
	

	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

	
	
	
	
	
	

Relational	Data	Modelling	I:	modelling	
processes	and	the	language	of	sets.	
	
	
In	this	week,	we	will	cover	the	following	topics:	

• What	modelling	is,	and	specifically	what	data	modelling	is.	
• What	data	modelling	involves	in	real-world	situations	(modelling	cycle)	
• Some	visual	design	conventions	used	in	relational	database	design.	
• The	language	of	sets		

	
…	and	will	result	in	the	following	learning	outcomes:	

• An	understanding	of	the	general	modelling	cycle	and	how	database	designers	might	
liaise	with	business	clients.	

• An	appreciation	for	the	fact	that	good	design	needs	an	good	appreciation	of	the	data	
domain,	and	the	data	in	the	domain.	

• An	understanding	that	of	the	mathematical	language	of	sets.	
• An	appreciation	that	understanding	this	language	will	help	inform	database	queries.	

	
	
	 	

	

	 2	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

Table	of	Contents	
3.1	 Models	and	modelling	processes	...	3	

3.1.1	 What	is	modelling?	...	3	
3.1.2	 What	is	data	/	database	modelling?	...	3	

3.2	 The	process	of	database	design/modelling	...	4	
3.2.1	 What	is	database	development	..	4	
3.2.2	 3	key	steps:	processes	of	data	model	development	...	5	
3.2.3	 Introduction	to	some	visual	conventions	...	6	

3.3	 The	language	of	sets	..	8	
3.3.1	 Sets,	visually	..	8	
3.3.2	 Sets:	Union,	difference,	intersection	..	11	
3.3.3	 The	set	language	relates	to	the	query	language	...	12	
3.3.4	 Relational	algebra	...	12	

3.4	 Summary	...	13	
	
	
Figure	1:	Database	modelling	...	5	
Figure	2:	Relating	entities	graphically	..	7	
Figure	3:	Creating	a	set	...	9	
Figure	4:	Subset	and	union	...	9	
Figure	5:	Subset	and	difference.	..	9	
Figure	6:	Intersection	of	two	sets.	..	11	
Figure	7:	Sets	as	Venn	diagrams.	..	11	
	
	
Table	1:	SQL	query	as	Venn	diagram	..	12	
	
	 	

	

	 3	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

3.1 Models	and	modelling	processes	
The	same	kinds	of	words	can	be	used	in	different	contexts	and,	consequently,	take	on	slightly	
different	meaning.	Therefore,	it	is	important	to	distinguish	what	we	mean	by	modelling	and	
distinguish	 the	 meaning	 we	 are	 using	 in	 the	 context	 of	 databases.	 We	 will	 do	 this	 by	
contrasting	with	a	slightly	different,	but	commonly-used,	notion	of	modelling.	
	
3.1.1 What	is	modelling?	
Generally,	a	model	is	a	representation	of	something	in	the	real-world,	designed	to	capture	
the	essential	aspects	of	that	 ‘thing’.	At	a	concrete	 level	we	might,	 for	example,	consider	a	
child	playing	with	a	model/toy	boat	because	they	have	developed	an	interested	in	real	boats.	
Similarly,	a	marine	architect	might	build	more	realistic	features	of	boats	into	a	more	advanced	
model	(physically	built,	or	coded	into	a	computer)	of	a	real	vessel	and,	furthermore,	might	
test	the	design	according	to	conditions	of	a	simulated	environment	(physical	wave	machines,	
computer	simulations	of	sea	conditions).	
	
In	academia,	equational	models	are	often	designed	to	capture	features	of	the	physical	world,	
in	the	form	of	equations.	Equations	then	can	be	used	to	analyse	the	behaviour	of	the	real	
system,	analogously	to	how	a	physical	model	of	a	boat	might	be	used	to	understand	‘boat’	
behaviour	when,	scaled-up	in	size,	built	to	cross	the	ocean.	Equations	can	capture	physical	
systems	 of	 varying	 abstraction.	 For	 example,	 Newton’s	 laws	 of	 gravity	 describe	 the	 force	
interactions	 between	 objects	 that	 have	 mass,	 whereas	 more	 concrete	 models	 might	 be	
concerned	with	the	XXXXX.	For	all	such	models	a	useful	rule	of	thumb,	attributed	to	Albert	
Einstein,	is	that	the	model	should	be	simple,	but	not	too	simple:	“Everything	should	be	made	
as	 simple	 as	 possible,	 but	 not	 simpler”.	 The	 important	 aspect	 of	 modelling	 identified	 by	
Einstein	is	that	there	is	little	point	in	having	a	model	that	is	very	simple,	if	it	does	not	properly	
describe	the	real-world	situation.	On	the	other	hand,	a	model	that	is	overly	complicated	will	
not	serve	to	organise	our	understanding,	either.	A	balance	must	be	struck.	
	
