
	

	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

	
	
	
	
	
	

Normalising	relational	data		
	
	
In	this	week,	we	will	cover	the	following	topics:	

• Anomalies	that	can	occur	when	modifying	a	database.	
• The	process	of	data	optimisation	(a.k.a	data	normalisation).	
• Basic	data	normalisation	steps.	hat	0NF,	1NF,	2NF,	3NF.	
• An	example	of	data	normalisation,	from	first	to	third	normal	form.	

	
…	and	will	result	in	the	following	learning	outcomes:	

• An	understanding	of	some	different	kinds	of	anomalies,	and	therefore	why	structuring	
data	in	a	specific	way	to	help	avoid	these	anomalies	is	important.		

• An	understanding	of	normalisation	as	a	sequential	process.	
• A	practical	knowledge	of	what	to	do	when	normalising	a	relational	database.	

	
	
	 	

	

	 2	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

Table	of	Contents	
5.1	 Overview	...	3	
5.2	 The	problem	of	data	modification	anomalies	...	4	

5.2.1	 Example:	update	anomaly	..	4	
5.2.2	 Example:	insertion	anomaly	...	4	
5.2.3	 Example:	deletion	anomaly	..	5	

5.3	 The	process	of	data	optimisation	...	5	
5.4	 The	ruling	part	&	functional	dependency	...	7	

5.4.1	 Product	set	and	relation	...	7	
5.4.2	 Functional	dependency	..	8	

5.5	 Normalisation	scenario:	the	invoice	...	8	
5.5.1	 Creating	t	first	normal	form	(1NF)	..	10	
5.5.2	 Second	normal	form	(2NF)	...	11	
5.5.3	 Third	normal	form	(3NF)	...	13	

5.6	 Summary	...	14	
	
	
Figure	1:	Update	anomaly.	...	4	
Figure	2:	Insertion	anomaly..	4	
Figure	3:	Deletion	anomaly.	...	5	
Figure	4:	Sequential	process	of	normalization.	..	6	
Figure	5:	Product	set	and	example	sub-sets	('relations')	...	8	
Figure	6:	Functional	dependency	...	8	
Figure	7:	Invoice	data	scenario	...	9	
Figure	8:	Invoice	as	an	table/entity	..	11	
Figure	9:	Invoice	database	(1NF)	..	11	
Figure	10:	Invoice	database	(2NF)	..	13	
Figure	11:	Invoice	database	(3NF	...	13	
Figure	12:	Final	invoice	database	design.	...	14	
	
	
Table	1:	Product_Detail.	...	12	
	
	 	

	

	 3	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

5.1 Overview	
The	process	of	normalization	is	a	way	of	ensuring	that	the	structure	of	your	database	is	well-
designed.	In	this	context,	well-designed	means	from	the	point	of	view	of:	
	

• data	storage	and;		
• data	integrity.	

	
To	improve	memory	usage	and	data	integrity,	it	is	important	that	the	data	is	stored	just	once	
inside	a	database.	Of	course,	the	reason	that	this	is	a	good	thing	from	the	point	of	view	of	
memory	is	very	obvious.	From	the	point	of	view	of	data	integrity,	and	we	have	touched	on	
this	 previously,	 it	 is	 advantageous	 wherever	 possible	 to	 store	 a	 single	 copy	 of	 any	 given	
datum.	Example	important	reasons	are	that	if	a	datum	is	stored	more	than	once,	then:	
	

• each	separate	storage	location	needs	to	be	updated,	whenever	there	is	a	change	in	
the	data	itself.	

	
• each	 separate	 storage	 may	 result	 in	 more	 search,	 whenever	 there	 is	 a	 query	

concerning	the	datum.	
	

• alterations	to	the	data	must	be	kept	consistent	 if	 the	database	 is	to	remain	useful,	
otherwise,	the	thought-of	single	datum,	in	fact,	becomes	fragmented	into	erroneous	
copies	of	itself.	This	can	lead	to	major	problems.		

	
• each	 separate	 storage	 takes	 up	 additional	 memory,	 resulting	 in	 redundancy	 and	

increased	cost.	
	
Normalisation	is:	
	
“A	formal	procedure	…	that	can	be	followed	to	organise	data	into	a	standard	format	which	
avoids	many	processing	difficulties.”	

Ritchie	(2002)	
	

a	procedure	 to	produce	data	with	“the	minimal	number	of	attributes	 to	 support	 the	data	
requirements	of	 the	enterprise;	attributes	with	a	close	 logical	 relationship	…[placed]	 in	the	
same	 relation;	 minimal	 redundancy,	 with	 each	 attribute	 represented	 only	 once…with	 the	
exception	of	foreign	keys”.	

