

5. OBJECT INTERACTION

The need for different types of objects .. 1	
Abstraction and encapsulation .. 2	
Fields in the Rider class .. 2	
Class diagram .. 4	
Creating objects that can interact .. 5	
Objects interacting by calling methods ... 5	
Assigning and changing object references .. 6	
Responsibilities of objects ... 8	
Private methods ... 9	
What exactly is an object-oriented program? ... 9	
The main method ... 10	
Running a program .. 11	
User interfaces ... 12	
Test classes .. 12	
Wrap up ... 14	
Code for Rider class .. 15	

The need for different types of objects
In some very simple situations you can write a program that does the job it needs to
do with a single object, or perhaps with a few objects of the same type. However, the
world is not always simple, and neither are the jobs which programs do. More
realistically, if you try to do everything with a single class, and with just one possible
type of object, you end up with a class that is overcomplicated, confused in its
purpose, and difficult to make changes to.

A better approach is to break a problem down into simple objects that work together,
or collaborate, to solve the problem. Each class can then stay simple and have a
clear purpose within the overall solution. Having several (or many, in complex cases)
different classes allow objects of different types, with different roles, to be created.

What does the Bicycle class in the previous lectures actually represent? It
represents a “mobile machine” which can respond to instructions that result in its
speed changing. In some scenarios that might be all you need. However, when did
you last see a bicycle moving, speeding up, slowing down, and so on, by itself? To
move a bicycle needs a rider, so what you actually see on the road is a
combination of a rider and a bicycle. In some scenarios it might be necessary to
model in more detail. The extent to which you need to break the problem down into
separate classes depends very much on the complexity of the overall job that the
program needs to do.

For example, in a game you might need the rider to be able to swap to a different
bicycle at some point. In that case, it makes sense to model the rider and bicycle as
separate objects that can work together. For example, a rider object can give
instructions, or send a message, to its bicycle object to change gear, and the bicycle
can perform the corresponding action as a result.

 M1I322909: PROGRAMMING 1

 2

Abstraction and encapsulation
The rider object only needs to know a few essential facts about a bicycle object. For
example, it needs to know that the bicycle can be made to change gear, and what
message needs to be sent to make it do so (in our model that’s a call to the
method changeGear). It doesn’t need to know anything about the mechanism that
the bicycle uses to actually change gear (that’s the code inside the method
changeGear).

The process of reducing something to its essential characteristics is known as
abstraction. Abstraction is a key concept in object-oriented programming. As
described in the first lecture, abstraction lets us model a bicycle by representing
only the characteristics that are actually important within a particular scenario.
Abstraction ties in with another key concept that you were introduced to previously,
encapsulation. Abstraction allows the essential things we need to represent about a
bicycle to be implemented. Encapsulation then allows the bicycle to expose its
capabilities, as public methods, while hiding the details of how they work. Any object
that uses a bicycle object, a rider object in this case, just needs to know how to
call the public methods. The set of public methods exposed by an object are
sometimes known as its interface.

In this lecture you will look at the Rider class and how it interacts with the Bicycle
class. You can look at the code itself in BlueJ and as before it is recommended that
you do so as you read these notes. For reference, though, the code for the whole
Rider class is listed at the end of this section of notes. Some small changes have
been made to the Bicycle class, and these will be highlighted as needed.

Fields in the Rider class
The Rider class is quite simple. It only has two fields, name and bicycle, defined
as follows:

public class Rider
{
 private String name;
 private Bicycle bicycle;

The field bicycle represents the bicycle that the rider is currently riding.

Let’s look at an object diagram of a rider object.

rider1: Rider

name

bicycle

“Jim”

field value – what goes in here?

 M1I322909: PROGRAMMING 1

 3

It’s easy to represent the value of the name field – the String type is a string of
characters – so an example value is shown. What about the bicycle field, though? It
is declared in the code as an instance variable whose type is Bicycle, so it’s an
object, not a simple value.

How should we show that in the diagram? We can’t really squeeze a picture of an
object into the field value box, and in fact it would be wrong to try. As mentioned
previously, a variable that has an object type doesn’t contain the object itself – it
contains a reference to the object. You can think of a reference as an instruction for
the computer to use to find the object – just like a map reference for a place is
essentially an instruction how to find that place on a map. We will draw an object
reference as an arrow pointing to the object.