3.1.2 What	is	data	/	database	modelling?	
As	the	title	of	this	week	suggests,	we	are	interested	in	relational	data	modelling,	specifically,	
extending	our	less	formal	introduction	to	this	area,	covered	in	the	previous	week	(week	2).	
The	reason	we	have	briefly	considered	the	above	meaning	of	modelling,	commonly	used	in	
academia	and	science,	is	to	distinguish	it	from	the	specific	meaning	of	modelling	that	concerns	
us	in	this	course.	As	Ritchie	states:	
	
“In	the	study	of	databases,	our	interest	is	in	data	modelling.	The	role	of	data	modelling	is	to	
provide	techniques	that	allow	us	to	represent,	by	graphical	and	other	formal	methods,	the	
nature	of	data	in	real-world	computer	applications.	The	principal	justification	for	the	use	of	
data	modelling	is	to	provide	a	clearer	understanding	of	the	underlying	nature	of	information	
and	the	processing	of	information.”	

Ritchie	(2002,	p19).	
		
Read	the	last	sentence	of	the	Ritchie	quote	again:	“The	principal	justification	for	the	use	of	
data	modelling	is	to	provide	a	clearer	understanding	of	the	underlying	nature	of	information	
and	the	processing	of	information”.	You	could	just	as	easily	substitute	the	word	‘information’	
for	 ‘data’,	 and	 we	 probably	 should:	 in	 other	 areas	 of	 computer	 science	 and	 computer	

	

	 4	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

engineering,	‘information’	means	something	more	distinctive	and	relates	to	the	amount	of	
surprise	in	the	flow	of	data	(as	binary	digits)	through	cables,	which	is	captured	by	Shannon’s	
law,	a	highly	pragmatic	and	important	equation	in	the	subject	area	of	computer	networks.		
	
Nevertheless,	you	should	infer	from	Ritchie’s	quote	the	emphasis	on	formality	and	during	this	
week	we	will	become	more	formal	in	the	way	we	start	to	describe.	Hence,	we	start	to	develop	
a	 language	of	 relational	data	modelling.	Fortunately,	 relational	database	models	are	quite	
straightforward	to	understand.	
	
3.2 The	process	of	database	design/modelling	
Before	we	begin	to	properly	learn	the	language	–	the	tools,	(graphical	and	other)	descriptions,	
concepts,	methods	etc.	–	of	relational	data	modelling,	we	will	introduce	the	practical	steps	
that	typically	take	place	during	the	early-stage	process	of	database	development.	Of	course,	
the	 actual	 steps	 that	 take	 place	 will	 vary	 according	 to	 the	 specific	 application	 domain.	
Nevertheless,	even	caricaturing	this	process	somewhat	will	give	us	a	feel	for	this	important	
aspect	of	database	development.	Remember	the	title	of	this	course	is	Database	Development	
and,	while	 it	 is	 important	to	 learn	the	appropriate	technical	 languages,	we	always	need	to	
remember	their	practical	context	and	purpose.	
	
3.2.1 What	is	database	development	
As	with	many	aspects	of	software	development,	an	ability	to	develop	useful	software	depends	
on	 the	 developer	 requiring	 a	 knowledge	 of	 the	 problem	 domain,	 and	 in	 database	
development	this	means	developing	of	view	of	the	data,	based	on	what	the	database	will	be	
used	 for	and	 the	best	way	 in	which	data	 can	be	accessed	and	 stored	efficiently	 for	 these	
purposes.		
	