Connolly	and	Begg	(2015)	
	
“not	an	 ivory	tower,	theoretical,	academic	thing	that	people	talk	about	but	no-body	really	
does	in	the	real-world.	No.	Everybody	does	this.	If	you	are	a	working	database	administrator	
or	database	designer	you	can	do	normalization	in	your	sleep.	It	is	a	core	competency	of	the	
job.”	

Allardice	(2015)	
	
Therefore,	normalization	 is	 important	because	 it	 is	 a	highly	pragmatic	way	of	 guiding	you	
through	some	steps	to	improve	your	database.		
	

	

	 4	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

	
Figure	1:	Update	anomaly.	

5.2 The	problem	of	data	modification	anomalies	
In	 relational	database	design,	 the	normalization	process	should	prevent	 the	occurrence	of	
modification	anomalies.	It	is	impossible	to	cover	all	of	the	possible	examples	of	anomalies,	
and	you	will	come	across	many	different	examples	in	the	literature,	but	in	order	to	give	you	
an	idea	of	what	modification	anomalies	are,	we	present	one	example	for	each	modification	
anomaly	type,	as	follows:	update	anomaly,	insertion	anomaly,	deletion	anomaly.	
	
5.2.1 Example:	update	anomaly		
Consider	 a	 situation	 where	 a	 manufacturer,	 of	 computers	 say,	 distributes	 computers	 to	
various	 Customers.	 Please	 see	 Figure	 1.	Within	 its	 database	 the	 customer	 table	 includes,	
among	other	things,	the	following:	a	customer	ID,	a	customer	address	and	the	type	of	building	
at	 that	 address.	 Unfortunately,	 in	 this	 case,	 the	 table	 is	 poorly	 populated.	 Firstly,	 the	
Customer	with	 ID	 =	 426	 has	 two	 entries	 for	 the	 address,	 by	mistake.	 In	 and	 of	 itself	 this	
duplication	is	a	waste	of	memory.		
	
However,	 now	 for	 the	more	 serious	more	 serious	 problem…	 The	 customer,	 quite	 a	 large	
company,	has	always	taken	computer	orders	from	the	manufacturer	to	be	delivered	to	 its	
warehouse.	However,	a	change	in	supply	chain	strategy	meant	that	the	company	now	orders	
computers	directly	to	the	retail	store,	discontinuing	the	orders	to	the	Warehouse.	In	this	case,	
the	duplication	 is	more	serious.	The	update	 is	made,	but	unfortunately	only	 to	one	of	 the	
entries	for	Customer	with	ID	=	426,	causing	an	anomaly;	customer	ID	426	is	not	a	key	for	two	
different	addresses!!	As	a	consequence,	a	very	simple	query	to	find	the	address	of	Customer	
426	is	problematic,	because	the	data	is	inconsistent.	
	
5.2.2 Example:	insertion	anomaly	
Consider	a	situation	where	an	online	retailer,	allows	customers	to	register	an	online	account.	
Please	 see	 Figure	 2.	 In	 the	 database,	 it	 must	 be	 possible	 to	 store	 this	 information	
independently	of	any	purchases.	Therefore,	another	example	of	a	poor	design	would	be	a	
table	that	did	not	respect	this	requirement	and,	for	example,	coupled	the	data	concerning	
the	 customer	 details	 with	 the	 details	 of	 purchased	 product.	 For	 those	 customers	 who	
purchased	a	product	at	 the	 time	of	 registration,	 this	would	be	unproblematic,	but	 for	 the	
customer	who	registers	with	the	intention	to	return	to	the	website	and	purchase	a	product	
there	are	no	products	currently	associated	with	them.			
	

	
Figure	2:	Insertion	anomaly.	

ID
Customer

Address Loca,on_Type
329 Barnsley Warehouse
874 Glasgow Retail	Store
426 Danes	Way Retail	Store
426 Danes	Way Retail	Store

ID
Customer

Address Loca,on_Type
329 Address Warehouse
329 Address Retail	Store
426 Danes	Way Retail	Store
426 Sheffield Warehouse

*
*

Update

?
?

ID
CustomerProducts

Address Loca,on_Type
329 Lake	View Domes,c
346 Address Domes,c
426 Danes	Way Domes,c
597 Aberdeen	Dr. Domes,c

Product
Soap
Garden	Spade
Book

? ? ? ? ?

Customer registers on
a website without
purchasing a product

Event

	

	 5	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

	
Figure	3:	Deletion	anomaly.	

