
	

	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

	
	
	
	
	
	

Data	 organisation	 and	 some	 basic	
relational	ideas	
	
	
In	this	week,	we	will	cover	the	following	topics:	

• Data:	that	you	can	design	the	structure	of	data,	including	the	relationships	between	
data.	

• The	important	of	being	able	to	uniquely	identify	datum	within	a	set	of	data.	
• How	to	accumulate	relationships	between	data,	as	data,	stored	in	tables.	
• A	brief	look	at	a	real	word	set	of	data	known	as	Codepoint,	and	the	limitations.	
• ‘Programming’:	the	distinction	between	declarative	programming	and	algorithmic	

	
…	and	will	result	in	the	following	learning	outcomes:	

• An	initial	appreciation	that	it	is	good	to	be	systematic	in	how	data	is	represented.	
• That	data	‘keys’	allow	us	to	access	specific	datum.	
• Knowledge	that	tables	can	be	used	to	store	data	and	relationships	between	data.	
• That	real-word	data	is	available,	but	not	necessarily	perfectly	organised.	
• A	feeling	for	the	kind	of	programming	relevant	for	database	interactions.	

	
	
	 	



	

	 2	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

Table	of	Contents	
2.1	 Designing	for	data	..........................................................................................................	3	

2.1.1	 Relationships	between	data/datum	.................................................................................	3	
2.1.2	 Two	initial	problems	.........................................................................................................	4	

2.2	 Relational	solutions	to	the	problems	..............................................................................	5	
2.2.1	 Unique	identification	........................................................................................................	5	
2.2.2	 Accumulating	relational	data	............................................................................................	7	

2.3	 A	real-world,	file-based	data	set:	Code	Point@	Open	......................................................	8	
2.3.1	 A	critique	of	Code	Point@	Open	......................................................................................	11	

2.4	 ‘Declarative’	programing	v	‘Algorithmic’	Programming	................................................	12	
2.5	 Summary	.....................................................................................................................	13	

	
Figure-1:	Basic	relationships	seen	both	ways	...........................................................................	3	
Figure	2:	Website	mock-up	examples	for	‘new	customer’	website	form.	...............................	3	
Figure	-3:	A	view	of	what	a	relational	table	represents.	..........................................................	8	
Figure	-4:	Structure	of	codepoint	open	directories.	.................................................................	9	
Figure	-5	The	GCU	postcode.	..................................................................................................	11	
	
	
Table	1:	Accumulated	customers.	............................................................................................	4	
Table	2:	Customer	table	version	B	–	non-unique	names.	........................................................	4	
Table	3:	Products	......................................................................................................................	5	
Table	4:	Customer	table	version	C	...........................................................................................	6	
Table	5:	Some	key,	definitions	regarding	relational	databases.	...............................................	7	
Table	6:	Ordered	table.	............................................................................................................	7	
Table	7:	Non-verbose	Code-Point®	Open	header/column	fields.	............................................	9	
Table	8:	Verbose	Code-Point®	Open	header/column	fields.	..................................................	10	
Table	9:	Extract	from	file	<codepo_gb/Data/CSV/g.csv>	.......................................................	10	
Table	10:	Application	program	pseudo	code	to	retrieve	data	from	file.	................................	12	
Table	11:	Code	to	retrieve	data	from	file	v	database	declaration.	.........................................	13	
	
	 	



	

	 3	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

2.1 Designing	for	data	
2.1.1 Relationships	between	data/datum	
During	 week	 1,	 we	 discussed	 the	 idea	 of	 a	 ‘legacy’	 data	management	 system,	 seen	 as	 a	
consequence	of	there	being	no	enforced	rules	for	data	entries.		
	
The	order	(we	have	seen	that	this	has	important	aspects	to	it	concerning	the	actual	delivery)	
has	other	 important	 information	attached	 to	 it.	Namely,	 the	order	 relates	 a	 product	 to	 a	
customer.	 We	 might	 think	 of	 this	 situation,	 then,	 as	 two	 physical	 entities	 (Product	 and	
Customer)	being	connected	by	an	‘event’,	the	‘order’:	
	

	
• Customer	‘ordered’	Product.	

	
	

	
• Product	‘ordered	by’	Customer.	