So here’s the complete object diagram for a rider object. The bicycle field contains
a reference to a Bicycle object. This tells you something very important about an
instance of Rider. It’s not actually just one object; it’s a composition of two
objects of different types.

You’ve seen that in an object diagram we include the object name. As far as the rider
object is concerned, the bicycle object is called bicycle (the field name), so in this
case we put that in the object diagram as its object name.

bicycle: Bicycle bicycle

Map reference Object reference

rider1: Rider

name

bicycle

“Jim” bicycle: Bicycle

pedalRpm

gear

wheelDiameter

numberOfGears

0

1

0.4

3

 M1I322909: PROGRAMMING 1

 4

STRINGS – PRIMITIVE OR OBJECT TYPE?

You have seen that the data type of a variable can be one of Java’s
primitive types, which hold a simple value such as an integer. You have
also seen that a variable can hold a reference to an object.

What about a string, as in the name field of Rider? A string is not one
piece of information – it is a collection of characters. Actually, a string is
an object type – it is an instance of a class String which is one of many
ready-made classes which Java provides to help you. Strings are a bit
special, though, as you can assign a simple string of characters, in
quotes, to a String variable without using the new key word. We can
represent a string conveniently in the same way in an object diagram.

Class diagram
Class diagrams are another useful way of visualising object-oriented programs.

Class diagrams show the classes that can be used to create objects, and essentially
describe the code. The main window area in BlueJ is a simplified class diagram of
the classes in your project.

On the other hand, object diagrams show the objects that are created as the program
runs. The object diagram can change as the program runs, while the class diagram
remains static. The object bench and object inspectors in BlueJ play the role of
an object diagram.

Here is a class diagram of the Rider and Bicycle classes.

You will see more class diagrams later, but here are a few things to note for now:

• The name of the class is shown, but not an object name
• The class diagram shows field names, but not values (values belong to a

specific instance, not to the class)
• The Bicycle field in Rider is not shown in the class, as it is implied by the

arrow that represents an association with the Bicycle class
• The class diagram shows methods as well as fields

Note that BlueJ doesn’t show the fields or methods in its simple version of a class
diagram.

class name

fields

methods

association

 M1I322909: PROGRAMMING 1

 5

Creating objects that can interact
Let’s see what happens when you create a rider object. The Rider class has the
following constructor:

 public Rider(String name)
 {
 this.name = name;
 this.bicycle = new Bicycle(0.4, 3);
 }

This takes a parameter for the name of the rider. The next line does something you
have seen before – it instantiates a new Bicycle object, initialises it and assigns
it to a variable. The variable in this case is its own bicycle field. Note that the rider
now decides what sort of bicycle (wheels/gears) it wants.

You can try it out. Right-click on the Rider class in BlueJ and call this constructor
supplying a value for the parameter (there is also another constructor which you will
try later). A new object should appear in the object bench. Now inspect the object,
which should look something like this:

The name field is displayed as a string. The bicycle field is displayed as an arrow,
showing that it is an object reference. Select it, so that it is highlighted yellow, and
click the Inspect button. Another object inspector appears. These two object
inspectors correspond to the object diagram you saw earlier. (Note that the Bicycle
class has been modified slightly so that new bicycles start stationary).

So, you have now seen that creating a rider object in BlueJ actually created two
objects, a rider and a bicycle. The bicycle object was created by code that is in the
constructor of the Rider class. This demonstrates something important – objects
can create other objects.

Let’s say that again, because it’s really important - objects can create other
objects.

Objects interacting by calling methods
Close the object inspectors. Right-click on the rider object in the object bench and
call the speedUp method. Now inspect the rider object and then the bicycle object

 M1I322909: PROGRAMMING 1

 6

again. What has changed? You should see a different value for the pedalRpm field.
How can this change? As you saw in lecture 2, the only way that the Bicycle class
allows this field to be changed is by calling its setPedalRpm setter method.

 You have just seen something else important – calling a method of one object
can result in a method of another object being called. The two objects have
interacted – the rider object has sent a message to its bicycle object.