	
5.2.3 Example:	deletion	anomaly	
Consider	a	situation	where	a	logistics	company	holds	a	set	of	drivers	in	a	database	within	a	
table	where	the	trucks	associated	with	the	drivers	are	also	kept.	Please	see	Figure	3.	Again,	
this	is	a	situation	where	the	data	is	tightly	coupled.	For	example,	after	a	truck	has	travelled	a	
certain	mileage,	the	company	has	a	policy	of	discontinuing	its	service	(sending	it	to	the	scrap	
yard).	Consequently,	there	is	no	need	for	the	truck	registration	to	remain	in	the	database.	
However,	as	we	delete	the	truck	from	this	data,	we	also	delete	the	associated	driver	because	
the	driver	information	is	stored	in	the	same	table,	and	Mark	Johns	can	only	drive	this	specific	
truck	due	to	the	compatibility	of	his	driving	licence	with	other	trucks	in	the	fleet.	Of	course,	
this	is	a	problem	with	the	database	–	when	we	get	rid	of	the	truck	we	do	not	in	the	real	world	
also	get	rid	of	the	driver	from	the	company.	This	is	a	deletion	anomaly.	
	
5.3 The	process	of	data	optimisation	
The	process	of	normalisation	is	exactly	that,	a	process,	number	of	steps,	a	kind	of	recipe	for	
baking	a	well-designed	database.	In	this	course	we	will	concentrate	of	the	first	three	steps	of	
the	process,	which	in	fact	goes	up	to	seven	steps	in	total.	However,	do	not	be	concerned	that	
you	will	be	‘missing’	4	steps;	the	first	three	steps	are	often	sufficient	to	produce	a	working	
database	system	with	a	high	degree	of	internal	consistency.	Normalisation	is	often	thought	
of	as	a	process	of	optimisation,	in	the	sense	that	minimises	the	memory	needed	to	store	data	
and	minimises	the	exposure	of	the	database	to	errors	of	input	on	the	part	of	a	user.	
	
It	 is	 important	to	realise	that	the	process	of	normalisation	follows	a	number	of	sequential	
steps.	That	is,	in	order	to	get	to	the	second	step,	you	must	have	ensured	that	your	database	
conforms	to	the	required	output	of	the	previous	step,	and	in	order	to	get	to	the	next	step	you	
must	also	therefore	complete	the	current	step.	From	an	un-normalised	database,	where	we	
begin	the	process,	there	are	three	steps	required	to	get	to	the	third	normal	form,	our	required	
destination	for	this	week:	
	

• Begin	with	your	un-normalised	database	(UNF).		
o This	database	will	typically	have	tables,	where	primary	keys	etc.	might	have	

been	identified,	but	where	the	tables	contain	repeated	groups,	e.g.	attributes	
that	have	been	duplicated	or	even	appear	as	groups	of	what	should	otherwise	
be	attributes,	but	are	contained	within	cells	as	something	akin	to	arrays	(this	
is	simply	not	allowed).			

	
• Step	1:	Repeating	groups	must	be	identified	and	removed	from	the	database.	This	is	

done	such	that	each	repeated	group	maps	to	a	single	attribute	within	entity/table.	
This	will	typically	involve	the	creation	of	additional	tables.	After	this	step	is	successfully	
completed	your	database	is	in	first	normal	form	(1NF).	

Driver_Name
DriverTrucks

Driver_Address Truck_Reg
Mark	Johns 123	Kites	Dr	.. W236	WK
Eddie	Gill 3	NoDs	Aven.. Y6398	WL
Fred	Krueger 30,	Elms	Street DB76	LY7	
Sarah	James Danes	Way GB64	KT8

Driver_ID
1253
1254
1255
125

Truck
discontinued and
removed from
the database

Driver_Name
DriverTrucks

Driver_Address Truck_RegDriver_ID
Eddie	Gill 3	NoDs	Aven.. Y6398	WL
Fred	Krueger 30,	Elms	Street DB76	LY7	
Sarah	James Danes	Way GB64	KT8

1254
1255
125

* Where has Mark Johns gone?!
*

	

	 6	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

o Each	 of	 your	 columns	 represents	 a	 single	 attribute,	 which	 is	 therefore	 not	
repeated	 in	any	other	column,	and	the	normalised	table	contains	one	value	
per	cell.	
	