The	domain,	 i.e.,	 the	target	for	the	data	modelling	exercise,	of	course,	contains	the	target	
data.	As	we	have	discussed	previously,	this	data	might	be	stored	as	a	file-based	system.	It	is	
important,	for	the	developer,	to	understand	how	the	data	is	understood	from	the	point	of	
view	of	the	current	user	of	that	data,	in	the	context	of	the	client	business,	for	example.	The	
data	will	be	used	within	this	context	in	a	certain	way	and,	consequently,	the	user	will	have	
developed	a	view	of	the	data	–	this	will	include	how	the	data	is	related,	stored,	used,	updated	
etc.	 In	 order	 that	 a	 useful	 database	 representation	 of	 the	 data	 can	 be	 developed,	 it	 is	
important	during	 the	 initial	 stages,	as	with	 software	development	more	generally,	 for	 the	
developer	(in	this	case	the	database	developer,	or	database	development	team)	to	get	a	good	
understanding	 of	 how	 the	 client	understands	 and	 uses	 the	 data,	 as	well	 as	 developing	 a	
knowledge	of	the	current	storage	and	representation	of	the	data	itself.	In	order	to	develop	
this	understanding,	questions	should	be	asked	to	facilitate	this	and,	again	as	with	software	
development	generally,	client	interactions	will	be	quite	frequent	during	the	initial	stages.		
	
When	the	database	team	begin	to	start	to	implement	the	database	it	is	a	good	idea	that	the	
data	modelling	is	complete.	That	is,	for	relational	database	design	development	is	done	in	a	
top-down	fashion.	The	phrase	top-down,	here,	refers	to	the	idea	that	thorough	comes	first,	
before	the	database	is	implemented.	In	recent	times,	the	idea	of	agile	software	application	
development	 has	 taken	 hold,	 which	 emphasizes	 a	 modern	 approach	 to	 development,	 in	
contrast	to	the	more	traditional,	top-down	approaches	to	software	engineering.	However,	an	

	

	 5	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

agile	mind-set	 in	not	best	suited	to	relational	database	development.	This	 is	a	view	is	well	
expressed	by	Allardice	(2015):	
	
“…planning	 is	 vital	 [for	 relational	 database	 development].	 Whereas	 in	 other	 areas	 of	
development	such	as	agile	incremental	approaches	(build	something	quickly,	get	it	out	there,	
revise	it,	add	new	features	[quickly]	over	weeks	or	even	days),	relational	databases	reward	
up-front	planning	because	the	entire	point	is	to	impose	rules,	constraints	and	structure	on	
the	data	and	we	don’t	want	to	have	one	set	of	rules	for	one	week	and	another	set	of	rules	for	
another	week.”	

Allardice	(2015)	
	
	

	
Figure	1:	Database	modelling	

	
	
Therefore,	the	database	modelling	process	itself	is	about	how	we	get	from	the	user-defined	
view	of	the	data,	how	the	data	gets	processed	and	updated	etc.,	to	the	associated,	database	
view	of	the	data		
	
3.2.2 3	key	steps:	processes	of	data	model	development		
Figure	1	presents	a	schematic,	which	helps	visualize	the	intended	process	of	moving	from	the	
application	domain	to	the	design	of	the	database	itself.	Note	well,	there	are	three	main	steps	
during	 the	 database	 development	 process.	 These	 stages	 all	 concern	 the	 process	 of	
identification	and	specification	of	entities	and	relationships	between	entities	from	the	data.	
Each	level,	from	1	to	3,	is	intended	as	a	phase	of	identification,	each	step	being	followed	by	
another	one,	which	adds	details	and	specification,	such	the	data	model	becomes	more	and	
more	explicit	over	time.	
	

1. Conceptual	 data	 modelling	 (least	 detailed):	 this	 is	 to	 identify	 the	 salient	 entities	
within	the	data	and	the	most	important	relationships	between	them.	Given	that	two	
entities	have	been	identified	(say,	Customer,	and	Product),	for	example,	we	know	that	
these	two	entities	are	related	in	some	way.	At	this	stage	it	is	typical	to	remain	quite	
high-level	in	our	descriptions	from	the	point	of	view	that	we	do	not	need	to	disclose	

Understanding

User
Domain

User View

1 - Conceptual View

2 - Logical View

3 - Physical View

Data

Business

Context

File System

Data ?

Data ?

Data ?

Data ?

Data M
odelling Process

Iteration

Ite
ra

tio
n

Data ?

?

?

?

?

?

?

DATABASE

DOMAIN OF DATA MODELLING

?

?

