
	
WEEK	4:	RELATIONAL	DATA	MODELLING	II	

	
	
	
	
	
	

Relational	 data	 modelling	 II:	 from	 ER	
diagrams	to	the	data	schema		
	
	
	
In	this	week,	we	will	cover	the	following	topics:	

• Optionality	and	cardinality.	
• Types	of	relationships	between	different	tables	(one	to	many,	many	to	one	etc..).	
• Keys:	foreign	keys	and	primary	keys.	
• Modelling	time-dependent	data.	
• Physical	design:	data	types	and	sequencing.	

	
…	and	will	result	in	the	following	learning	outcomes:	

• An	understanding	of	optionality	and	cardinality.	
• An	understanding	of	many-to-one,	one-to-many	kinds	of	relationships	between	data.	
• Knowledge	of	how	to	accumulate	time-relevant	data	into	tables.	
• An	appreciation,	 from	examples	given,	that	databases	are	critical	 in	the	real	world,	

e.g.,	 for	 keeping	 freight	 systems	 in	motion	 (and	 therefore	 our	 fridges	 stocked	with	
food).		

	
	
	 	

	

	 2	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

Table	of	Contents	
4.1	 Data	modelling,	increasing	the	detail	...	3	

4.1.1	 Optionality	and	cardinality	...	3	
4.2	 More	detailed	tabular	diagrams	of	entities	..	5	
4.3	 Creating	tables	...	7	

4.3.1	 Identifying	rows	within	a	table	with	‘primary	keys	(PK)’	..	7	
4.4	 Creating	relationships	between	tables	...	9	

4.4.1	 Many-to-many	example	...	9	
4.4.2	 One	to	many	example	rows	in	other	tables	with	foreign	keys	...	9	
4.4.3	 Modelling	time-dependent	data	in	tables	..	10	

4.5	 Physical	Design	..	11	
4.5.1	 Data	types	...	11	
4.5.2	 Identity	using	automatic	sequencing	..	13	
4.5.3	 Indexing	..	14	

4.6	 Summary	...	15	
	
	
Figure	1:	Data	model	for	product	delivery	and	storage.	..	5	
Figure	2:	Simple	'logistics'	database	...	6	
Figure	3:	Many	to	many	example	with	link-table	...	9	
Figure	4:	One	to	many	relationships	..	10	
Figure	5:	Database	model	for	vehicle	accelerations	..	11	
Figure	6:	Integer	data	types	in	MySql.	..	12	
	
	
Table	1:	Optionality	and	Cardinality	...	4	
Table	2:	Product	table	in	general	row/column	form,	indicating	data	types.	7	
Table	3:	Product_Delivery	table	in	row/column	form,	indicating	more	data	types	7	
Table	4:	Product	table	in	row/column	form.	..	7	
	 	

	

	 3	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

4.1 Data	modelling,	increasing	the	detail	
As	previously	suggested,	in	Week	3,	during	the	preliminary	phases	of	data	design,	there	is	a	
lot	of	interaction	between	the	business	client	and	the	database	designer	and/or	the	rest	of	
the	database	team.	The	detail	of	the	data	–	i.e.,	the	objects,	attributes,	relationships	etc.	–	
will	be	relatively	vague.		
	
However,	as	the	design	of	the	database	develops,	the	specification	of	these	things	will	take	
on	a	 finer	 resolution	–	 specific	 relationships	will	 become	better	defined,	 the	attributes	of	
objects	more	definitive,	and,	hence,	the	overall	look	of	the	design	will	become	more	detailed.	
As	a	consequence,	the	diagrams	that	you	are	likely	to	see	in	textbooks	(and	use	in	practice)	
will	 typically	 evolve	 throughout	 the	 textbook,	 becoming	 more	 detailed	 and	 containing	
additional	 information	 in	 them.	 The	 purpose	 is	 to	 allow	 representational	 the	 lower-level	
details.		
	
In	this	section	we	will	introduce	some	further	notation	concerning	the	relationships	between	
data	–	i.e.,	the	optionality	and	cardinality	of	relationship(s)	–	using	alternative	notations.	The	
purpose	 is	 to	 provide	 arm	 you	with	 the	 different	 notations,	 and	 also	 visit	 the	 underlying	
meanings	again	in	more	detail.	This	will	be	done	by	considering	some	examples,	which	will	
again	 be	 based	 on	 the	 same	 general	 theme	 we	 are	 following:	 the	 movements	 of	 goods	
through	a	supply	chain.	
	
4.1.1 Optionality	and	cardinality	
Consider	an	example	based	on	the	manufacture	of	various	products.	We	will	call	the	producer	
of	these	products	G&P,	which	is	a	hypothetical	manufacturing	company	that	produces	various	
products	relating	to	what	we	might	classify	as	Home	Care	products…things	like	toothpaste,	
detergent,	 shampoo,	 soap,	 beauty	 cream,	 hairspray	 etc.	 Another	 company,	 known	 as	
Ainsburies	LTD,	 is	a	separately	owned	retail	company	and	it	sells	the	products	it	purchases	
from	G&P	(of	course	it	might	also	purchase	products	from	other	manufacturers)	directly	to	
customers	through	its	supermarket	outlets.		
	