Let’s look at the code for the method you called from BlueJ, speedUp in the class
Rider. The full code for this is actually a bit complicated, so here’s a simpler version
that shows how this interaction works more clearly (you’ll see how the full version
works shortly).

 public void speedUp()
 {

int newPedalRpm = this.bicycle.getPedalRpm();
newPedalRpm = newPedalRpm + 50;
this.bicycle.setPedalRpm(newPedalRpm);

 }

This method gets the pedal rpm value of the rider’s bicycle, adds 50 to it and sets the
pedal rpm value of the bicycle to this new value. So, the code in this method in
Rider calls methods of Bicycle, so that the rider object sends messages to the
bicycle object. The result of the second message is that a field of that bicycle object
changes its value.

We could write this a little bit more compactly, by passing the result of adding 50 to
the return value of getPedalRpm directly as a parameter to setPedalRpm. Can you
see that this code is equivalent to the version above? One is not necessarily better
than the other, you could write the code whichever way you prefer.

 public void speedUp()
 {

this.bicycle.setPedalRpm(
 this.bicycle.getPedalRpm() + 50);

 }

Assigning and changing object references
The Rider class has another constructor.

 public Rider(String name, Bicycle bicycle)
 {
 this.name = name;
 this.bicycle = bicycle;
 }

This constructor takes a second parameter whose type is Bicycle. Like fields and
local variables, parameters can be variables of object types. Once the constructor
has completed, the bicycle field in the rider object will now be a reference to
whatever object you passed in as a parameter.

 M1I322909: PROGRAMMING 1

 7

In lecture 1 you saw how to create a bicycle object and assign that object as the
constructor parameter when creating a rider object. This process used this second
constructor. Follow through that process again to refresh your mind.

The equivalent code is:

Bicycle bicycle1 = new Bicycle();
Rider rider1 = new Rider("Jim", bicycle1);

Here, instead of one object creating the other, you are creating two objects
separately and assigning the bicycle object to the bicycle field of the rider object.

Let’s think about how we refer to that bicycle object. It is a bit of a chameleon,
actually. It takes on whatever identity it needs to, depending on what is happening
around it – in other words, depending on what section of code is currently running:

1. It is initially the local variable bicycle1 in the code above (program code)
2. It is then passed in as a constructor parameter to Rider, and becomes the

constructor parameter bicycle (Rider constructor code)
3. Finally, the bicycle object is assigned to the bicycle field of the rider object

(Rider constructor code and instance variable)

It’s important to realise that it is the same object all the way through this process.
However, there are three different references to that object at different times. The
constructor parameter reference is temporary – it’s only important while the
constructor code is running. Here’s an object diagram that tries to show this –
references which are not fields of an object are shown outside the object boxes.

What if we want a rider to be able to change to a different bicycle later on? The
Rider class has a method that allows this, called changeBicyle.

 public void changeBicycle(Bicycle newBicycle)
 {
 this.bicycle = newBicycle;
 }

rider1: Rider

name

bicycle

“Jim” bicycle: Bicycle

pedalRpm

gear

wheelDiameter

numberOfGears

0

1

0.4

3

bicycle1

bicycle

1 local variable

2 parameter

3 field

 M1I322909: PROGRAMMING 1

 8

This works in a similar way to the constructor – it takes a parameter that is a
reference to a bicycle object and assigns a reference to it to the bicycle field. The
main difference is that a method can be called any time, not just when the rider
object is being initialised.

Let’s try this in BlueJ. First, with the objects created earlier, inspect the bicycle object
in the object bench and note its pedalRpm value. Then, call the speedup method of
the rider object, and inspect the bicycle object again – its pedalRpm value should
have changed.

Now, create another bicycle object in the object bench and inspect it, noting its
pedalRpm value. Call the changeBicycle method of the rider object, and select
the second bicycle object as the parameter. Call speedUp again. Inspect both
bicycle objects – which one changed?

So, to sum up, you have just seen the rider leap from a moving bicycle onto a
stationary one, and start pedalling the new bicycle while the other one carries on
riderless at the same speed – not very realistic, but this is just an example!

Responsibilities of objects
When you are riding a bicycle in the real world, making it speed up is not quite as
simple as just pedalling faster. As the speed increases, you need to change gears so
that you can make the bicycle go fast without pedalling ridiculously fast.

A rider needs to learn how to use the gears efficiently to match the selected gear to
the road speed. It is the rider’s responsibility to know how to do this. The bicycle
does not help the rider with this– it just provides the mechanisms (pedals and gears)
to allow the rider to use the knowledge. It is the responsibility of the bicycle to
provide these mechanisms. Our classes should model these responsibilities.

