
6. MORE ABOUT METHODS

Methods and cohesion ... 1
Writing methods .. 2
Strings.. 2
Type wrappers ... 3
Control flow statements.. 4
Selection .. 4
Iteration .. 6
Arrays .. 8
Arrays of values .. 8
Arrays of objects ... 10
Wrap up .. 12

Methods and cohesion
Methods contain the code that allows objects to carry out the actions that they are
designed to perform. A method should implement a single action with a clear
purpose. If an object needs to be able to do lots of different actions, then it should
have lots of different method to implement them. For example, the Bicycle class
that you have seen previously has a method changeGear. That method causes a
bicycle object to change gear – and that’s all it does. It doesn’t speed up pedalling, it
doesn’t turn a corner, it doesn’t switch on a light, or anything else – it just changes
gear.

A class in which the methods are designed this way is said to have a high degree of
cohesion. On the other hand, a class with methods which each do several unrelated
tasks is said to have a low degree of cohesion.

Why is this important? Code that is cohesive is widely considered to be easier to
understand and modify, more robust and less prone to programming mistakes.

Note that the idea of cohesion also applies to classes. A class with high cohesion
represents a single type of “thing” with a clear purpose, and only contains methods
clearly related to that purpose. Do you think the Bicycle and Rider classes are
cohesive – remember what we said about responsibilities in the previous lecture?

Here are a few examples of the kinds of actions that methods are commonly written
to perform:

• Changing the state of one or more objects
• Doing calculations
• Processing information
• ..and so on

As an example, which of the above do you think would best describe the method
changeGear in Bicycle?

 M1I322909: PROGRAMMING 1

 2

Writing methods
When you create a method in a Java class you write a set of instructions to perform
the action. In some cases this will be a very short set of instructions. There are
situations in even the most complex object oriented program where you can write a
method with only one or two lines of code. If you find that all your methods have
many lines of code you might want to ask yourself whether those methods are
cohesive.

Some actions, though, are unavoidably complicated. The speedUp method that you
saw previously in the Rider class is quite complicated because it represents some
knowledge that the rider has about controlling the speed of a bicycle, and involves
making a decision.

To perform an action you need to do some combination of the following:

• Carry out a sequence of instructions in order
• Choose between alternative instructions depending on some condition
• Carry out the same instruction or set of instructions repeatedly

In order to create a method that performs an action correctly, you have to apply or
design an algorithm. An algorithm is a procedure or formula for carrying out a
procedure or solving a problem. You then have to be able to write Java code that
implements that algorithm. In this lecture you will learn more about the features of
the Java language that allow you to build methods to implement a range of
algorithms. In the next you will learn some further features and then at some
examples of how to design an algorithm to solve a particular problem.

Strings
You have used strings already, but let’s look at them in a bit more detail. A string is a
collection of characters. Unlike characters, strings in Java are objects. String is
the name of a class which is provided by the Java platform and which you can use in
your programs.

Strings can be created using the new keyword, or more conveniently using a string
literal:

e.g. String hello1 = new String(“Hello World!”);

String hello2 = “Hello World!”;

Since a string is an object, it has some methods that perform actions appropriate for
a string. There are quite a few of these methods, but a couple of the more useful
ones are:
indexOf(String) returns an int, the index, or position, in the original string of

the first occurrence of the specified sub-string

e.g. String bigString = “This is the whole string”;
 String weeString = “is”;
 int where = bigString.indexOf(weeString);

 M1I322909: PROGRAMMING 1

 3

equals(String) returns a boolean

e.g. if (aString.equals(anotherString)) {…}

Using equals is the correct way to check whether two strings are equal. You should
not use aString == anotherString as you would for primitive types as this will
not always work as you expect.

You can join, or concatenate, strings using the + operator. The + operator works
differently for strings than it does for numbers.

e.g. String s1 = “Hello ”;
 String s2 = s1 + “World!”;

s2 will be the string “Hello World!”. Note that concatenating always creates
a new string – you can’t change the contents of a string, for example by appending
some characters, once it has been created. There is another class called
StringBuilder that does allow changes to its content and which should be used
if you want to build up a string by adding characters.