We	are	designing	a	data	model,	for	Ainsburies	LTD.	This	is	the	scope	of	our	data	model.	The	
model	must	 handle	 the	 recording	 of	 product	 deliveries.	 A	Product_Delivery	 entity	 can	 be	
thought	of	as	 relating	 to	different	products,	which	have	 the	generic	entity	name	Product.	
From	the	point	of	view	of	the	Ainsuries	LTD,	what	has	to	happen	is	that	the	Products	need	to	
arrive	 at	 the	 store?	When	 they	 arrive,	 they	 will,	 in	 reality,	 need	 to	 be	 stored	 inside	 the	
supermarkets	warehouse.	However,	for	the	purpose	of	our	example	we	will	not	cover	this	
storage	aspect.	We	only	cover	everything	up	until	their	arrival	at	the	store.	
	
To	begin,	we	make	a	number	of	observations,	with	the	help	of	the	client,	as	follows:	
	

1. Each	delivery	 (we	will	 refer	 to	 in-schema	as	Product_Delivery)	will	be	associated	
with	 potentially	 many	 items	 made	 by	 G&P,	 but	 not	 necessarily	 every	 product	
(likewise,	named	‘Product’	in	the	schema)	made	by	G&P	is	part	of	such	a	delivery.	

2. Each	Product	might	be	associated	with	many	deliveries.	This	makes	sense	–	once	a	
store	aquires	a	given	product,	the	ultimate	aim	is	to	sell	it	and	thus	run	the	stock	
down,	resulting	in	the	triggering	of	another	order,	which	needs	to	be	delivered.	

	

	 4	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

3. Each	physical	delivery	must	arrive	at	a	given	location	(likewise,	named	‘Location’	in	
the	schema).		

	
Therefore,	we	have	three	entities	(Product_Delivery,	Product	and	Location),	and,	to	begin	with	
four	potential	relationships:		

• Product_Delivery--Product.	
• Product--Product_Delivery.		
• Product_Delivery--Location;	and		
• Location--Product_Delivery.		

	
It	is,	however,	helpful	to	define	the	boundaries	of	relationships	and	we	can	be	would	like	to	
be	more	explicit	about	the	Optionality	and	Cardinality	of	relationships,	before	going	on	to	
introduce	a	more	detailed,	higher-resolution	database	design	in	tabular	form.	
	
General	Definitions:	

• Optionality:	The	minimum	number	of	entities	that	can	be	that	can	be	associated	
with	another	entity.	

• Cardinality:	The	maximum	number	of	entities	that	can	be	that	can	be	associated	
with	another	entity.	

• 	
	
Therefore,	 look	 at	 Table	 1.	We	 said,	 previously,	 that	 a	 Product_Delivery	 can	 contain	 any	
number	of	Product	items,	but	not	necessarily	every	product	is	part	of	a	delivery.	We	might	
also	 realize	 that	a	delivery	 from	G&P	must	 contain	at	 least	one	Product	 (a	delivery	which	
contains	nothing	is	not	a	delivery	of	anything	at	all!).		
	
Therefore,	when	thinking	about	 the	relationship,	Product_Delivery--Product,	we	say	 that	a	
Product_Delivery	may	have	0	 instance	of	any	given	Product	or	 it	may	have	any	number	of	
Products.	Thus,	the	optionality	is	‘0’	and	the	cardinality	is	‘*’	(meaning	“any”).	On	the	other	
hand,	a	Product	might	not	belong	to	a	Product_Delivery	(optionality	‘0’),	but	if	it	does,	then	it	
only	 belongs	 to	 a	 specific,	 singular	 (cardinality	 ‘1’)	 Product_Delivery.	 Similarly,	 a	 product	
delivery	may	not	be	made	to	a	given	location	(optionality	‘0’),	 if	the	location	is	not	a	retail	
outlet,	for	example,	but	product	deliveries	are	made	to	many	locations	(*).	Finally,	a	Location	
might	not	receive	a	product	delivery,	(optionality	‘0’),	but	numerous	(*)	will	receive	deliveries.		
	
Relationship	 Optionality	 Cardinality	
Product_Delivery--Product	 0	 *	
Product--Product_Delivery	 0	 *	
Product_Delivery	--Location	 0	 *	
Location--	Product_Delivery	 0	 *	

Table	1:	Optionality	and	Cardinality	

	

	

	 5	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

	
Figure	1:	Data	model	for	product	delivery	and	storage.	

	
Typically,	 the	 bi-directionality	 (the	 two-way	 property)	 of	 relationships	 is	 captured	
diagrammatically	on	a	single	line,	to	help	keep	diagrams	neat,	while	at	the	same	time	allowing	
them	to	express	 the	 information	 required.	Therefore,	by	way	of	 illustration,	we	present	a	
complete	diagram	in	Figure	1.	Note:	the	notation	used	here	is	a	kind	of	alternative	to	that	
introduced	in	Week	3	(see	section	TDO).	We	do	not	elaborate	on	the	differences	here,	but	for	
further	reference	on	alternative	notations	available,	please	refer	to	ch	3	in	Ritchie	(Ritchie,	
2002).	
	
4.2 More	detailed	tabular	diagrams	of	entities		
As	we	have	suggested	previously,	 in	week	3,	good	databases	usually	 follow	a	well-defined	
process	of	design.	Due	to	the	relatively	limited	scope	of	this	document,	we	will	follow	these	
principles,	but	by	focusing	on	a	small	part	of	what	might	otherwise	be	a	much	larger	database	
design.		
	