There are some fancy bicycles being developed that have automatic gearshifts, and
these take on some of the rider’s responsibilities. However, we are modelling
“ordinary” bicycles here.

So how do we build this knowledge into our rider objects? Let’s look at the full
version of the speedUp method – the knowledge is encapsulated in the way this
method works.

Essentially, our model rider can only pedal at speeds up to 300rpm. Speeding up
involves pedalling 50rpm faster than before. If this change would result in pedalling
faster than 300rpm, then the rider should decide to tell the bicycle to change to a
higher gear. At this point, the rider should adjust pedalling speed to match the current
road speed – the road speed should not change immediately while changing gear.

 public void speedUp()
 {
 if((this.bicycle.getPedalRpm() + 50) > 300)
 {
 int currentGear = this.bicycle.getGear();
 changeUp();
 int newGear = this.bicycle.getGear();

 M1I322909: PROGRAMMING 1

 9

 this.bicycle.setPedalRpm(
 this.bicycle.getPedalRpm() *
 currentGear / newGear);
 }
 else
 {
 this.bicycle.setPedalRpm(
 this.bicycle.getPedalRpm() + 50);
 }
 }

This method makes a decision, using an if statement, based on the current
pedalRpm value of the bicycle, changes gear if necessary or just increases the
pedalRpm value by 50rpm otherwise. You will examine this method again later, so
assume for the moment that it works.

To test this, try calling the speedup method of a rider object in BlueJ repeatedly and
inspecting its bicycle object. You should see the value of the gear field changing after
some calls. What happens eventually as you keep trying to speed up?

Private methods
Note that the speedup method of Rider calls a method changeUp. This is not a
method of Bicycle, like getPedalRpm. It is a method defined in the Rider class
itself. It is a helper method containing some code that will be used in several
methods of Rider, and so is worth separating out into a method that can be used
each time without re-writing the same code. It is not intended to be used by other
objects or program code so it can be defined as private.

This method is actually quite simple, containing one line of code which sends a
message to the bicycle object to change gear in a specified direction, so we are not
saving much coding at all by separating it out, but using private methods like this can
often be very useful for more complex tasks.

 private void changeUp()
 {
 this.bicycle.changeGear(1);
 }

What exactly is an object-oriented program?
You have now seen classes and objects, and seen how objects interact. We have
also referred to “program code” that creates objects. But what exactly do we mean by
a “program” in Java?

A program is, as you learned in the first lecture, generally thought of as a set of
instructions that can be executed one after another. The program starts by executing
the first instruction. You “run” a program by giving some command on the
computer, for example double-clicking or tapping an icon, or typing a command at a
command prompt.

 M1I322909: PROGRAMMING 1

 10

Java programs are no different, but you haven’t seen anything like this yet. This is
because in a well-designed Java program almost all of the work should be done
by objects. So far you have learned how to create objects and call their methods (in
BlueJ and with “program code”). You have also seen that code inside one class can
create and call methods of objects that are instances of another class.

In a Java program, though, there is indeed a “first instruction”. To create a program
that you can actually run you need to add a special method, called main into the
code. The main method is the entry point of a program. Its job should be to create
an object, or possibly a few objects, which can then take over and perform the
tasks of the program. Execution of the program starts with the first line of code in
the main method.

The main method
The main method has to have a very specific signature. Here is the code for a class
called Program that has been added to the project.

public class Program
{
 public static void main(String[] args)
 {
 Rider r = new Rider("Jim");
 System.out.println("speed: " + r.speed() + "rpm");
 r.speedUp();
 System.out.println("speed: " + r.speed() + "rpm");
 }
}

This class is different from the others you have seen. It doesn’t model anything, and
you never create an instance of it. It is just there to provide somewhere to put the
main method, as a method in Java can’t exist outside a class. In fact, the main
method can go in any class in the project but it makes most sense to put in its own
class. It could go in Bicycle, for example, but it is not an action that is relevant to a
bicycle object so that would not really make sense, even though it would work.

This main method simply creates a rider object and calls its speedUp method.
Remember that creating a rider object in this way also causes a bicycle object to be
created (by the rider object!). So, executing a line of code in the main method can
actually cause quite a lot of code that is written in the class definitions to run and to
(hopefully) do something useful.