Increasing explicit data m
odel

	

	 6	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

all	 of	 the	 detail.	 For	 example,	 we	 only	 really	 need	 to	 know	 that	 Customers	 and	
Products	are	entities;	there	is	no	need	to	go	further	by	being	explicit	about	Customer	
and	Product	attributes	–	e.g.,	‘Customer	Number’,	‘FirstName’,	‘Surname’,	‘Address’,	
etc.,	or	for	product	‘ProductNumber’,	‘ProductName’,	‘Category’.	

	
2. Logical	data	modelling	(more	detail):	progressing	from	the	previous	stage,	we	start	

to	identify	all	of	the	entities	in	the	data	model,	and	all	of	the	relationships.	For	each	
entity	we	specify	all	of	the	attributes	and	identify	the	primary	key	in	the	data,	along	
with	 the	 identification	 of	 foreign	 keys,	 which	 are	 used	 to	 define	 the	 relationships	
between	entities.	

	
3. Physical	data	modelling	(fully	detailed):	at	this	stage	a	comprehensive	model	of	the	

data	 is	 in	place,	 in	 the	 form	of	a	 logical,	entity	 relationship	diagram.	However,	 this	
additional	step	might	include	alterations	to	the	logical	model.	This	diagram	is	specified	
in	tabular	form,	including	all	of	the	primary	keys,	relationships	(foreign	keys)	etc.	

	
Steps	2	and	3	also	involve	something	known	as	normalization,	and	possibly	denormalisation.	
However,	we	do	not	cover	or	define	these	aspects	here	–	we	will	return	to	this	topic	a	future	
week.	Again,	it	is	important	we	emphasise	that	the	three-step	process	of	data	modelling	is	
one	of	design	only,	no	implementation.	
	
3.2.3 Introduction	to	some	visual	conventions	
As	in	many	areas	of	software	engineering,	the	output	of	the	design	process	–	the	design	itself	
–	can	be	communicated	to	others	in	natural	language	(i.e.,	text),	but	a	diagram	can	sometimes	
be	worth	 a	 thousand	words.	 Therefore,	 just	 like	we	might	 use	UML	 to	 communicate	 the	
design	of	an	application	program,	database	design	comes	with	its	own	diagrammatic	tools.	
We	briefly	look	at	commonly	used	diagrams	here	and	a	simple	example.		
	
In	 Figure	 2,	 we	 present	 some	 common	 graphical	 components	 typically	 used	 to	 construct	
entity-relationship	diagrams.		Entities	are	square-boxed,	Attributes	are	represented	by	ovals	
and	actions,	which	relate	entities,	are	represented	by	diamonds.	Figure	2	also	contains	typical	
line	type	used	to	denote	the	mapping	between	entities	–	mappings	can	be	of	various	kinds	
(one-to-one,	one-to-many,	one-to-zero-or-many,	one-to-one-or-many,	many-to-many).	
	
In	the	example,	we	have	three	entities	(Customer,	Product	and	Order).	A	singular,	concrete	
situation	can	be	imagined	as	follows:	a	customer	 is	browsing	an	on-line	shopping	web-site	
they	have	already	created	an	account	with.	He/she	clicks	on	a	product,	likes	the	look	of	it	and	
consequently	orders	 the	 product.	 In	 a	 similar	 vein,	 but	 out	 of	 sight	 of	 the	 customer,	 the	
customer	consequently	generates	an	order	–	i.e.,	a	stored	set	of	information,	that	contains	
the	product,	which	is	used	in	the	end	by	the	company	to	make	sure	the	product	arrives	to	the	
customer.	 Looking	 at	 the	 example	we	 can	 see	 that	 these	 various	 actions	 relate	 the	 given	
entities.		
	
However,	 the	 purpose	 of	 the	 diagram	 in	 Figure	 2	 is	 not	 to	 merely	 represent	 any	 single	
situation,	specific	to	a	given	customer	ordering	a	product.	The	purpose	is	to	represent	all	such	
situations.	For	example,	take	three	separate	situations	(Situation	A,	Situation	B	and	Situation	
C),	which	are	all	different.	Situation	A	is	the	one	we	just	described:	a	single	customer	ordering	

	