In	Figure	1,	we	introduced	some	simple	entities	and	their	relationships.	This	was	in	order	to	
illustrate	 the	 ‘boundaries’	 of	 the	 relationships,	 using	 a	 slightly	 different	 notation	 than	
previously	used.	We	will	expand	on	this	example,	here,	by	defining	the	entities	more	fully,	
which	requires	a	tabular	representation	of	the	entities	in	the	diagram.	Through	the	process	
of	the	design,	we	end	up	with	a	more	entities	(or	even	fewer)	as	we	iterate,	consequently	
realizing	that	previous	choices	may	be	unnecessarily	complicated	or	too	limited.	
	
Therefore,	 let	 us	 reconsider	 the	 boxed	 entities	 in	 Figure	 1:	 Product_Delivery,	 Product,	
Location.	Let	us	consider	in	a	little	more	depth	what	these	entities	consist	of	in	the	real	world,	
by	providing	natural	language	descriptions	of	them:	
	

• Product_Delivery:	physically,	 this	 can	be	 thought	of	a	 specific	 trip	undertaken	by	a	
vehicle	of	a	given	type,	which	must	make	the	delivery	(of	various	goods)	to	the	store	
(destination)	 from	 the	 given	 location	 of	 the	 factory	 (origin).	 This	 delivery	must	 be	
received	within	a	time	window	–	i.e.,	it	is	no	good	if	it	arrives	at	the	store	too	early	as	
there	might	not	be	enough	room	in	the	warehouse	to	accept	the	stock,	but	too	late	
might	result	in	lost	sales	due	to	lack	of	stock.	From	the	point	of	view	of	a	retailer,	then,	
it	is	useful	to	monitor	the	performance	of	the	supplier	in	this	light.	A	time	window	will	
be	defined,	generally,	by	a	start	time	and	an	end	time.	To	distinguish	the	‘expected’	
time	window	from	the	‘actual’	time	window,	we	postfix	the	relevant	variables	with	
appropriate	letters	–	‘e’	(expected)	and	‘a’	(actual).	Other	relevant	information	is	the	
capacity	of	 the	delivery.	Physically,	 this	depends	on	the	actual	vehicle	used	for	 the	

LocationProduct_Delivery Product0..*0..* 0..*0..*

A product may have many
deliveries or may have none

A delivery will be associated with
no products, on creation, but
possibly any.

A Location may have no
products, or any number

One product may have many
locations or may have none

	

	 6	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

delivery	task.	Vehicles	have	a	maximum	weight	that	they	can	carry	–	this	is	the	weight	
beyond	 which	 adding	 any	 more	 weight	 could	 be	 dangerous	 and/or	 damage	 the	
vehicle.	Similarly,	if	the	products	being	shipped	are	quite	light,	then	it	is	likely	that	the	
other	capacity	limitation	comes	into	play	–	this	is	the	actual	volume	of	the	truck,	which	
cannot	be	exceeded	for	obvious	reasons.	

• The	Product:	we	will	keep	the	description	of	the	product	quite	simple.	Of	course	there	
are	all	kinds	of	complexities	relating	to	a	given	product	(branding,	color,	shape,	etc),	
which	do	not	 concern	us	 in	 terms	of	 the	 current	 scope.	Really,	 for	 the	purpose	of	
moving	and	storing	a	product,	we	need	to	know	what	kind	of	product	it	is,	but	then	
only	the	dimensions	(weight,	volume)	of	a	given	unit.	Products	might	arrive,	not	as	an	
individual	 item	 to	 be	 placed	 immediately	 on	 a	 supermarket	 shelf,	 but	 as	 a	 box	
containing	several	individual	items	and	we	might	need	to	think	about	how	we	quantify	
the	number	of	units	etc.	

• The	 location,	 indicates	 that	 the	store	 (and	 the	 factory),	might	be	 represented	by	a	
location,	rather	than	a	full	address.	The	reason	a	delivery	application	might	have	the	
address/location	etc.,	stored	as	separate	entity	 is	because	 it	makes	sense	from	the	
point	 of	 view	 of	 easily	 accessing	 geo-coordinates	 for	 routing.	 Here,	 then,	 we	 are	
assuming	that	the	company	owns	its	own	fleet	of	vehicles,	which	need	to	be	routed,	
but	perhaps	by	use	of	a	third-party	routing	API	that	accepts	a	(Latitude,	Longitude)	
geo-coordinate.	Furthermore,	while	is	important	to	store	the	postal	address,	Latitude,	
Longitude	might	not	usually	be	considered	as	logically	acceptable	attributes	of	a	postal	
address.	

	
In	Figure	2,	we	present	the	corresponding	design	in	diagrammatic	form.	Again,	we	have	used	
yet	another	alternative	representation	for	the	relationships.	We	won’t	explain	these	here,	but	
we	 do	 encourage	 you	 to	 explore	 the	 various	 recommended	 textbooks	 to	 discover	 the	
meaning	of	all	these	different	kinds	of	representations.	The	reason	we	have	used	many	kinds	
of	 representation	 in	 the	 notes	 is	 such	 that	 you	 are	 aware	 that	 they	 exist,	 and	 different	
textbooks	(and	employers)	will	use	different	combinations.	Try	to	become	familiar	with	them	
all.		
	