Type wrappers
As you have seen, simple data items can be represented using the primitive types.
However it is sometimes useful for something as simple as a number to be able to
perform actions and store information other than the value itself. For example,
wouldn’t it be nice to have a number which knows not just its current value but also
the minimum and maximum values which it can hold?

There is a set of Java classes which can contain equivalent data to the primitive data
types. These are known as the type-wrapper classes.

Primitive type Type wrapper

byte Byte
short Short
int Integer
long Long
float Float
double Double
char Character
boolean Boolean
void Void

Byte.MAX_VALUE and Byte.MIN_VALUE which contain the maximum and
minimum values which a Byte object can have, and Byte objects have a method
byteValue which returns the value as a primitive byte. Other type wrappers have
similar methods.

 M1I322909: PROGRAMMING 1

 4

Type wrappers also have useful methods that help convert from one type to another.
For example, the following method call takes a string as a parameter, converts its
value to an integer if possible and returns it as an int.

int i = Integer.parseInt(“123”);

CodePad - Open the bicycle project for lecture 6 and try the following in the
CodePad:
• Use the expression Integer.MAX_VALUE to find how large an integer can

be
• Create a new Integer object using

Integer i = new Integer(5);

• Call i.intValue() and note the result and its type
• Call Integer.parseInt(“123”) and note the result and its type
• Call Integer.parseInt(“12A”) - what happens?

Control flow statements
Simple statements are executed one at a time, as a sequence in the order they are
written in the code. However, not all algorithms can be realised with a simple
sequence of instructions. Control flow statements allow your code to make
decisions on which instructions to execute (we call this selection) and to execute the
same instructions repeatedly (we call this iteration). A control flow statement can
appear any place that a simple statement can. It includes one or more code blocks
that can themselves contain any number of statements (including other control flow
statements!). The following sections show the commonly used control flow
statements in Java.

Selection
You have already seen an example of the if-else statement. More generally, it has
the form:

if (condition) {
 statement(s)
}
[else {
 statements(s)
}]

Here, condition can be any Boolean expression that evaluates to true. This could
be the name of a Boolean variable, a method call that returns a Boolean, or
commonly, an expression containing a relational operator, for example:

x == 5
x > 0
x <= 10
x != 5

 M1I322909: PROGRAMMING 1

 5

The square brackets [] round the else branch do not actually appear in code, they
simply indicate here that the else branch is optional – without it, the statement just
does nothing if condition is false. It is also possible to have multiple options with one
or more else if branches before the else branch.

It is quite common to use a compound condition, which combines two or more simple
expressions with conditional operators. The following example shows an if-else
statement which uses the || (or) operator in its condition:

if ((num <= 0) || (num >= 10))
{

System.out.println(num + " out of range");
}
else
{

System.out.println(num + " within range");
}

If a block in an if statement contains only a single statement, the brackets are not
needed. This can make your code more compact, but be careful, as it is less obvious
what code belongs to the if statement.

if ((num <= 0) || (num >= 10))

System.out.println(num + " out of range");
else

System.out.println(num + " within range");

Note that the computer doesn’t actually decide which branch to execute – rather, the
value of the condition determines which branch should be executed. If the value of
num is 5 then the output will be “5 within range”. It doesn’t matter how many times
you run the code, it will always do the same thing if the input is the same. If the value
of num is -5 then the output will always be “-5 out of range”.

INDENTATION

By convention you should indent lines that are inside a code block
relative to the position of the start of the block. When you use control
flow statements inside methods, indentation becomes really important
in making your code easy to understand for yourself and other
programmers. Don’t be lazy with indentation – the editor in BlueJ
helps you anyway, but sometimes you need to “tweak” it manually.

 M1I322909: PROGRAMMING 1

 6

Iteration
The statements that allow iteration are commonly known as loops. There are three
types of loop. The choice you make when implementing an algorithm depends on
two factors:

• Do you know exactly how many times you want to repeat the instructions in
the loop, or should the repetition continue until some condition becomes true

• Should it be possible for the loop to finish without executing the instructions at
all

The while and do-while statements, or loops, conditionally execute a block while the
condition remains true.