	 7	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

a	 single	 item,	 resulting	 in	 the	 generation	 of	 a	 single	 order	 that	 contains	 the	 product.	
Alternatively,	in	situation	B,	we	can	have	a	customer	who	has	registered	an	account	but	who	
has	placed	no	orders	at	all.	Situation	C	is	different	again	–	customer	C	has	visited	the	site	many	
times,	 on	 occasions	 ordering	 a	 varying	 number	 of	 products	 at	 any	 one	 time,	 after	
accumulating	them	in	their	basket,	then	triggering	one	order	on	completion	for	numerous	
products.	We	therefore	require	the	relationship	between	Customers,	Products	and	Order	to	
be	well	defined,	meaning	that	 the	definitions	of	 the	relationships	need	to	represent	real-
world	use	cases.	The	example	triadic	relationship	between	Customer,	Product	and	Order	is	
defined	quite	specifically	in	the	diagram.	In	addition	to	the	actions	that	connect	the	entities,	
the	connections	specify	well-defined	constrains,	as	follows:	
	

• A	Customer	can	order	one	or	many	products	at	one	time.	
• A	Customer	can	generate	one	Order	when	purchasing	their	products,	but	over	time	

they	might	accumulate	many	of	them.	
• A	Product	type	can	be	order	never,	once,	or	many	times	from	any	given	Customer	
• An	Order	can	contain	one	or	many	Products.		
• An	Order	might	never	be	generated	by	a	customer	(someone	who	only	registered	the	

account	and	did	not	buy	anything),	might	be	generated	once	(or	many	times)	by	other	
customers.	

	
Technical	diagrams	are	useful	to	people	who	learn	them.	Although	it	takes	time	to	learn	their	
meaning,	in	the	end	this	hard	work	will	pay	off.	This	is	because	diagrams	then	speak	to	the	
developer	about	the	design,	and	in	quite	an	efficient	way	(compare	the	amount	of	text	written	
about	the	diagram,	above,	with	the	simplicity	of	the	diagram	itself).	Over	time	you	will	learn	
to	 read	 diagrams	 quickly,	 and	 create	 them	 such	 they	 you	 can	 communicate	 your	 own	
creations	to	others	as	efficiently.	
	

	
Figure	2:	Relating	entities	graphically	

Entity

Attribute

Action

Entity: the ‘thing’ in question. Often a tangible
object in the real world (Person, Product), but see
text for comments.

Attribute: An attribute ‘belongs’ to an entity and
together and the entity will typically have several
attributes; together the constitute the entity.

One to one: The straight line is used to denote
the fact that an entity is ‘defined by’ the attribute.

Action: used to represent actions between
entities.

One to many: Where one entity relates to many
instances of another entity.

One to zero or many: Where one entity may
relate to zero or many of instances of another
entity.

Many to many: Where one entity may relate to
many instances of another entity, which may also
relate to many instances of the entity.

Customer

Generates

Product

Order

Orders

One to one or many: Where one entity may relate
to many instances of another entity, which may
also relate to many instances of the entity.

Contains

Example

	

	 8	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

3.3 The	language	of	sets	
Many	textbooks	have	at	least	some	reference	to	the	notion	of	sets.	For	the	beginner,	these	
sections	can	quite	often	look	intimidating,	given	the	strange	looking	notion	used,	e.g.:	
	

𝑚	 ∈ 𝐴 ⊆ 𝑊	
	
or:	

𝑆	⋂	𝑇 = {𝑎, 𝑏}	
	
However,	this	strange-looking	notation,	like	most	mathematics,	is	merely	a	form	of	shorthand	
that	only	looks	strange,	but	in	fact	fairly	easy	to	understand.	Indeed,	many	concepts	related	
to	 set	 theory	 are	 so	 simple	 that	 they	 can	 actually	 be	 illustrated	 visually,	 which	 we	 will	
demonstrate	soon.	The	reason	it	is	worthwhile	reviewing	the	language	of	sets,	apart	from	to	
put	the	intimidation	factor	in	its	rightful	place,	is	because	set-based	operators	underpin	what	
is	known	as	relational	algebra,	the	theoretical	foundation	of	relational	databases	and	query	
languages.	Sets	 therefore	provide	the	axiomatic	substrate	 for	many	of	 the	practical	 things	
that	you	will	do	in	relational	database	development.	
	