	
Figure	2:	Simple	'logistics'	database	

	

Delivery_ID <PK>
Origin_Location <FK>
Destination_Location <FK>
Start_e
End_e
Start_a
Start_a
Capacity_V
Capacity_W

Product_Delivery

Address

Shipped_Product

Delivery_ID <FK>
Product_ID <FK>
Quantity

Address_ID <PK>
Street
Number

Location

Location_ID <PK>
Address_ID <FK>
Location_Type <FK>
Latitude
Longitude

Location_Type

Location_Type_Code <PK>
Location_Type

Product

Product_ID <PK>
volume
weight
Class

A product delivery has
zero or many shipped
products

A product belongs to
zero or many shipped
products

Shipped products must
by definition have at least
one product

Shipped products must
by definition have at least one
product delivery

Many locations can
be associated
with one delivery

Many Location types
associate with Location

A Location will
be of one type

	

	 7	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

4.3 Creating	tables	
In	this	section,	we	will	look	at	some	further	practical	steps	required,	which	can	be	regarded	
as	much	closer	 to	 the	process	of	 implementing	our	database.	 In	order	 to	do	 this,	we	will	
concentrate	not	on	all	of	the	tables	shown	in	Figure	2;	data	types	are	required	to	be	defined	
in	order	to	help	databases	store	the	appropriate	values	(see	below)	
	
Let	us	take	a	look	at	these	tables	in	their	row/column	form:	
	

Product_ID	 Volume	 Weight	 Class	
SMALLINT	 FLOAT	 FLOAT	 String	

	 	 	 	
	 	 	 	
	 	 	 	

Table	2:	Product	table	in	general	row/column	form,	indicating	data	types.	

	
Del..ID	 Ori..n	 Dest..n	 Start_e	 End_e	 Start_a	 End_a	 V_Max	 W_Max	
	 	 	 DATE	 DATE	 	 	 DOUBLE	 DOUBLE	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

Table	3:	Product_Delivery	table	in	row/column	form,	indicating	more	data	types	

	
The	‘.’	Entries	are	there	to	indicate	that	data	does	exist	in	those	cells,	but	we	omitted	them	
for	illustrative	purposes.	What	is	important	is	that	in	order	to	store	data	inside	a	database,	
we	must	‘declare’	what	kind	of	data	we	are	storing	such	that	the	computer	can	allocate	the	
appropriate	resources.	
	
4.3.1 Identifying	rows	within	a	table	with	‘primary	keys	(PK)’	
Primary	keys	as	natural	keys:	We	have	already	alluded	to	the	use	of	keys.	As	a	reminder,	
primary	keys	are	special	 attributes	of	an	entity	 in	 that	 they	allow	 identification	of	specific	
rows.	As	a	consequence,	primary	keys	must	be	unique	to	a	given	row.	Let	us	take	our	above	
example	of	a	Product,	made	by	the	company	G&P.	We	assume	for	ease	of	illustration	that	a	
‘full’	table	of	products	is	given,	assuming	for	now	that	G&P	has	in	total	a	range	of	8	different	
products.	
	
Primary	keys:	

Product_ID	 Volume	(m^3)	 Weight	(kg)	 Class	
52343	 10.0	 20.0	 DOM_CLN	
29892	 10.0	 18.5	 DOM_CLN	
99892	 5.0	 11.0	 DOM_CLN	
11111	 2.0	 12.0	 DOM_CLN	
22345	 1.0	 8.0	 PER_HYG	
09234	 9.0	 06.8	 PER_HYG	
98_29	 8.0	 01.9	 PER_HYG	

Table	4:	Product	table	in	row/column	form.	

	

	 8	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

Which	column	allows	us	to	uniquely	identify	a	given	row.	Clearly,	not	the	Class	column,	which	
associates	the	product	to	a	general	product	class;	this	is	exactly	the	opposite	of	what	we	want.	
However,	 the	 Weight	 column	 has	 the	 right	 attributes	 (all	 of	 the	 entries	 are	 different).	
Nevertheless,	purely	from	a	common	sense	point	of	view,	even	though	the	Weight	attribute	
currently	has	the	required	heterogeneity	in	content,	it	would	be	a	poor	choice	for	a	primary	
key;	this	 is	because,	given	the	development	of	new	products,	there	would	be	a	risk	of	the	
weight	getting	duplicated,	especially	if	only	the	fragrance	of	an	existing	cleaning	product	were	
changed	 to	 differentiate	 a	 ‘new	 product’.	 Therefore,	 from	 the	 existing	 columns,	 the	 best	
choice	to	use	is	the	Product_ID	column.	The	column	contains	a	set	of	entries,	none	of	which	
are	duplicates.		
	
The	 main	 thing	 to	 remember	 about	 keys	 is	 that	 the	 identify	 a	 given	 row.	 However,	 as	
suggested,	some	common	sense	needs	to	be	applied	when	choosing	primary	key.	We	employ	
the	phrase	common	sense	loosely	–	this	sense	might	not	necessarily	be	obvious	given	a	set	of	
data	taken	at	face	value.	This	is	why,	again,	it	is	important	for	the	database	development	team	
to	work	closely	with	the	client	in	question	and	get	to	learn	the	various	data	owned	by	the	
company,	how	it	is	used,	to	think	about	the	data	types,	the	implications	this	has	for	use	as	a	
key	etc.	
	