The while statement has the form:

while(condition)
{
 statement(s)
}

The following code snippet shows a while statement. What do you think would
happen if you missed out the second statement inside this loop?

while (num <= 10)
{
 System.out.println("number " + num);
 num++;
}

The do-while statement places the condition after the loop, so that it is checked after
the statements have executed. This loop must execute at least once, even if the
condition is false immediately. This has the form:

do
{
 statement(s)
} while(conditions);

The following code snippet shows a do-while statement:
do
{
 System.out.println("number " + num);
 num++;
} while (num != 10);

The for loop iterates over a range of values. It does so using an int loop variable. At
the start of the for statement you specify the starting value of this variable, the
stopping value and the amount by which the variable changes each time round the
loop. Because you specify these, you know exactly how many times the loop will
execute. You can make use of this variable inside the loop, but you don’t (and
shouldn’t) change its value in the loop.

 M1I322909: PROGRAMMING 1

 7

The for statement has the form

for(initialisation;termination;increment)
{
 statement(s)
}

The following code snippet shows a for statement. This will execute 11 times – the
loop variable num takes the all the values from 0 to 10, including 10 due to the <=
operator.

for(int num=0; num<10; num++)
{
 System.out.println("number " + num);
}

As mentioned previously, control flow statements can contain other control flow
statements nested inside them. Quite a common example of this is nested for
loops. The following code snippet uses nested for loops to print a multiplication
table:

for(int x=1; x<=10; x++)
{
 for(int y=1; y<=10; y++)
 {
 System.out.format("%4d",x*y);
 }
 System.out.print("\n");
}

CodePad - Clear the CodePad and try the following:
• Declare and initialise int variable num=0
• Enter the if statements listed above and observe the output in the terminal

window. When entering a multi-line statement in the CodePad press SHIFT-
ENTER at the end of each line, and ENTER at the end of the whole
statement. Don’t bother indenting in the CodePad – the code there is not
meant to be read

• Enter each of the while, do while and for statements listed above and observe
the output in the terminal. Reset the value of num to 0 after the while loop.
Note that the for loop declares a loop variable num, which is then a local
variable within the loop – it is not the same variable as the num you declared
earlier

 M1I322909: PROGRAMMING 1

 8

• Enter the first for statement again with the initialisation and termination set to
int num=1;num<=10, and observe the output

• Enter the first for statement again with the initialisation, termination and
increment set to int num=1;num<=10; num+=3, and observe the output

Arrays
The variables we have seen so far all hold a single value or refer to a single object.
However, it is often useful to be able to work with more than one value of the same
type together. We can do this using arrays. In Java, as in most programming
languages, an array is a structure that holds multiple values of the same type. A
Java array is itself an object, while the values it holds can be either primitive types or
object types. You will see examples later in this lecture and in the following lectures
of situations where arrays are useful.

Arrays of values
An array can contain primitive data type values. As it is an object, an array must be
declared and instantiated using the new key word. The size of the array is specified
when it is instantiated. For example

int[] anArray;
anArray = new int[10];

These two lines declare and instantiate an array that can hold 10 integer values. The
values themselves are not specified here, so the contents of the array will all have
the default value for an integer, which is 0.

An array can also be created using a shortcut. For example:

int[] anArray = {3,2,7,8,12,9,1,11,3,7};

This single line declares and instantiates the array and sets values for all of its
contents.

An array element can be accessed using an index value. For example:

int i = anArray[5];

Note that in Java array indexes start from 0. The value of anArray[0] is 1, while
anArray[5] is actually the 6th element, with value 9 in this example.

As an array is an object, we can draw an object diagram that represents this array
and its contents.

 M1I322909: PROGRAMMING 1

 9

The size of an array can be found using the length attribute. For example:

int len = anArray.length;

You can also declare an array that contains arrays. This is known as a
multidimensional array. To declare a multidimensional array you need to specify
two or more sets of brackets, for example:

int[][] aMultiArray = new int[3][3];

Since there are two brackets, this is a two-dimensional array. Two-dimensional
arrays are useful for representing tables of data. In this case it is an array of 3 arrays,
each of length 3, which could represent a 3x3 table of numbers.