A	set	is	“a	collection,	possibly	infinite,	of	distinct	numbers,	objects	etc.,	that	is	treated	as	an	
entity	 in	 its	own	right,	and	with	 identity	dependent	only	upon	its	members”	 (Borowski	and	
Borwein,	1989).		The	members	of	a	set	thus	have	in	common	that	they	are	members	of	the	
set,	and	for	some	reason:	Kenya	and	Mauritius	are	inside	the	set	African	Countries;	Scotland	
and	Wales	are	inside	the	set	United	Kingdom;	the	iPhone,	iMac	and	iPod	are	inside	the	set	
Apple	Products	etc.	In	these	examples	Kenya,	Mauritius,	Scotland,	Wales,	iMac,	iPhone,	iPod	
etc.	are	said	to	be	members	or	elements	of	the	set.	Members	of	sets	are	typically	denoted	
with	 lower-case	 letters	whereas	 sets	 themselves	are	denoted	with	upper-case	 letters.	 For	
example:	to	denote	Mauritius	we	might	choose	the	letter	‘m’;	to	denote	the	set	of	countries	
Africa	we	might	choose	the	letter	‘A’,	and	to	denote	all	of	the	countries	in	the	world	we	might	
choose	the	letter	‘W’.	It	is	clearly	the	case	that	Africa,	A,	is	a	set	of	countries	that	is	‘contained	
within’	the	set	of	countries	of	the	world,	W,	and	that	Mauritius,	m,	is	in	Africa.	Therefore,	the	
mathematical	statement:	
	

𝑚	 ∈ 𝐴 ⊆ 𝑊	
	
says	“Mauritius	is	in	Africa,	which	is	a	subset	of	all	the	countries	in	the	world”.	Hence,	there	is	
nothing	mysterious	about	the	mathematical	form,	once	you	know	what	the	symbols	mean.	
	
3.3.1 Sets,	visually	
Let	us	consider	a	set	of	objects	to	begin	with:	a	bicycle,	a	motorbike,	a	car,	a	bus,	a	truck,	a	
boat,	a	sailing	boat,	an	airplane.	We	follow	the	idea	that	a	set	of	objects	can	be	thought	of	as	
being	contained	together	inside	the	set,	which	is	visually	rendered	as	a	see-through	container	
(Stewart,	1995),	such	that	we	know	which	objects	are	there.	Additionally,	we	denote	the	act	
of	placing	the	objects	 in	the	container	with	the	mapping	symbol	(↦).	 In	this	way,	Figure	3	
defines	the	act	of	creating	a	set	of	vehicles.	
	

	

	 9	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

	
Figure	3:	Creating	a	set	

	
Although	we	have	decided	to	place	all	of	the	objects	into	a	single	set,	we	are	at	the	same	time	
able	to	recognize	that	each	individual	member	has	attributes.	For	example,	we	might	notice	
that	the	bicycle	is	the	only	vehicle	whose	engine	is	also	the	driver,	which	makes	the	bicycle	
quite	unique,	although	it	shares	the	attribute	of	having	wheels	with	the	motorbike,	motorcar,	
bus	and	truck.		
	
We	can	render	these	observations	visually,	as	in	Figure	4.	We	simply	place	the	bicycle	inside	
a	 ‘bag’	 (left-hand	 picture),	 inside	 the	 see-through	 container,	 and	 we	 do	 likewise	 (middle	
picture)	with	the	vehicles	not	propelled	by	a	human	‘engine’,	but	which	do	have	wheels,	which	
of	course	can	be	used	to	roll	along	roads.	So	far,	then,	we	have	identified	these	two	sets,	and	
we	can	see	that	they	are	subsets	of	the	set	of	vehicles.	The	larger	subset	of	the	set	of	vehicles,	
i.e.,	the	vehicles	with	wheels	(right-hand	picture)	is	a	type	of	unification	of	these	two	sets,	
known	as	the	union.	
	

	
Figure	4:	Subset	and	union	

Definitions:	
• Proper	subset:	a	set	that	contains	members	that	are	also	members	of	a	larger	set,	

at	the	same	time	excluding	other	members	of	the	larger	set.	Sub-sets	are,	then,	by	
definition,	also	a	set.	

• Union:	the	set	of	elements	that	belongs	to	either	of	a	given	pair	of	sets.	
	