It also produces some output, so that you can see what the program is doing.
System.out.println is a special method that prints to the terminal window (or
command line). It takes a string as a parameter, and outputs that string. In the
example code we join together some string values ("speed: " and "rpm") and
the return value of the speed method of the rider object. They are joined with + signs
– when applied to strings the + sign joins, or concatenates, the values rather than
adding them together as it would with numbers.

When the last instruction has executed, the program is finished – we say that it
terminates.

 M1I322909: PROGRAMMING 1

 11

Running a program
To run a Java program you need to call the main method. You can do this in BlueJ
by calling the method in the usual way by right-clicking and selecting the method
from the menu. The difference is that you right-click the class, not an object. You
don’t need to create an instance of Program at all.

This will cause the program to run and the output will be shown in the BlueJ terminal
window, like this (you could have the number values formatted more nicely than this,
but this will do for now).

When you write a program it is convenient to work in an IDE such as BlueJ.
However, once it is complete and tested you want users to be able to run it on its
own – you don’t want users to have to install BlueJ just to run your program. One
way that they could do that would be to open a command window, go to the folder
where your classes are, and type the command:

java Program

java means “run a Java program”, and the second part of the command must be the
name of the class that contains the main method. In Windows this would look like
this.

Java classes, as we said earlier, should do most of the work of the program, and the
main method should contain very little code (as little as possible, in fact). Most of
the time when you are writing a program you are writing classes which will interact
with each other. It is very useful to be able to test these classes by creating objects
and making sure they do the jobs you want them to do. The more complicated the
program becomes, and the more classes which are required, the more important it

 M1I322909: PROGRAMMING 1

 12

becomes to be able to test the classes individually rather than just hoping they will all
do their own jobs when you run the complete program. As you have seen, BlueJ lets
you create and manipulate objects without writing a complete “program”, and for
much of the time in this module you will make use of this capability.

So, to recap the question posed earlier, what exactly is an object-oriented
program? Well, in Java anyway, it is really a set of classes that are templates for
creating objects which perform the functions required of the program, with a
main method as an entry point to allow the program to execute.

User interfaces
Many, though not all, programs have a user interface (UI) which allows users to
provide input and to see output. Java programs can provide many different types of
interface. Here are just two examples of UI types, and the way they might make use
of the main method:

• Graphical User Interface (GUI) – presents a visual interface as a window or
screen on a computer or device desktop. The user controls the program by
clicking or touching parts of the window or screen. In Java the window or
screen is itself an object which in turn makes use of other objects. The main
method simply creates the initial window and lets the code in the window
class take over

• Console application – runs at a command prompt (e.g. in the command
window in Windows). The user types commands and the output is text. In
Java, the main method might contain all the code to read user input and write
the output, and create other objects as required to perform the functions.
Alternatively, the main method might simply create an object which has code
to do those things

Test classes
You have seen that it is useful while developing to be able to test your classes
without writing a complete program with a UI, and that you can do this in BlueJ by
creating objects in the object bench. Sometimes, though, you want to do a test that
involves creating several objects, or calling several methods, which can be time
consuming to do in BlueJ.

You might want to test that the speedUp method you say earlier actually does what it
is supposed to do, and that the rider changes gear at the right time. To test this, you
would have to create a rider object, call speedUp and inspect the rider’s bicycle
object to see what the current speed and gear are. You did this earlier, but once is
not enough to test properly. Speeding up once doesn’t get the rider pedalling fast
enough to need to change gear. You’d have to keep on calling the method and
inspecting over and over so that you could see when the gear changes happen.

The BlueJ project that you can download for this lecture contains a test class
RiderTest which does this test automatically. It has a test method called
testChangingSpeed that contains code to create a rider object, repeatedly call
speedUp and print the current speed and gear to the terminal after each call. You
don’t need to look at the code yet, let’s just run the test to see if the code in Rider
works. The main method, in the Program class, now runs the test.

 M1I322909: PROGRAMMING 1

 13

 public static void main(String[] args)
 {
 RiderTest rt = new RiderTest();
 rt.testChangingSpeed();
 }

Run the main method by right-clicking on the Program class and selecting the
method. You should see the following output. Is this what you would expect? Yes, it
is – the features you expect to see if the speedUp method works as described are
marked below.