Primary	 keys	 as	 composite	 keys:	 Sometimes	 the	 structure	 of	 a	 table	may	 not	 allow	 the	
identification	of	a	primary	key.	One	choice	is	simply	to	generate	a	key	(see	below,	Primary	key	
as	synthetic	key),	artificially.	However,	if	we	want	to	persist	with	the	using	the	actual	data,	
we	might	need	to	introduce	more	columns,	and	reach	a	point	where	the	concatenation	of	
columns	 results	 in	a	unique	 identifier	 In	 this	way,	 it	possibly	 to	concatenate	a	number	of;	
Ritchie	 (2002)	 contains	 a	 more	 complicated	 example	 involving	 three	 attributes/columns	
concatenated	to	act	as	a	single	primary	key	(Ritchie,	2002,	p	27).	It	is	useful	to	understand	
this	more	complicated	construction	of	primary	keys	–	in	practice,	as	a	database	developer,	
you	will	certainly	come	across	them.	
	
Primary	keys	as	synthetic	keys:	Often,	natural	keys	cannot	be	found.	In	this	case,	another	
choice	is	the	generate	an	additional	attribute	(often	an	integer)	to	uniquely	identify	a	row.	
One	way	to	guarantee	uniqueness	is	to	use	an	integer,	for	example,	that	is	incremented	each	
time	 a	 row	 is	 added	 to	 the	 data	 table.	 Consequently,	 each	 subsequent	 row	will	 have	 an	
identifying	attribute	that	is	unique.	This	is	a	common	way	in	which	to	define	primary	keys.				
	
Summary	of	some	key	definitions:	

• Natural	key:	an	attribute	in	the	data,	which	can	be	used	to	uniquely	identify	a	row.	
• Composite	key:	attributes	in	the	data,	which	when	concatenated,	can	be	used	to	

uniquely	identify	a	row.	
• Synthetic:	a	key	that	is	generated	purely	for	the	purpose	of	uniquely	identifying	a	

row.	
	
	
	

	

	 9	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

4.4 Creating	relationships	between	tables	
4.4.1 Many-to-many	example	
Consider	the	following	example	about	the	delivery	of	products	from	a	given	manufacturer	to	
a	destination	retail	store.	Goods,	physically,	will	be	loaded	onto	a	vehicle	that	has	a	maximum	
weight	 and	 volume	 (capacity).	 The	 vehicle	will	 be	 expected	 at	 the	 store	 at	 a	 given	 time,	
although	 the	 actual	 time	 will	 need	 to	 be	 recorded;	 these	 features	 are	 captured	 by	 the	
<Product_Delivery>	 table	whose	 Delivery_ID	 is	 a	 generated	 integer	 and	 primary	 key.	 The	
<Product>	 is	 described	 as	 above,	 again,	with	 a	 generated	 integer,	 <Product_ID>,	 and	 the		
primary	 key.	 Importantly,	 for	 a	 many-to-many	 relationship	 a	 link-table	 must	 be	 created.	
Please	 see	 Table	 4	 The	 link	 table	 allows	many	 products	 to	 be	 associated	with	 products	
deliveries	and	many	product	deliveries	to	be	associated	with	products.		
	

	
Figure	3:	Many	to	many	example	with	link-table	

4.4.2 One	to	many	example	rows	in	other	tables	with	foreign	keys	
We	 have	 used	 the	 example	 in	 Figure	 3	 to	 demonstrate	 a	 many-to-many	 relationship	
(numerous	 other	 examples	 can	be	 found	 in	 the	 recommended	 textbooks	 for	 the	 course).	
However,	while	the	use	of	a	link	table	is	the	method	to	achieve	the	many-to-many	relationship	
between	entities,	generally,	we	will	take	a	closer	look	at	the	example	given	and	have	a	think	
about	what	other	data	might	be	useful	to	capture	(something,	perhaps	that	the	client	did	not	
tell	us,	explicitly,	but	that	we	noticed	would	be	a	useful	to	introduce	into	the	data	schema)…	
	
Currently,	the	design	in	Figure	3	assumes	that	each	product	is	loaded	individually	to	the	truck,	
in	whatever	 unit	 this	means	 in	 the	 application	 domain	 (a	 case,	 a	 pallet	 etc.).	 This	 unit	 is	
associated	with	 the	 appropriate	 weight	 and	 volume.	 However,	 would	 it	 not	 be	 useful	 to	
capture	the	quantity	of	units	placed	into	the	vehicle?	
	