	

	
Figure	5:	Subset	and	difference.	

bicycle truck

motorbike

aeroplane

motorcar

bus

motorboat

sailboat 7!
set of vehicles

set of vehicles set of vehicles set of vehicles

7!
A B C D

	

	 10	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

In	a	different	way,	rather	than	noticing	a	unification	of	two	existing	sets,	we	might	start	with	
a	 subset,	 say	 all	 of	 the	 vehicles	 that	 use	 energy	 derived	 from	 fossil	 fuels	 (i.e.,	 airplane,	
motorbike,	motorcar,	truck,	bus,	boat)	and	want	to	‘get	at’	members	of	this	set,	but	only	those	
that	are	designed	to	be	propelled	on	a	road	surface.	This	situation	is	presented	in	Figure	5.	
We	place	the	vehicles	that	run	on	fossil	fuels	inside	a	bag	(left-hand	picture	‘A’)	and	we	do	
likewise	 for	all	of	 the	vehicles	with	wheels	 (left-hand	picture	 ‘B’).	Then	we	take	the	set	of	
vehicles	with	wheels	that	do	not	use	fossil	fuels,	the	bicycle,	identified	previously	(left-hand	
picture	‘C’).	From	these	sets	we	can	derive	set	‘D’	(right-hand	picture).	
	
Definition:	

• Difference:	the	set	of	members	of	the	first	set	that	are	not	members	of	the	second.	
	
With	this	definition,	we	start	with	B	(set	of	wheeled	vehicles)	and	we	‘minus’	set	A	to	get	rid	
of	all	the	vehicles	that	are	not	suitable	for	the	road.	When	we	have	completed	this	operation,	
we	minus	set	C	from	the	result,	the	bicycle	in	this	case,	which	is	propelled	by	a	human,	not	
the	burning	of	fossil	fuel,	leaving	set	‘road	vehicles	that	run	on	fossil	fuel’,	i.e.,	set	D:	
	

𝐵 − 𝐴 − 𝐶 = 𝐷	
	
Another	important	aspect	of	set	operation	is	where	we	have	two	separate	sets,	and	we	want	
to	know	if	the	two	sets	have	any	common	members.	The	intersection	provides	the	answer	to	
this.	
	
Definition:	

• Intersection:	the	set	of	members	of	the	first	set	that	overlap	with	the	second,	or	
more	generally,	the	set	of	elements	that	are	members	of	two	or	more	given	sets.	

	
An	example	intersection	is	presented	in	Figure	6.	We	have	two	separate	sets,	this	time	drawn	
inside	two	squares.	There	 is	the	set	of	vehicles	that	pollute	 the	atmosphere,	because	they	
burn	 fossil	 fuels	 in	 the	 process	 of	 acceleration,	 and	 the	 set	 of	 2-wheeled	 vehicles.	 The	
intersection	is	a	single	member	set,	the	motorbike,	which	has	two	wheels	and	pollutes.	If	we	
denote	vehicles	that	pollute	with	a	letter	P,	the	set	2-wheeled	vehicles	with	letter	Q,	and	the	
single	motorbike	as	R,	then	the	following	symbolic	representation	describes	the	same	picture:	
	

𝑅 = 𝑃 ∩ 𝑄	
	
	
	

	

	 11	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

	
Figure	6:	Intersection	of	two	sets.	

	
3.3.2 Sets:	Union,	difference,	intersection	
The	union,	difference	and	 intersection	of	sets	 form	three	 important	operators	 in	 terms	of	
relational	databases.	Up	until	now	we	have	been	visualising	the	set,	and	operations	on	sets,	
as	two-dimensionally.	Another	way	to	do	this	is	by	using	Venn	diagrams.	
	
Venn	diagrams	–	illustrated	in	Figure	7	–	can	be	used	to	generally	represent	what	is	inside	a	
given	set,	irrespective	of	what	this	might	be.	A	set	is	represented	by	a	circle	and	where	there	
are	members	of	sets	that	are	the	same,	this	is	represented	as	the	overlapping	areas	of	the	
circles.	We	thus	have	three	sets	(A,	B	and	C).	The	six	example	operations	show	different	ways	
of	identifying	areas	of	the	sets,	individually,	or	as	a	combination.	The	shaded	areas	correspond	
the	result	of	the	operations	defined	underneath	the	pictures.	Here,	we	only	have	three	sets,	
but	the	power	of	the	set	theory	is	that	operations	can	be	applied	to	any	number	of	sets,		even	
though	this	is	difficult	to	then	visualize	‘on	paper’,	so	to	speak.	The	different	operators	shown	
here	correspond	to	the	operation	described	above	–	i.e.	∪,	∩	,−	are	the	union,	intersection	
and	difference	operators,	respectively.	
	