	 	
Figure-1:	Basic	relationships	seen	both	ways	

	
Consider	an	associated	data	entry	example,	not	for	data	entered	into	a	spreadsheet,	this	time,	
but	through	a	website;	here	we	might	imagine	a	retailer	website	form	designed	to	receive	
data	concerning	the	customer.		
	

	
Figure	2:	Website	mock-up	examples	for	‘new	customer’	website	form.	

	
We	present	two	choices	(see	Figure	2).	The	first	choice	is	designed	to	receive	5	entries,	i.e..,	
First	Name,	 Surname,	Address,	E-mail,	 and	Tel	 (short	 for	 telephone	 number).	 The	 second	
choice	is	designed	to	receive	6	entries,	 i.e.,	First	Name,	Surname,	Address,	E-mail,	Tel,	and	
Product.	We	do	not	need	to	question	the	design	of	the	forms	themselves.	The	forms,	for	our	
current	purposes,	merely	provide	an	interface	through	which	data	is	input	to	‘the	system’.		
	
Let	us	take	a	look	at	what	the	actual	data	might	‘look	like’	(in	storage),	after	a	company	has	
had	a	number	of	new	customers	added.	We	will	assume	that	the	second	form	was	adopted	

Product Customer
ordered by

ProductCustomer
ordered

First Name:

Surname:

Address:

E-mail:

Tel:

https://your_company.com/new_customer

First Name:

Surname:

Address:

E-mail:

Tel:

https://your_company.com/new_customer

Product:

Add Customer Add Customer



	

	 4	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

by	the	company,	the	one	with	all	of	customer	details,	in	addition	to	the	first	customer-chosen	
Product.		
	
First_Name	 Surname	 Address	 E-mail	 Tel	 Product	

John	 Davis	 Salmon	Road	 jd@cloudme.com	 077**08	 Soap	
Powder	

Aileen	 McManus	 East	Avenue	 am@lmail.com	 0131**9	 Table	
David	 Smith	 North	Close	 jd@wohoo.com	 0141**1	 Wood	Polish	
Sarah	 Jones	 Queen	Road	 jd@geewizz.com	 0131**9	 Nails	

Table	1:	Accumulated	customers.	

From	the	point	of	view,	a	customer’s	first	order,	maybe	this	kind	of	data	makes	sense?	If	you	
look	on	most	retail	websites,	however,	you	will	find	that	the	customer	is	required	to	register	
an	account	separately	to	the	order.	Nevertheless,	as	we	mentioned,	we	are	not	concerned	
here	 about	 the	 design	 of	 the	 web	 interface,	 although	 the	 following	 issues	 are	 worth	
highlighting	in	relation	the	above	example:	
	

1. What	 happens	 if	 a	 customer,	 named	 John	 Davis,	 registers	 himself,	 ordering	 the	
product	 Soap	powder,	 as	 above,	 then	 three	months	 later	 somebody	 else	with	 the	
same	name	registers	and	orders	a	Bike?	

	
First_Name	 Surname	 Address	 E-mail	 Tel	 ProductName	

John	 Davis	 Salmon	Road	 jd@cloudme.com	 077**08	 Soap	Powder	
Aileen	 McManus	 East	Avenue	 am@lmail.com	 0131**9	 Table,	TV	
David	 Smith	 North	Close	 jd@wohoo.com	 0141**1	 Wood	Polish	
Sarah	 Jones	 Queen	Road	 jd@geewizz.com	 0131**9	 Nails	
John	 Davis	 West	Close	 jd@cloudme.com	 077**08	 Bike	

Table	2:	Customer	table	version	B	–	non-unique	names.	

2. How	well	does	the	Product	column	‘cover’	the	relevant	data	now	and	in	the	future?	
	
Point	1:	Assuming	that	this	does	happen,	if	one	of	the	‘John	Davis’	customers	then	orders	a	
Table,	how	do	we	know	which	John	Davis	this	is?	Perhaps	we	can	identify	them	uniquely	by	
their	phone	number	or	e-mail	address?		
	
Point	2:	If	we	look	again	at	the	table,	during	the	time	the	second	John	Davis	registered,	Aileen	
McManus	 ordered	 a	 TV.	 Is	 storing	 the	 collection	 of	 products	 in	 this	 way	 acceptable?	 It	
certainly	does	not	seem	consistent.	The	original	meaning	of	the	Product	category	was	initial	
Product.	
	