	

Delivery_ID <PK>
Destination_Location <FK>
Start_e
End_e
Start_a
Start_a
Capacity_V
Capacity_W

Product_Delivery
Product

Product_ID <PK>
volume
weight
Class

Many Product are associated
with a Product_Delivery

Many Product_Delivery are
associated with a Product

Delivery_ID
0101

Destination_Location Start_e End_e Capacity_V Capacity_W
005 2016-03-04 06:00:00 32.24 2300

0102
0103
0104

Weight ClassVolume
20.0 DOM_CLN10.0

Product_ID
52343
29892
99892
11111

2016-03-04 7:00:00

Start_a End_a
2016-03-04 6:12:00 2016-03-04 06:42:00

Product_ID
52343
52343
52343
11111

Delivery_ID
0101
0102
0101
0101

	

	 10	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

	
Figure	4:	One	to	many	relationships	

	
The	 quantity	 of	 units	 is	 not	 a	 natural	 attribute	 of	 <Product>,	 and	 we	 want	 to	 keep	 the	
<Product_Delivery>	entity	clean	from	such	details	as	well.	One	choice,	therefore,	might	be	to	
introduce	a	new	entity	called	<Shipped_Product>,	which	will	perform	a	similar	function	as	the	
above,	many-to-many	relationships,	shown	 in	Figure	3,	but	also	contain	the	<Quantity>	of	
units.		
	
This	scenario	is	presented	in	Figure	4.	The	new	design	contains	foreign	keys	to	the	<Product>	
and	<Product_Delivery>	entities.	Notice,	also	that	the	many-to-many	relationship	between	
<Product_Delivery>	and	<Product>	has	disappeared…or	has	it?	Actually,	this	relationship	can	
still	be	though	of	as	existing,	but	now	it	exists	through	the	new	entity	<Shipped_Product>.	
Therefore,	 the	 introduction	of	 this	new	entity	allows	us	 to	maintain	some	of	 the	previous	
logic,	but	at	the	same	time	make	the	data	more	useful.	For	example,	if	we	want	to	know	the	
quantity	of	products	shipped	(by	weight,	volume,	product	type,	unit	quantity	etc.),	we	will	be	
able	to	derive	this	information	by	executing	the	appropriate	queries	of	the	database.		
	
4.4.3 Modelling	time-dependent	data	in	tables	
An	often-important	characteristic	of	products	is	of	course	their	price.	This	is	not	captured	in	
the	above	example,	so	let	us	consider	a	different	logistics	context	to	the	one	presented...		
	
Let	us	imagine	that	freight	companies	are	increasingly	under	pressure	to	monitor	their	costs,	
and	their	GHG	emissions.	This	can	be	done	in	several	ways,	but	let	us	assume	an	‘internet	of	
things’	application.	It	is	well-known,	which	we	take	as	given,	within	in	the	freight	sector	that	
driver	behavior	can	affect	the	uptake	of	fuel.	For	example,	large	accelerations	can	result	in	
the	burning	of	additional	fuel,	increasing	costs	and	GHG	emissions.	Therefore,	a	device	has	
been	 created	 by	 ‘ANP’,	 an	 analytics	 company,	 to	 sit	 on-board	 vehicles	 and	 monitor	
accelerations.	Data	is	streamed	to	a	remote	server	stored	in	a	database,	which	also	belongs	
to	an	Analytics	company	‘ANP’.	Freight	companies	(e.g.,	‘G&P’	and	‘Marks’)	outsource	analysis	
to	‘ANP’.		
	

Delivery_ID
0101

Destination_Location Start_e End_e Capacity_V Capacity_W
005 2016-03-04 06:00:00 32.24 2300

0102
0103
0104

Weight ClassVolume
20.0 DOM_CLN10.0

Product_ID
52343
29892
99892
11111

2016-03-04 7:00:00

Start_a End_a
2016-03-04 6:12:00 2016-03-04 06:42:00

Product_ID
52343
52343
52343
11111

Delivery_ID
0101
0102
0101
0101

Delivery_ID <PK>
Destination_Location <FK>
Start_e
End_e
Start_a
Start_a
Capacity_V
Capacity_W

Product_Delivery

Shipped_Product

Delivery_ID <FK>
Product_ID <FK>
Quantity

Product

Product_ID <PK>
volume
weight
Class

A product delivery is associated with
many shipped products

Shipped products must
by definition have at least
one product

Shipped products must
by definition associate with
at least one product delivery

A product is associated with
many shipped products

Quantity
5
1
4
12

Product_Delivery table

Shipped_Product table Product table

	

	 11	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

	
Figure	5:	Database	model	for	vehicle	accelerations	

	
How	might	‘ANP’	represent	this	data	as	a	database?	An	example	is	provided	in	Figure	5.	Notice	
the	relationship	here:	Vehicle	may	have	many	Accelerations.	We	might	imagine	a	situation	
where,	once	an	acceleration	goes	above	some	threshold,	it	is	reported	to	the	database	(as	in	
the	example	provided),	such	that	time	sampling	is	non-uniform	in	frequency.	This	is	relevant	
to	the	current	situation,	where	the	two	companies	are	interested	in	identifying	drivers	who	
over-accelerate,	such	that	training	can	then	be	provided.	We	might	however,	just	as	easily	
imagine	 a	 situation	 where	 the	 accelerations	 are	 required	 at	 even	 frequencies	 in	 time,	
regardless	of	the	values.	This	is	often	the	requirement	in	the	field	of	time	series	analysis.	
	
Again,	this	situation	concerning	the	dynamic	capture	of	data	is	achieved	using	a	table,	where	
each	row	enters	a	value	for	the	specific	time,	here	per-vehicle-acceleration.	This	is	a	common	
technique	 for	 time	 dependent	 data	 modelling,	 as	 others	 examples	 in	 the	 literature	
demonstrate	(e.g.,	see	Ritchie	ch	4).	
	