	
Figure	7:	Sets	as	Venn	diagrams.	

Vehicles that pollute

2-wheeled vehicles

2-wheeled vehicles
that pollute

A

B C

A [B

A \ C

(A [B) \ C

B \ C A�B

(B �A)� C

	

	 12	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

3.3.3 The	set	language	relates	to	the	query	language		
You	might	 have	 been	 wondering	 what	 all	 of	 this	 has	 to	 do	 with	 databases?	Well,	 it	 has	
everything	to	do	with	them.	We	have	previously	discussed	how	a	database	is	not	just	a	way	
of	storing	a	file	system	in	memory,	but	is	a	“…	shared	collection	of	logically	related	data	and	
its	 description,	 deigned	 to	meet	 the	 information	 needs	 of	 an	 organisation”	 (Conolly	 Begg	
1.31).	Our	coverage	of	basic	set	explanations	serves	to	highlight	that	sets	are	also	logically	
related	and	this	logic	can	be	explored	and	exploited	in	the	process	of	data	modelling,	such	
that	we	can	access	the	data	using,	essentially,	the	language	of	set	operators.		
	
Tip:	 it	 can	 be	 very	 useful	 to	 start	 thinking	 about	 sets,	 and	 set	 operations,	 because	 they	
underpin	 much	 of	 the	 syntax	 in	 the	 statements	 of	 query	 languages	 (the	 programming	
languages	used	to	process,	access	and	manipulate	data	from	databases).		
	
We	will	introduce	a	query	language	known	as	SQL	in	more	detail	later	in	the	course,	but	for	
now,	just	to	demonstrate	the	relevance	of	the	language	of	sets	we	present	Table	1,	which	
indicates	that	the	typical	structure	of	an	SQL	command	is	to	SELECT	a	subset	of	data	FROM	a	
database	tables	(or	tables),	in	accordance	with	CONDITIONS	that	you	specify.	Indeed,	SELECT	
and	FROM	are	SQL	keywords;	 conditions	are	often	usually	 specified	with	numerous	other	
keywords	(e.g.,	WHERE,	IF	etc.	etc.).	You	are	encouraged	to	go	and	research	spome	simple	
SQL	statements	with	this	basic	structure	in	mind;	it	will	help	you	start	to	understanding	the	
logic	of	data	selection	and	how	databases	can	be	‘asked’	to	give	us	what	we	want.	
	
	
	
Typical	structure	of	SQL	queries:	
SELECT	the	subset	of	data.	
	
FROM	a	database	table.	
	
CONDITIONS	specifying	the	subset	
based	on	conditions	you	provide.	

	
Table	1:	SQL	query	as	Venn	diagram	

3.3.4 Relational	algebra	
Relational	algebra	consists	of	a	number	of	operations	that	will	be	useful	going	forwards,	and	
so	we	list	them	here.		
	

• Difference:	
• Intersection:		
• Join:	
• Product:	
• Project:	
• Restrict:	

6

3
2

4

5

1

7 8

9

9

Red product

Green product

	

	 13	

WEEK	3:	RELATIONAL	DATA	MODELLING	I	

• Union:		
	
You	are	encouraged	to	go	and	learn	what	these	terms	mean.	The	Ritchie	book	is	a	good	place	
to	start.	
	
3.4 Summary	

• ‘Modelling’	 is	 a	 widely	 label,	 in	 everyday	 life,	 but	 also	 heavily	 used	 within	 the	
computational	sciences.		

	
• We	thus	explored	the	meaning	of	models	and	the	modelling	process.	This	allowed	us	

to	 specifically	 define	 and	 discuss	 ‘data	modelling’	 and	 ‘database	modelling’	 in	 the	
context	of	relational	databases.		

	
• Database	 development	 as	 a	 sequence	 of	 iterative	 steps	 involving	 conceptual	

modelling,	logical	data	modelling,	followed	by	physical	data	modelling.		
	

• We	 introduced	 some	 standard	 visual	diagramming	 techniques	 related	 to	 relational	
database	modelling.		

	
• We	 then	 introduced	 the	 language	 of	 set	 theory,	 which	 is	 the	 mathematical	

underpinning	of	the	query	language	of	rational	databases,	known	as	SQL.		
	

~~~~~	
	