• Step	2:	Make	sure	that	your	database	is	in	first	normal	form	before	you	begin.	Then	
make	sure	that	each	non-key	field	depends	on	the	entire	primary	key.	Otherwise,	re-
arrange	your	database	to	ensure	that	fields	not	dependent	on	all	parts	of	the	primary	
key	are	arranged	into	a	table	such	they	then	depend	on	the	entire	primary	key.	After	
this	step	is	successfully	completed	your	database	is	in	second	normal	form	(2NF).	

o Now,	each	of	your	fields	depends	on	the	entire	primary	key	of	the	table	they	
are	in.	Note,	if	you	are	not	using	composite	keys	this	is	no	problem,	you	can	
just	go	to	the	next	step.		
	

• Step	3:	We	need	to	identify	whether	or	not	any	of	the	non-key	fields	are	dependent	
on	any	of	the	other	non-key	fields.	If	they	are,	then	these	dependencies	need	to	be	
represented	in	separate	tables	such	that	the	dependent	field	has	as	its	key	the	field	it	
depends	on.	After	this	step	is	successfully	completed	your	database	is	in	third	normal	
form	(3NF).	

o Now,	there	are	no	non-key	fields	that	are	dependent	on	other	non-key	fields.	
	

	
Figure	4:	Sequential	process	of	normalization.	

	
Note:	do	not	worry,	if	you	do	not	yet	fully	understand	these	steps	as	they	are	written	here	(or	
indeed	in	textbooks).	The	process	of	normalisation	is	an	involved	practical	process,	and	we	
will	provide	some	examples	below	that	relate	back	to	the	above	descriptions.	The	intention	
will	be	to	provide	you	with	a	single,	but	 fairly	 realistic,	practical	example,	which	once	you	

in
cr

ea
si

ng
ly

 o
pt

im
al

 d
at

ab
as

e

Time
beginning of normalisation

un-normalised
database

UNF

1NF

2NF

3NF

Remove repeating
groups

Ensure non-key field
dependency on entire
primary key

Ensure non-key fields
are not dependent on
other non-key fields

STEP 1

STEP 2

STEP 3

	

	 7	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

understand	 you	 can	 then	 use	 as	 a	 basis	 to	 understand	 other	 examples	 in	 the	 various	
literature.	Before	we	do	this,	we	will	cover	the	idea	of	functional	dependency		
	
5.4 The	ruling	part	&	functional	dependency	
During	the	process	of	normalisation,	 it	 is	common	that	functional	dependencies	should	be	
identified	during	the	construction	of	new	tables,	to	de-couple	data,	which	could	otherwise	
more	easily	result	in	anomalies	such	as	those	given	as	examples,	above.	In	order	to	appreciate	
what	 a	 functional	 dependency	 is,	 (in	 the	 example	 scenarios	 given	 below	we	will	 identify	
functional	dependencies	concerning	an	invoice	example)	we	first	introduce	a	little	more	set	
notation,	with	an	example	given	already.	
	
5.4.1 Product	set	and	relation	
In	Week	3	we	covered	some	ideas	behind	sets,	which	allowed	us	to	think	of	data	as	part	of	a	
set	as	a	full	set	in	itself.	Here,	we	also	need	to	cover	a	little	more	about	sets	(just	notation,	
really,	rather	than	any	theory)	in	order	that	we	can	clearly	understand	the	idea	of	functional	
dependency,	which	is	based	on	the	idea	of	relations	(these	are	not	relationships).	
	
A	set	can	be	defined	by	enclosing	the	members	inside	the	following	brackets	{}.	Consider	a	
set	of	numbers,	i.e.,	Driver_ID	=	X:	
	

X_ID	=	{1253,	1254,	1255,	125}	
	
And	a	set	of	strings,	Truck_Reg	=	Y:	
	

Y_Reg	=	{W236WK,	Y6398WL,	DB76LY7,	GB64KT8}	
	
The	‘product	set’	is	the	set	of	ordered	pairs,	denoted	X.Y:	
	

X.Y	=		 {1253	 W236WK,	 1253	 Y6398WL,	 1253	 DB76LY7,	 1253	 GB64KT8,	 1254	
W236WK,	 1254	 Y6398WL,	 1254	 DB76LY7,	 1254	 GB64KT8,	 1255	 W236WK,	
1255	Y6398WL,	1255	DB76LY7,	1255	GB64KT8,	125	W236WK,	125	Y6398WL,	
125	DB76LY7,	125	GB64KT8}	

	
…and	a	relation	R(X,	Y):	
	

R(X,	Y)	Î	X.Y	
	
…	is	a	subset	of	the	product	set.	There	is	no	mystery	to	any	of	this	and	the	same	information	
given,	here,	can	be	drawn	inside	a	diagram.	In	Figure	5	we,	therefore,	draw	the	product	set	
X.Y	and	a	number	of	example	relations.	
	