2.1.2 Two	initial	problems	
Although	we	are	now	looking	at	a	different	example,	one	involving	a	hypothetical	web-based	
system,	we	are	stuck	in	the	same	sort	of	file-based,	spreadsheet	mind-set	introduced	in	week	
1,	but	we	have	introduced	two	new	problems:	
	

1. The	problem	of	allowing	unique	access	to	a	set	of	data.		
	



	

	 5	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

2. The	problem	of	how	to	best	represent	accumulative	changes	/	additions	to	data,	but	
without	allowing	structural	changes	to	be	made	i.e.,	without	allowing	change	to	the	
overall	structure	of	the	data	itself.	

	
2.2 Relational	solutions	to	the	problems	
As	a	way	of	introducing	some	of	the	basic	ideas	of	relational	databases,	we	will	now	re-design	
how	our	data	is	stored,	expanding	the	examples	above,	to	address	our	two	initial	problems.		
	
Let	 us	 make	 the	 data	 a	 little	 bit	 more	 believable,	 even	 if	 not	 necessarily	 ‘realistic’1.	 For	
example,	a	retailer	is	likely	to	have	a	larger	set	of	data	that	relates	to	a	specific	Products;	what	
is	important	from	a	customer-facing	point	of	view	–	the	name	of	the	product	–	would	then	be	
one	column	in	this	larger	set	of	values.		
	
Examples	of	what	might	be	important	to	the	retailer:	
	

• Where	the	product	comes	from	–	the	Supplier.	
• The	unit	cost	of	purchase	–	PurchaseCost.	
• The	unit	price	at	point	of	sale	–	SalePrice.	
• Product	code	–	ProductCode.	
• Product	category	–	Category.	
• Product	name	–	Product.	

	
	
ProductName	 Category	 ProductCode	 SalePrice	 PurchaseCost	 Supplier	
Soap	Powder	 Home	 02147698	 4.50	 2.50	 15	

TV	 Electrical	 05070012	 999.99	 650.00	 05	
Table	 Furniture	 08608376	 299.00	 100.00	 09	

Wood	Polish	 Home	 02447701	 2.50	 1.00	 11	
Nails	 Hardware	 01570627	 3.00	 50.0	 15	
Bike	 Leisure	 09377700	 680.00	 400.00	 155	

Table	3:	Products	

2.2.1 Unique	identification	
We	are	now	going	to	re-define	Table	2	(Customer	table	version	B).	We	do	this	to	provide	a	
unique	identifier	for	each	customer,	which	we	will	call	CustomerId,	and	we	maintain	all	of	the	
other	columns	as	defined	previously,	in	Table	4	(assume	that	the	E-mail	entries	exist	–	they	
are	omitted	for	ease	of	visualization).	
	
	
	
	
CustomerId	 First_Name	 Surname	 Address	 E-mail	 Tel	 ProductName	

																																																								
1	Real-world	data	is	often	inappropriate	to	use	in	lecture	notes	and	textbooks	and	most	of	the	
time	you	will	be	looking	at	illustrative	data	only.	However,	later	on	in	the	course,	especially	in	
the	accompanying	tutorials	we	will	try	to	use	some	real	data-sets.	



	

	 6	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

0001	 John	 Davis	 Salmon	
Road	

.	 077**08	 Soap	Powder	

1298	 Aileen	 McManus	 East	
Avenue	

.	 0131**9	 Table,	TV	

0032	 David	 Smith	 North	
Close	

.	 0141**1	 Wood	Polish	

0099	 Sarah	 Jones	 Queen	
Road	

.	 0131**9	 Nails	

9834	 John	 Davis	 West	
Close	

.	 077**08	 Bike	

Table	4:	Customer	table	version	C	

	
You	might	have	noticed	a	potential	problem	with	the	ProductNAME	column	in	Table	2	and	
Table	5.	Again,	there	is	potential	for	the	products	to	‘overlap’	in	terms	of	the	ProductName	
column	 –	 the	 names	 are,	 again,	 too	 generic	 to	 act	 as	 unique	 identifiers.	 For	 example,	 a	
customer	might	choose	between	many	different	kinds	of	Soap	Powder,	so,	we	cannot	use	
such	product	names	as	unique	identifiers	(they	are	not	unique!).		
	
There	are	two	rules	for	unique	identifier’s:	
	

• They	must	be	unique!	
	