4.5 Physical	Design	
4.5.1 Data	types		
This	 is	 an	 important	 part	 of	 defining	 the	 database	 in	more	 detail,	 and	 it	 is	 important	 to	
recognize	that	datatypes	in	a	database	have	a	slightly	different	usage	compared	with	those	in	
a	programming	language	such	as	Java.	As	Allardice	states:	
	
“Database	 systems	 want	 you	 to	 be	 much	 more	 specific	 about	 you	 columns	 than	 a	
programming	language	wants	you	to	be	about	your	variables..	so	that	they	can	be	efficient	
about	storing	and	indexing	them,	and	so	it	can	enforce	your	rules”.	

Allardice	(2015)	

VehicleRegistration

Type

Owner

Acceleration

Value

Date

Time

Value Date TimeCulpritType OwnerRegistration

1.50 12-10-2015 10:48:32DFZ 393
0.69 12-10-2015 10:48:33DFZ 393
9.65 12-10-2015 10:48:52KCE 546
4.70 12-10-2015 10:49:30DFZ 393
0.99 12-10-2015 10:49:46DFZ 393
0.59 12-10-2015 10:49:48DFZ 393

Urban G&PDFZ 393
Urban G&PBGZ 8092
Long Haul MarksKCE 546
Urban G&P
Long Haul Marks
Urban Lewis

KCE 546
HGL 506
PLY 090

Culprit

	

	 12	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

	
Some	database	data	types	(MySql)	

• Numeric:		
o INT,	TINYINT,	SMALLINT,	MEDIUMINT,	BIGINT,	FLOAT,	DOUBLE	(DECIMAL),	

REAL	(NUMERIC).	
	

• Date	and	Time:		
o DATE,	DATETIME,	TIMESTAMP,	TIME,	YEAR.	

	
• String:		

o CHAR,	 VARCHAR,	 BLOB	 (TEXT),	 TINYBLOB	 (TINYTEXT),	 MEDIUMBLOB	
(MEDIUMTEXT),	LONGBLOB	(LONGTEXT),	ENUM.	

	
	

	
In	other	words,	the	data	types	in	database	systems	have	a	wider	range	of	options.	We	will	not	
here	go	through	all	of	the	data	types	here.	However,	let	us	look	at	the	example	of	integer	data	
types	in	MySql,	as	presented	in	Figure	6.	
	

	
Figure	6:	Integer	data	types	in	MySql.	

In	Java,	native	integer	types	(short,	int,	long)	are	stored	in	chunks	of	memory	known	as	bytes.	
A	short	typed	variable	uses	up	2	bytes,	an	int	4	bytes,	and	a	long	8	bytes.	Compare	this	with	
the	 integer	 choices	 in	MySql.	 Here,	we	 can	 choose	 intermediate	 numbers	 of	 bytes	 (3	 for	
MEDIUMINT)	and	only	one	byte	(TINYINT).	When	you	are	developing	a	Java	application,	it	is	
not	always	necessary	to	optimize	the	use	of	memory,	and	developers	of	such	applications	are,	
generally,	more	 relaxed	 about	 these	 issues	 (this	 does	 not	mean	 that	 it	 is	 not	 sometimes	
important).	On	the	other	hand,	databases	are	often	designed	and	used	to	store	data,	which	
accumulates	over	time.	It	can,	therefore,	become	much	more	important	to	think	about	the	
usage	of	memory	and	the	potential	space	of	memory	required	for	certain	attributes	ahead	of	
time.	Essentially,	 the	additional	options	of	 the	 types,	as	 illustrated	 in	 the	above	 figure	 for	
MySql,	allow	the	programmer	more	control	over	the	use	of	computational	resources.	
	

	

	 13	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

4.5.2 Identity	using	automatic	sequencing	
Elsewhere,	we	has	discussed	the	use	of	keys	to	access	rows	of	data	 in	a	unique	way,	 	and	
some	different	ways	 in	which	 this	 can	be	achieved.	 SQL	databases	 support	 the	automatic	
generation	 identity	 columns.	 These	 columns	 typically	 take	 the	 form	 of	 mathematical	
sequence.	A	sequence	is	an	ordered	set	at	natural	numbers/integers.	As	such,	each	number	
in	sequence	is	guaranteed	to	be	unique	and	therefore	an	excellent	choice	to	use	to	uniquely	
access	any	given	row	in	a	database	table.	
	
Let	us	look	at	some	MySQL	code.	You	can	follow	the	comments	to	see	the	meaning	of	the	
code.	However,	of	most	relevance	here	is	the	creation	of	the	‘ID’	attribute	(first	emboldened	
line).	The	NOT	NULL	AUTO_INCREMENT	means	that	the	ID	value	cannot	be	null	and	will	be	
automatically	incremented	by	1,	each	time	a	row	is	added	to	the	database.	The	Name	entity	
must	also	have	a	value,	but	the	ID	is	set	as	the	primary	key.		
	
So,	 running	 the	 following	 code	 will	 result	 in	 a	 table	 named	 People	 that	 sits	 inside	 the	
Populations	database.	
	