STARTING	
speed:	0.0	
	
SPEEDING	UP	

speed:	1.0466666666666669	
gear:	1	

speed:	2.0933333333333337	
gear:	1	

speed:	3.1400000000000006	
gear:	1	

speed:	4.186666666666667	
gear:	1	

speed:	5.233333333333334	
gear:	1	

speed:	6.280000000000001	
gear:	1	

speed:	6.280000000000001	
gear:	2	

speed:	8.373333333333335	
gear:	2	

speed:	10.466666666666669	
gear:	2	

speed:	12.560000000000002	
gear:	2	

speed:	12.560000000000002	
gear:	3	

speed:	15.700000000000003	
gear:	3	

speed increases, same gear

speed stays the same, gear changes
(pedalRpm reaching maximum)

speed stays the same, gear changes
(pedalRpm reaching maximum)

speed increases, same gear

 M1I322909: PROGRAMMING 1

 14

speed:	18.840000000000003	
gear:	3	

speed:	18.840000000000003	
gear:	3	

speed:	18.840000000000003	
gear:	3	

This is pretty good, but later in the module you will see how BlueJ can help you with
a better way to create and run test classes.

Wrap up
You’ve been introduced in this lecture to the following concepts:

Abstraction and encapsulation, Object interactions, Class Diagrams, Assigning
and Changing References, Responsibilities, Private Methods, Main Method,
Programs and User Interfaces, Test Classes

In the next lecture you will learn about designing algorithms to carry out useful
functions and about the language features and constructs which allow you to write
code to implement these algorithms in methods in Java classes.

speed stays the same, no more gears to
change to, reached maximum speed of
rider on this bicycle

 M1I322909: PROGRAMMING 1

 15

Code for Rider class
/**
 * class Rider models the behaviour of a rider
 * controlling a bicycle
 * @author JP
 * @version 1.0
 */

public class Rider
{
 private String name;
 private Bicycle bicycle;

 /**
 * Constructor for objects of class Rider
 */
 public Rider(String name)
 {
 this.name = name;
 this.bicycle = new Bicycle(0.4, 3);
 }

 /**
 * Constructor for objects of class Rider
 */
 public Rider(String name, Bicycle bicycle)
 {
 this.name = name;
 this.bicycle = bicycle;
 }

 /**
 * gets the value of name
 *
 * @return name
 */
 public String getName()
 {
 return this.name;
 }

 /**
 * gets the bicycle object
 *
 * @return bicycle
 */
 public Bicycle getBicycle()
 {
 return this.bicycle;
 }

 M1I322909: PROGRAMMING 1

 16

 /**
 * changes to a different bicycle
 *
 * @param newBicycle
 */
 public void changeBicycle(Bicycle newBicycle)
 {
 this.bicycle = newBicycle;
 }

 /**
 * causes the rider to pedal faster
 * will change gear up if necessary
 *
 */
 public void speedUp()
 {
 if((this.bicycle.getPedalRpm() + 50) > 300)
 {
 int currentGear = this.bicycle.getGear();
 changeUp();
 int newGear = this.bicycle.getGear();
 this.bicycle.setPedalRpm(
 this.bicycle.getPedalRpm() *
 currentGear / newGear);
 }
 else
 {
 this.bicycle.setPedalRpm(
 this.bicycle.getPedalRpm() + 50);
 }
 }

 /**
 * causes the rider to pedal more slowly
 * will change gear down if necessary
 *
 */
 public void slowDown()
 {
 if(((this.bicycle.getPedalRpm() - 50) < 100) &&
 (this.bicycle.getGear()>1))
 {
 int currentGear = this.bicycle.getGear();
 changeDown();
 int newGear = this.bicycle.getGear();
 this.bicycle.setPedalRpm(
 this.bicycle.getPedalRpm() *
 currentGear / newGear);
 }
 else
 {
 this.bicycle.setPedalRpm(
 this.bicycle.getPedalRpm() - 50);
 }
 }

 M1I322909: PROGRAMMING 1

 17

 /**
 * gets the road speed of the bicycle in meters per second
 *
 */
 public double speed()
 {
 return this.bicycle.speed();
 }

 private void changeUp()
 {
 this.bicycle.changeGear(1);
 }

 private void changeDown()
 {
 this.bicycle.changeGear(0);
 }
}