• They	should	not	change	value!	
o This	 is	why	 it	 is	a	bad	 idea	 to	use	a	phone	numbers	or	e-mail	 addresses	as	

unique	identifiers.	
	
Therefore,	 in	 order	 to	 uniquely	 identify	 a	 customer,	 we	 use	 the	CustomerId.	 In	 order	 to	
uniquely	identify	a	product,	we	use	the	ProductCode.	The	unique	identifier	is	simply	a	value	
that	is	used	that	is	unique	to	a	given	row	(rows	within	a	given	table	cannot	have	the	same	
unique	identifier).	The	phrase	‘unique	identifier’	an	accurate	description,	is	also	referred	to	
as	the	‘primary	key’	because	it	provides	primary	means	of	row-wise	access	to	data.	
	
Relational	databases:	key	definitions		

• Schema:	 the	entire	 structure	and	description	of	data.	 Importantly,	 the	 schema	 is	
thought	of,	and	packaged,	as	part	of	the	data	base.	In	this	way	a	database	is	‘self-
describing’.		

• Primary	key:	the	column	attribute	of	a	table,	whose	row	value	is	unique	in	the	set	of	
rows.				

• Table:	the	axiomatic	representational	form	employed	in	relational	databases		
• Row:	accumulative	
• Columns:	schematic	
• Relations:	 typically,	 the	 ‘links’	 made	 between	 datum.	 In	 the	 area	 of	 relational	

databases,	collections	of	such	relations	are	represented	as	tables.	
• Tuples:	a	set	of	data	that	is	ordered	according	to	the	colums.	Any	given	row	defines	

a	tuple.	If	the	number	of	colums	is	n,	then	each	row	is	an	n-tuple.	So,	each	row	in	
Table	4	is	an	7-tuple,	whereas	each	row	in	Table	3	is	an	6-tuple.	



	

	 7	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

• Attributes:	Refer	to	the	set	of	columns	in	a	table;	these	are	thus	the	tables	attributes	
and	at	the	same	time	the	attributes	of	each	row	of	data.	

• Entity	type:	the	specific	name	given	to	an	entity,	which	is	essentially	a	collection	of	
columns/tuple	etc.,	associated	with	that	type.	

Table	5:	Some	key,	definitions	regarding	relational	databases.	

2.2.2 Accumulating	relational	data	
In	the	previous	subsection	we	solved	the	problem	of	unique	identification	of	data	by	defining,	
and	giving	an	example	of,	the	use	of	primary	keys.	Now	we	will	show	how	to	store	relations	
between	data	in	the	style	of	the	relational	approach.		
	
	

CustomerId	 ProductCode	 Date	
0001	 02147698	 02-01-2016	
9834	 09377700	 02-02-2016	
0032	 02447701	 23-02-2016	
1298	 08608376	 05-03-2016	
1298	 05070012	 05-03-2016	
0099	 01570627	 21-03-2016	
0032	 08608376	 19-03-2016	
0032	 01570627	 19-03-2016	
.	 .	 .	

Table	6:	Ordered	table.	

Note	 that	 the	 second	problem	of	 storing	numerous	products	 per-customer	 is,	 also,	 easily	
solved	by	this	table;	we	simply	add	a	new	row	each	time	an	order	is	places	–	no	need	to	add	
the	new	product	to	the	same	row	as	other	products.	Accumulative	changes	are	represented	
without	structural	changes	being	made	to	the	table,	such	as	adding	a	new	column	for	a	new	
product.		
	
In	Figure	-3	we	present	(on	the	left)	a	representation	of	the	relationships	specified	by	Table	
6,	along	with	 the	 tables	 that	contain	 the	primary	keys.	Notice	 that	 the	circles	 in	Figure	 -3	
contain	 the	 values	 of	 attributes	 pertaining	 to	 the	 primary	 keys.	 In	 other	words,	we	 have	
chosen	a	readable-friendly	attribute	of	each	row	indicated	by	the	primary	key,	rather	than	to	
represent	the	primary	keys	themselves.	This	is	a	little	bit	like	saying:	
	

• Select	 from	 the	 Customer	 table	 the	 First	 and	 Second	 Name	 according	 to	 the	
CustomerIds	in	the	Order	table.	



	

	 8	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

	
Figure	-3:	A	view	of	what	a	relational	table	represents.	

