the wheelDiameter field private prevents access
to it almost completely. The exception is that code inside the Bicycle class can
access the field. The constructor needs to be able to access it to set its initial value,
for example. The line of code above, in the program code that created the object,
which tries to assign a value to 0.3 will now give a compiler error because the field is
private.

So how do you give read-only access to the value? This can be done by including a
method that simply returns the value of the field. This is known as a getter method,
or to use a posh term, an accessor method.

 public double getWheelDiameter()
 {
 return this.wheelDiameter;
 }

Note that:

• The getter method is part of the Bicycle class so can access the private
field

• The getWheelDiameter method is public, so other code can call the
method

• As a result, other code can find the value of the field using the getter, but
have no access to change the value

If you want to provide read and write access, you can also include a setter method
(or mutator method). Bicycle doesn’t have one for the wheelDiameter field, but if
it did it would look like the following. This takes a new value to assign to the field as a
parameter and does not return a value, so has a return type of void.

 public void setNWheelDiameter(double wheelDiameter)
 {
 this.wheelDiameter = wheelDiameter;
 }

 M1I322909: PROGRAMMING 1

 6

Setters can also be used to control the way a field value can be assigned so that a
nonsensical value can’t be set. Look at the method setPedalRpm – what limitation
does this impose on the value that can be set?

The ability to protect parts of a class by making them private, and providing
controlled access through public methods, is known as encapsulation. It is common
good practice to encapsulate fields in a class.

Note that the key word public allows a method, constructor or field to be called or
accessed by code outside the class. It’s not just getter and setter methods that are
defined as public: any method that should be called from code outside the class itself
should be defined as public. When applied to the class itself public has a slightly
different meaning that you will learn about later.

Conditionals
Finally, let’s look at one more method of Bicycle. If you look at the code you will
see a getter, and no setter, for the gear field. This is strange – surely you want to be
able to change gear (or model the action of changing gear)?

Well, you can, but in this model bicycle we want to set some strict rules about how
the gear change works:

• There are a limited number of gears, and you can’t select a gear number
below or above that range. On a 5-gear bike you shouldn’t be able to select
gear 10, or gear -1, for example

• The gear mechanism is sequential – you can’t go straight from gear 1 to gear
3 without selecting gear 2 on the way

Rather than a simple setter, changing the gear field is done with a method called
changeGear which enforces these rules. The use of the method was demonstrated
in lecture 1.The method takes a parameter that allows the calling code to specify
whether to change up or down.
This is more complicated than setPedalRpm because there are some decisions to
be made as the code runs:

• Change up or down?
• Is it possible to make that change with the available gears?

Decisions require the use of an if-else, or conditional, statement. This has the form

if(condition){
 Do something
}
else{
 Do something else
}

The code in the actual changeGear method is quite complicated, so let’s look at a
simpler version to get the idea. This version makes one decision only – change up or
down?

 M1I322909: PROGRAMMING 1

 7

 public void changeGear(int direction)
 {
 if (direction == 0){
 this.gear--;
 }
 else{
 this.gear++;
 }
 }

How do we know which way to change? Often a decision is based on the current
value of a variable – here, it’s the value of the direction parameter which has
been passed in from the current method call. If it’s 0, change down, otherwise
change up.

We write this as the condition for the conditional statement. A condition is a value
whose data type is boolean, i.e. true or false. This could be written as:

• The actual value – if (true) (not very useful)
• The value of a boolean variable – if(boolValue)
• An expression which evaluates to a boolean value – if(direction == 0)

The last of these is very common. In the example, it will be true if the parameter
direction has the value 0, false otherwise. Note that the == (double equals) sign must
be used for this, not a single equals sign (a very common mistake!). The use of
equals signs can be described as follows:

Sign Example Meaning
= x = 3 Assign the value 3 to the variable named x
== x == 3 true if the value of the variable named x is

equal to 3

Note that the code above uses the commonly used shorthand way, mentioned in
lecture 2, of incrementing or decrementing an integer variable by 1

this.gear++

Has the same effect as

this.gear = this.gear + 1;

If you are feeling brave, look at the full changeGear method and see if you can
understand how it implements the rules described above.

Wrap up
You’ve been introduced in this lecture to the following concepts:

Methods, Messages, Scope, Getters/setters, Public/private, Conditionals

In the next lecture you will start learn how to write classes to create objects that work
together, and how to write a program that uses these classes

 M1I322909: PROGRAMMING 1

 8

Code for Bicycle class
/**
 * class Bicycle models the behaviour of a bicycle when pedal
 * RPM and gear are changed
 *
 * @author JP
 * @version 1.0
 */
public class Bicycle
{
 private int pedalRpm;
 private int gear;
 private double wheelDiameter;
 private int numberOfGears;

 /**
 * Constructor for objects of class Bicycle
 *
 * @oparam wheelDiameter in meters
 * @param numberOfGears
 */
 public Bicycle(double wheelDiameter, int numberOfGears)
 {
 // initialise instance variables
 this.pedalRpm = 300;
 this.gear = 1;
 this.wheelDiameter = wheelDiameter;
 this.numberOfGears = numberOfGears;
 }

 /**
 * Constructor for objects of class Bicycle
 */
 public Bicycle()
 {
 // initialise instance variables
 this.pedalRpm = 300;
 this.gear = 1;
 this.wheelDiameter = 0.5;
 this.numberOfGears = 3;
 }

 /**
 * gets the value of wheelDiamter
 *
 * @return wheel diameter
 */
 public double getWheelDiameter()
 {
 return this.wheelDiameter;
 }

 M1I322909: PROGRAMMING 1

 9

 /**
 * gets the value of numberOfGears
 *
 * @return number of gears
 */
 public int getNumberOfGears()
 {
 return this.numberOfGears;
 }

 /**
 * gets the value of current gear
 *
 * @return current gear
 */
 public int getGear()
 {
 return this.gear;
 }

 /**
 * gets the value of pedalRpm
 *
 * @return pedal rpm
 */
 public int getPedalRpm()
 {
 return this.pedalRpm;
 }

 /**
 * changes value of pedalRpm
 *
 * @param pedalRpm
 */
 public void setPedalRpm(int pedalRpm)
 {
 this.pedalRpm = pedalRpm;
 if (this.pedalRpm <=0) this.pedalRpm = 0;
 }

 /**
 * changes value of gear
 *
 * @param direction 0 for down, 1 for up, no change
 * otherwise
 */
 public void changeGear(int direction)
 {
 if (direction == 0){
 this.gear--;
 if (this.gear <=1) this.gear = 1;
 }
 else if (direction ==1){
 this.gear++;

 M1I322909: PROGRAMMING 1

 10

 if (this.gear > numberOfGears)
 this.gear = numberOfGears;
 }
 }

 /**
 * calculates the road speed of the bicycle in
 * meters per second
 *
 */
 public double speed()
 {
 // speed is pedal RPM * wheel circumference /60 * gear
 double wheelCircumference = 3.14 * this.wheelDiameter;
 return this.pedalRpm * wheelCircumference / 60 *
 this.gear;
 }
}

	4. Adding Methods to Classes
	Methods
	Defining a method
	Calling a method
	Scope of variables
	Getter and setter methods
	Conditionals
	Wrap up
	Code for Bicycle class