You can also create a multidimensional array with a shortcut:

int[][] aMultiArray = {{3,2,7},{8,12,9},{1,11,3}};

To access an element of this array you need to specify two indexes. For example:

int i = aMultiArray[1][0];

This would assign the value 8 to the variable i – the first index 1 selects the second
array {8,12,9} while the second index 0 selects the first element of this array.

CodePad – Clear the CodePad and try the following:
• Declare and initialise an array variable of type int
• Type the name of the variable – you should see that it is an object reference,

and if you click on the small object symbol in the left margin you can inspect
the object that the variable refers to. Note that the object inspector for an
array is similar to the object diagram above.

anArray: int[]

 [0] 3

 [1] 2

 [2] 7

 [3] 8

 [4] 12

 [5] 9

 [6] 1

 [7] 11

 [8] 3

 [9] 7

indexes

values

 M1I322909: PROGRAMMING 1

 10

• Click on the object symbol and drag it to

the Object Bench, giving it a suitable name
when prompted. Note that an array is
represented in the Object Bench by a
symbol that resembles a stack of objects

• Declare and initialise a two-dimensional array variable of type int. Drag to

the Object Bench and inspect the array. How does BlueJ represent the array?
This might make more sense after you read the following section.

Arrays of objects
Arrays can also hold objects of any type. Actually, the array doesn’t hold the objects
themselves – it holds references to objects. It is important to realise that when
creating an array of objects, the array itself must be declared and instantiated, and
that each individual element in the array must also be instantiated. This code creates
an array of Bicycle objects.

Bicycle[] anArray = new Bicycle[4];

for (int i=0;i<anArray.length;i++)
{
 anArray[i] = new Bicycle();
}

Note that you must create the array first, and then create the objects in the array. If
you miss out the second of these steps, you will probably get errors when you run
any code that tries to access the objects in the array as the array will simply contain
null references – the elements in the array do not have any objects to point to as no
objects have been created.

The object diagram after this code has run looks like this (to simplify the diagram the
fields for the Bicycle objects are not shown – in fact each of these objects will have
all the fields shown in the diagrams you have seen previously of Bicycle objects).

creates the array (does not
create the objects in the array)

creates the objects in the array

 M1I322909: PROGRAMMING 1

 11

Each element of the array is a separate Bicycle object. You can access any of
these by its array index and call methods, for example:

int rpm = anArray[2].getPedalRpm;
anArray[1].changeGear(1);

CodePad – Clear the CodePad and try the following
• Declare and initialise an array variable of type Bicycle and length 4
• Use a for statement as in the example above to fill the array with new

Bicycle objects
• Type the name of the variable – you should see that it is an object reference,

and if you click on the small object symbol in the left margin you can inspect
the object. Note that the array elements are themselves shown in the object
inspector as object references rather than values

• Click on the first array element in the object inspector window and click the

Inspect button. You should see another object inspector showing a Bicycle
object with the default field values. Close this Bicycle object inspector

• In the CodePad, write code to call the set the pedal RPM of the first object in
the array to 50

• Call the speed method of the first object and note the value returned
• Call the speed method of the second object in the array and note that it is

now different from the first – the objects in the array are separate and can be

anArray[0]: Bicycle

anArray[1]: Bicycle

anArray[2]: Bicycle

anArray[3]: Bicycle

anArray: Bicycle[]

 [0]

 [1

 [2]

 [3]

 M1I322909: PROGRAMMING 1

 12

accessed and manipulated independently. You can also inspect the objects in
the array to see their current field values

• Now create another array, this time of type Integer. Remember that Integer

is a type wrapper class, so an Integer variable refers to an object which
wraps a primitive int value. Inspect the array and note the difference from an
array of type int

Wrap up
You’ve been introduced in this lecture to the following concepts:

Methods and Cohesion, Control Flow Statements, Strings, Type Wrappers,
Arrays

In the next lecture you will learn how to design algorithms that allow methods to be
written to solve real problems, and look in more detail at what happens when a
method is called

	6. More About Methods
	Methods and cohesion
	Writing methods
	Strings
	Type wrappers
	Control flow statements
	Selection
	Iteration
	Arrays
	Arrays of values
	Arrays of objects
	Wrap up

	indentation