	
2.3 	A	real-world,	file-based	data	set:	Code	Point@	Open	
Instead	of	working	with	‘fake’	data	for	illustrative	purposes,	in	this	section	we	are	going	to	
take	a	 look	at	a	real-world	data	set.	The	data	set	 is	the	set	of	UK	postcode	data	known	as	
Code-Point®	 Open	 (Ordinance	 Survey,	 2015).	 Postcodes	 are	 grouped	 combinations	 of	
numbers	and	letters,	which	are	associated	with	a	postal	area.	An	example	post	code	is:	
	

G4		0BA	
	
The	‘G’	part	of	the	postcode	stands	for	Glasgow.	The	‘4’	part	of	the	postcode	represents	an	
area	in	Glasgow,	and	the	0	represents	an	area	within	the	area	of	area	‘4’.	So,	as	we	read	across	
the	 string	 G40BA	we	 effectively	 ‘zoom-in’	 to	 quite	 a	 small	 region.	 Postcodes	 are	 used	 to	
deliver	letters,	and	are	used	to	sort	mail,	to	make	the	delivery	of	mail	more	efficient.	Imagine	
if	a	postman	were	to	randomly	deliver	letters	in	the	UK.	They	would,	for	example,	deliver	a	
letter	 in	 Birmingham,	 followed	 by	 one	 in	 Aberdeen,	 some	 680	 kilometers	 North!	 So,	
postcodes	 help	 sort	mail,	which	 in	 turn	 helps	 organize	 its	 efficient	 delivery.	 	 A	 list	 of	 the	
general	postcode	areas	is	available	on	wikipedia.org:	
	
https://en.wikipedia.org/wiki/List_of_postcode_districts_in_the_United_Kingdom	
	
We	will	see	later	in	the	course	that	postcodes,	and	the	associated	data	within	Code-Point®	
Open,	along	with	some	other	technology	we	introduce	later,	can	be	useful	for	other	things,	
too.	 
 
For	now,	though,	we	want	to	focus	on	the	data,	to	see	how	it	is	structured	and	to	see	what	
we	might	want	to	do	to	put	it	into	a	database.	Firstly,	Code-Point®	Open	can	be	downloaded	
from:	
	
https://www.ordnancesurvey.co.uk/opendatadownload/products.html	
	
Code-Point®	Open	(Ordinance	Survey,	2015)	is	an	almost-comprehensive	list	of	the	entire	set	
of	 postcodes	 in	 the	 UK.	 That	 is,	 it	 has	 the	whole	 of	 the	 UK’s	 postcodes	 listed,	 excluding	
Northern	Ireland.	The	database	contains	approximately	1.7	million	UK	postcodes,	with	some	

John 
Davis

Soap 
Powderordered 

02-01-2016

TableAileen 
McManus ordered

(05-03-2016)

TV

ordered
(05-03-2016)

David 
Smith

Sarah 
Jones

Nails

Wood 
Polish

ordered
(21-03-2016)

John 
Davis Bike

ordered
02-02-2016

ordered
(23-02-2016)

ordered
(19-03-2016)

ordered
(19-03-2016)



	

	 9	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

25	 million	 adjoining	 addresses;	 therefore,	 each	 separate	 postcode	 serves	 about	 15	 post	
address,	on	average	(15	x	1.7	=	approx.	25).	
	
	

	
Figure	-4:	Structure	of	codepoint	open	directories.		

	
The	data	is	distributed	by	the	Ordinance	Survey	as	a	set	of	files.	In	Figure	-4,	we	present	the	
structure	of	the	folders	and	where	the	data	files	etc.	can	be	found.	The	top-level	 folder	 is	
<codepo_gb>,	which	contains	two	subfolders,	<Doc>	and	<Data>,	and	inside	<Data>	we	have	
the	folder	<CSV>.	
	
We	are	only	interested	in	the	‘.csv’	files.	The	‘.csv’	postfix	stands	for	comma	separated	values,	
and	‘.csv’	files	are	typically	text	files,	which	can	be	opened	in	any	standard	text	editor.	Most	
of	the	files	are	contained	in	the	<CSV>	directory:	
	

• codepo_gb/Data/CSV/*.csv:	this	set	of	120	files	(the	three	asterisks	‘*’	 in	Figure	-4	
hide	102	files	that	fit,	alphabetically,	between	<ca.csv>,	<wn.csv>)	contains	the	actual	
data.	