#	This	is	very	straightforward	to	create	a	database	Populations	
CREATE	DATABASE	Populations;	
	
#	Create	a	table	named	People	inside	the	Populations	database	
#	
CREATE	TABLE	Populations.People	
(
ID	int	NOT	NULL	AUTO_INCREMENT,	
Name	varchar(255)	NOT	NULL,	
PRIMARY	KEY	(ID)	
);	
	
#	Load	the	names	John,	Jeff,	Sarh,	James	into	the	People	table	
#	that	now	exists	in	the	Populations	database	
#	
INSERT	INTO	Populations.People	(name)	VALUES('John'),('Jeff'),('Sarah'),('James');	
	
	
Then,	running	the	following	command:	
	
	
SELECT	*	FROM	Populations.People;	
	
	
…we	get	the	output:	
	
+----+-------+
| ID | Name |
+----+-------+
1	John
2	Jeff
3	Sarah

	

	 14	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

| 4 | James |
+----+-------+
	
…where	we	can	see	that	the	ID	has	been	automatically	generated	with	incremented	values,	
alongside	the	name	values	added	manually	by	the	above	code.	
	
4.5.3 Indexing	
This	is	a	useful	point	and	which	we	can	consider	the	topic	of	‘indexing’.	In	this	context,	it	is	
important	to	realise,	taking	the	above	output	as	an	example,	that	the	visible	ordering	of	a	
table,	when	viewed,	is	not	necessarily	representative	of	the	way	that	the	data	is	stored	on	
disk.	
	
Therefore,	if	you	want	to	find	a	given	row,	it	is	very	useful	from	a	‘computational	speed’	point	
of	view	to	order	the	data	in	a	meaningful	way,	that	is	from	the	point	of	view	of	the	machine	
that	needs	to	retrieve	the	data.	To	speed	up	the	processing	of	data,	we	use	indexing.	
	
In	most	database	management	systems	 indexing	 is	 implicitly	 implemented	on	the	primary	
key.	For	example,	in	the	People	table	we	created	above,	if	we	wanted	to	access	‘Sarah’,	and	
we	did	this	using	the	primary	key	we	would	execute	in	MySQL	the	following:	
	
	
select	Name	from	Populations.People	WHERE	ID	=	3;	
	

	
then	the	computer	would	know	exactly	where	to	look	and	return	the	required	information	in	
optimal	 time.	This	 is	because,	 ‘ID’	 is	 the	primary	key	and	 therefore	what	 is	 known	as	 the	
‘clustered	index’.	The	machine	can	therefore	jump	straight	to	the	required	address	to	get	the	
data.	
	
However,	we	might	find	ourselves	writing	alternative	queries.	For	example,	if	we	wanted	to	
access	Sarah	by	name:	
	
	
	
select	Name	from	Populations.People	WHERE	Name	=	‘Sarah’;	
	

	
In	this	case,	the	computational	search	process	will	not	rely	on	efficient	indexing.	Imagine	that,	
to	access	‘Sarah’,	we	first	start	with	a	name	at	the	top	of	the	table	then	read	down	the	table	
reading	each	Name	value	(John,	Jeff)	in	turn,	before	reaching	and	finding	‘Sarah’.	This	is	an	
extremely	inefficient	way	to	find	data	and	queries	that	result	in	this	kind	of	search	will	take	a	
long	time	to	execute	in	large	tables.	Obviously,	in	the	very	simple	table	we	considered,	‘Sarah’	
is	only	on	the	third	row;	finding	this	will	not	take	long.	Alternatively,	and	more	realistically,	
imagine	that	we	have	a	table	with	hundreds	of	thousands	of	names	in	it!!	
	

	

	 15	

WEEK	4:	RELATIONAL	DATA	MODELLING	II	

While	the	clustered	 index	 is	reserve	the	primary	key,	 it	 is	possible	to	create	non-clustered	
index	on	non-primary	key	attributes.	For	example,	we	can	create	a	non-clustered	index	on	
the	Name	attribute.	
	
A	number	of	points	are	worth	summarizing	regarding	indexing:	
	

• Indexes	allow	computers	to	search	efficiently	for	the	data	required	from	a	database.	
	

• The	primary	key	is	usually	the	‘clustered’	index,	which	is	a	kind	of	default	index	that	
allows	efficient	primary	key	based	querying.	

	
• Non-clustered	indices	can	be	created	where	queries	are	often	done	without	primary	

keys.	
	

• There	are	trade-offs	associated	with	indexing.	Nothing	comes	for	free	when	you	use	a	
computer.	 Creating	 index,	 for	 example,	 requires	 the	use	of	memory	 and	 increases	
database	maintenance,	even	there	the	trade-off	is	increased	processing	of	queries.	

	
	
4.6 Summary	

• We	learnt	more	details	of	entity	relationship	modelling.		
	

• Continuing	 with	 a	 ‘logistics’	 example	 we	 arrived	 at	 a	 simple	 design	 for	 a	 logistics	
database.	

	
• We	then	moved	on	to	some	of	the	practical	issues	regarding	the	creation	of	tables,	

e.g.,	 specific	 datatypes	 must	 be	 explicitly	 declared	 when	 creating	 tables.	 	 We	
highlighted	some	of	the	datatypes	available	in	the	MySQL	implementation	of	SQL.	

	
• We	then	discussed	primary	keys	and	synthetic	keys	before	returning	to	the	issue	of	

creating	relationships	between	tables,	using	link-tables,	to	specify	different	kinds	of	
relationships	between	tables/entities.		

	
~~~~~	

	
	
	