	
But	there	is	another	.csv	file	here:	
	

• codepo_gb/Doc/Code-Point_Open_Column_Headers.csv:	this	single	file	defines	the	
headers	to	the	data	

	
Given	the	structure	of	some	of	the	public	data	that	is	available	(which	can	be	very	messy),	we	
should	be	reasonably	happy	with	this	file-based	organization	of	Code-Point®	Open.	Of	course,	
there	is	the	problem	that	the	data	is	stored	into	files,	and	if	we	wanted	to	create	a	program	
that	needed	to	use	postcodes,	the	files	would	take	a	long	time	to	read	into	memory.	However,	
the	files	are	relatively	well	organised.	

	
PC	 PQ	 EA	 NO	 CY	 RH	 LH	 CC	 DC	 WC	
Table	7:	Non-verbose	Code-Point®	Open	header/column	fields.	

codepo_gb

DataDoc

CSV

*
*
*



	

	 10	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

Postcode	 Positional_quality_indicator	 Eastings	 Northings	 CY	 RH	 LH	 CC	 DC	 WC	
Table	8:	Verbose	Code-Point®	Open	header/column	fields.	

Let	us	take	a	closer	look	at	the	header	file.	This	file	contains	10	‘columns’	and	2	‘rows’.	In	the	
text	file,	the	way	that	the	columns	are	coded	are	by	the	insertion	of	the	comma	‘,’.	The	rows	
are	just	specified	by	being	placed	on	separate	lines,	using	on	the	keyboard	the	<Enter>	key.	
The	way	 ‘enter’	 is	coded	 in	a	 text	 file	 is	by	using	 ‘/n’	 (this	 is	not	necessarily	visible	 in	 text	
editors),	 which	 is	 otherwise	 known	 as	 the	 carriage	 return.	 The	 header/column	 fields	 are	
presented	 in	 a	 relatively	 non-verbose	way	 in	 Table	 7,	whereas	 Table	 8	 contains	 relatively	
verbose	 labels.	 Don’t	 worry	 at	 the	 moment	 what	 these	 fields	 mean	 –	 we	 are	 not	 even	
interested	in	knowing	what	all	of	this	means,	but	we	will	look	at	the	most	important	(from	
our	point	of	view)	fields	in	an	example	of	the	data.	
	
So,	the	first	columns	contain	the	actual	postcode.	Then,	there	 is	somethings	known	as	the	
positional	quality	indicator,	followed	by	entries	for	the	eastings	and	northings.	Let	us	take	a	
look	at	an	extract	from	a	data	file	see	in	Table	9.	
	
"G4		0AJ",10,260044,665214,"S92000003","","S08000021","","S12000046","S13002649"	
"G4		0AL",10,260044,665214,"S92000003","","S08000021","","S12000046","S13002649"	
"G4		0AN",10,259725,664965,"S92000003","","S08000021","","S12000046","S13002649"	
"G4		0AP",10,260044,665214,"S92000003","","S08000021","","S12000046","S13002649"	
"G4		0AQ",10,260044,665214,"S92000003","","S08000021","","S12000046","S13002649"	
"G4		0AX",10,259349,666274,"S92000003","","S08000021","","S12000046","S13002650"	
"G4		0BA",10,259296,666080,"S92000003","","S08000021","","S12000046","S13002650"	

Table	9:	Extract	from	file	<codepo_gb/Data/CSV/g.csv>	

Look	at	how	designers	of	the	data	have	decided	to	represent	different	types	of	data	within	
each	column.	They	define	a	String	type	in	the	file	by	enclosing	with	double	quotations	“”.	For	
example,	the	right-hand	column	in	the	final	row	(SI3002650)	is	a	String	type	by	virtue	of	the	
fact	that	it	is	represented	between	the	commas	as	“SI3002650”.	On	the	other	hand,	numbers	
are	stored	as	is,	without	being	enclosed	with	quotes.	
	
Let	us	 take	a	 look	at	some	example	numbers	and	what	 they	represent,	 taking	 the	yellow-
highlighted	 line	as	an	example.	This	row	 is	 the	entry	 for	the	G4	0BA	postcode,	mentioned	
above,	 which	 is	 the	 postcode	 for	 Glasgow	 Caledonian	 University.	 The	 ‘positional	 quality	
indicator’	(column	2)	has	a	value	of	10,	the	‘easting’	(column	3)	a	value	of	259296,	and	the	
‘northing’	(column	4)	a	value	of	666080.	Eastings	and	northings	are	a	form	of	geographical	
coordinate.	Therefore,	a	location	on	the	surface	of	the	earth	can	be	found	with	an	<easting,	
northing>	pair.			
	
So	let	us	check	how	accurate	the	easting	northings	data	is.	Perhaps	we	can	use	a	leading	maps	
provider	to	do	this?	Not	necessarily!	If	we	plug	these	into	Google	Maps	we	will	get	an	error,	
because	Google	maps	(and	many	other	web	services	come	to	that)	represent	geo	coordinates	
differently,	 using	 the	 Latitude	 and	 Longitude.	 Nevertheless,	 it	 is	 possible	 to	 check	 the	
information	 by	 using	 a	 web	 site	 (http://www.gridreferencefinder.com)	 coded	 to	 handle	
<easting,	northing>-style	coordinates.	If	you	go	to	this	site	and	enter	the	values,	the	a	pin	will	
be	 dropped	 inside	 the	 boundary	 of	 the	GCU	 campus!	 Indeed,	 as	we	 see	 in	 Figure	 -5,	 the	



	

	 11	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

coordinate	<259296,	666080>	is	situated	at	a	specific	point	within	the	campus,	actually	just	
next	to	the	Saltire	Centre,	which	is	one	of	the	universities	focal	points	for	learning.	
	

	
Figure	-5	The	GCU	postcode.	

	
2.3.1 A	critique	of	Code	Point@	Open	
We	 are	 not	 interested	 here	 in	 critiquing	 the	 actual	 raw	 data	 as	 a	 resource.	 As	 we	 have	
mentioned,	the	resource	is	very	valuable	in	itself.	We	do,	however,	want	to	briefly	reflect	on:	
the	folder/file	structure	of	the	resource,	and	the	structure	of	the	raw	data	itself.		
	
Strictly	there	is	no	‘right’	way	to	structure	a	data	resource,	but	you	should	try	and	notice	some	
inconsistencies	with	the	organization	of	the	files.	Take	a	look	again	at	Figure	-4.	For	example:	
	

1. Reflecting	on	the	folder/file	structure	of	the	resource:	
a. The	file	<codepo_gb/Doc/Code-Point_Open_Column_Headers.csv>	contains	

the	headings	of	the	data.	Should	this	not	be	part	of	the	data	 itself,	perhaps	
kept	inside	the	codepo_gb/Data	folder	somewhere?	Furthermore,	this	file	has	
an	‘.csv’	extension.	Why,	then,	is	it	not	in	the	CSV	directory?	

b. Metadata	 is	 data	 about	 data.	 It	 is,	 therefore,	 data.	 Why	 is	
codepo_gb/Doc/metadata.txt	not	in	the	Data	directory	then?	

c. All	of	the	files	in	the	Data	directory	are	‘.csv’	type	files.	Is	the	naming	of	this	
folder	redundant?		

	
2. The	structure	of	the	raw	data	itself:	

a. As	mentioned,	Strings	require	additional	coding	(“String”)	within	the	data	file	
itself!	Shouldn’t	the	type	of	the	data	be	declared	outside	of	the	actual	raw	data	
entries?	The	answer	to	that	is	yes.		

b. How	do	we	write	an	application	program	to	get	a	specific	data	entry,	or	set	of	
entries,	out	of	a	file,	or	set	of	files?	And	how	do	we	do	this	quickly?	The	answer	
to	this	is	that	it	can	be	quite	cumbersome	to	code	access	to	specific	values.	The	
algorithms	required	to	do	this	need	coding	 in	 the	application.	Furthermore,	
reading	files	from	disk	is	inherently	as	slow	procedure.	

	
	

http://www.gridreferencefinder.comcodepo_gb/Data/CSV/*.csv



	

	 12	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

Many	of	the	issue	we	mention	here,	concerning	file-based	representations,	simply	seem	to	
disappear	when	using	databases	because	we	are	working	within	the	well-defined	constraints	
of	a	database.		
	
2.4 ‘Declarative’	programing	v	‘Algorithmic’	Programming		
Before	we	finish	this	week,	we	want	to	pick-up	on	point	2b,	and	on	the	fact	that	in	writing	an	
application	program	we	would	need	to	write	algorithms	that	provide	access	to	the	data,	or	
use	someone	else’s	code	that	does	this.	Table	10	provides	a	very	simple	algorithm,	and	one	
that	would	potentially	be	very	slow,	 to	access	 the	easting	and	northing	data	 from	the	 file	
<g.csv>.	Table	11	provides	the	equivalent	database	style	declaration	designed	to	retrieve	the	
same	data	from	a	database.	An	important	point	to	note	is	that	Table	10	is	a	highly	simplified	
set	of	pseudo	code,	whereas	Table	11	is	the	full	MySql	statement,	which	if	you	ran	within	a	
database	environment	would	actually	work.		
	
We	will	see	later	on	in	the	course,	using	a	programming	language	known	as	JavaTM,	that	within	
application	programs	you	can	 run	Sql	 statements.	Rather	 than	writing	application	code	 to	
access	a	file	based	system,	running	Sql	statement/queries	exposes	all	of	the	advantages	of	
databases	to	the	application	program.	
	
	
Program	style	code	
	
//	Create	a	file	instance	in	memory	from	g.csv	
File	f	=	new	file(“g.csv”);	
	
//	Open	the	file	g.csv	
f.open();	
	
//	Access	line	G4	0BA	
for	each	line	in	the	file	{	
				if	(line	elemetn	1	is	equal	to	G4	0BA)	{	
								targetLine	=	current_line	
				}	
}	
	
//	Get	the	information	you	want	from	that	line	
Easting	e	=	targetLine.getElemtn(3);	
Northing	n	=	targetLine.getElemtn(4);	
	

Table	10:	Application	program	pseudo	code	to	retrieve	data	from	file.	

	
	
Database	style	declaration	
//	Select	required	data	from	the	database	
Select	Eastings,	Northings	from	database	where	Postcode	like	‘G4	0AB’;	
	



	

	 13	

WEEK	2:	INTRODUCING	THE	RELATIONAL	APPROACH	TO	DATA		

Table	11:	Code	to	retrieve	data	from	file	v	database	declaration.	

What	is	the	basic	difference	between	algorithmic	programing	and	declarative	programming?	
	
Algorithmic	programming:	here	the	control	(and	therefore	the	responsibility)	and	the	design	
of	 the	algorithms	are	 in	 the	hands	of	 the	programmer.	All	of	 the	steps	need	defining	and	
implementing	 in-code.	This	can	be	a	highly	 rewarding	process	as	 the	programmer	designs	
code	for	re-use,	or	speed,	or	some	trade-off	between	the	two.	
	
Declarative	 programming:	 this	 is	 not	 ‘programming’	 in	 the	 same	 sense.	 A	 declarative	
‘programming’	language	states	which	data	is	needed,	from	which	database.	The	enjoyment	
of	working	with	databases	 is	often	related	to	the	comparative	simplicity	of	retrieving	data	
from	a	database	as	compared	with	having	to	access	it	from	a	file-based	system,	but	is	also	
related	to	the	process	of	actually	designing	the	structure	of	the	data	itself.	
	
Either	form	of	programming	is	no	sense	better	than	another.	As	we	have	suggested,	the	two	
styles	of	programming	are	absolutely	complementary.		
	
own	 creativity	 and	 resourcefulness.	 You	might,	 not	 yet,	 be	 capable	of	 implementing	 your	
ideas,	but,	if	you	work	hard,	then	this	will	come	with	time.		
	
2.5 Summary	

• Database	 development	 should	 not	 just	 be	 undertaken	 by	 jumping	 straight	 into	
creating	a	database.	Important	processes	of	design	must	take	place	first.			

	
• We	 introduced	 the	 relational	 approach	 and	 listed	 some	 basic	 relational	 database	

definitions.		
	

• We	then	considered	 real-world	 file-based	dataset	 known	as	Code	Point	Open.	The	
reason	we	did	this,	was	to	develop	an	appreciation	for	an	existing	File-based	system,	
and	the	often-used	comma	separated	values	(.csv)	format.		

	
	

• We	then	considered	how	we	might	write	a	program	to	access	the	data	within	such	a	
system.		

	
• This	 led	 us	 to	 the	 important	 distinction	 between	 declarative	 programming	 and	

algorithmic	 programming.	 Query	 languages	 are	 very	 much	 based	 on	 the	 idea	 of	
declarative	programming.		

	
~~~~~	

	