	

	 8	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

	
Figure	5:	Product	set	and	example	sub-sets	('relations')	

	
5.4.2 Functional	dependency	
An	obvious	pattern	seen	in	Figure	5	is	that	all	of	the	arrows	are	pointing	from	the	X	(Driver_Id)	
set	to	the	Y(Truck_Reg).	This	is	to	represent	functional	dependency.	
	

	
Figure	6:	Functional	dependency	

	
Definitions:	
	
Relation:	A	set	of	ordered	pairs	whose	order	exhibits	functional	dependency	between	the	
ruling	part	(aka.,	primary	key)	and	the	dependent	part.	
	
Functional	dependency:	where	each	value	in	a	given	set	Y	is	associated	with	exactly	one	
value	in	another	set	X,	then	Y	is	said	to	be	functionally	dependent	on	X.	
	
Note.	In	the	above	examples	we	have	used	data	that	has	already	been	‘designed’	to	contain	
a	ruling	part,	in	order	to	help	us	with	the	definitions	given.	However,	it	is	important	to	realise	
that	in	a	real-word	situation,	it	is	not	always	desirable	to	generate	primary	keys	because	they	
take	up	computational	resources	(memory).	Therefore,	it	is	common	that	the	data	is	analysed	
to	uncover	any	potential	natural	keys	(parts	of	the	data	that	act	like	X,	as	described	above).	A	
discussion	of	this	can	be	found	in	the	recommended	textbook	(Connolly	and	Begg,	2015)	–	
see	Chapter	14,	section	14.4).	This	will	give	you	a	better	idea	of	the	process	that	occurs	in	
practice	in	order	to	identify	functional	dependencies.	
	
5.5 Normalisation	scenario:	the	invoice	
Our	scenario	is	straightforward.	The	company	G&P	Ltd	has	delivered	a	batch	of	products	to	a	
company	(who	are	therefore	a	customer	of	G&P,	and	they	are	known	as	‘Test	Customer’).	Our	
job	in	this	section	is	to	identify	a	database	design	by	starting	with	some	data	from	a	company	

1253
1254
1255
125

W236WK
Y6398WL
DB76LY7
GB64KT8

‘Product set’ Relation e.g., 1
1253
1254
1255
125

W236WK
Y6398WL
DB76LY7
GB64KT8

Relation e.g., 2
1253
1254
1255
125

W236WK
Y6398WL
DB76LY7
GB64KT8

Relation e.g., 3
1253
1254
1255
125

W236WK
Y6398WL
DB76LY7
GB64KT8

X Y

Each value in Y is associated with
exactly one value in X

	

	 9	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

(an	invoice),	then	using	normalisation	to	produce	a	set	of	well-defined	tables	and	relations.	
This	process	is	therefore	slightly	different	to	the	one	implied	by	the	previous	weeks,	where	
we	have	looked	at	top-down	processes	of	design	by	using	entity	relationship	diagrams,	first,	
as	a	route	to	producing	our	final-form	tables.	Normalisation	can	be	used	during	a	process	of	
bottom-up	design	where	we	directly	apply	the	normalisation	steps	to	the	client	data.	
	
The	invoice	we	have	to	hand	is	presented	in	Figure	7.	We	will	be	looking	at	the	problem	from	
the	perspective	of	G	&	P	Ltd.	It	is	their	database	that	we	will	be	creating.	Take	a	look	at	the	
invoice,	from	the	point	of	view	of	G	&	P	Ltd	and	have	a	think	about	the	important	data.	For	
example,	is	the	address	of	G	&	P	important	to	include	in	the	database?	The	date?	The	invoice	
number?	the	customer	name	and	customer	reference	number	etc.?	These	are	all	questions	
you	need	to	ask	right	in	the	beginning.	
	

	
Figure	7:	Invoice	data	scenario	

Test Customer - Invoice - 1027

G&P
Logo

G & P Ltd
Daventry Way
Daventry
DV10 9LP

Test Customer
Ref: 0985359

Westminster Drive
 Penrith

Cumbria
CM SQ90

Re: Invoice 1027

Unit_Price QuantityDescription
£16.60 60Strong Bleach

Product_ID
52343
29892
99892
11111

Price
£996.00

£18.50 40Toothpaste £740.00

£20.00 20Shampoo £400.00

£20.50 30Soap Powder £615.00

£2751.00Total =

—————————————————————————————————————
Payment options:

etc. etc.

Date: 03-02-2016

	

	 10	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

In	this	example	we	will	work	on	the	following	assumptions.	The	following	data	is	important	
from	the	point	of	view	of	G	&	P	Ltd	and,	for	ease	of	drawing	diagrams	we	decide	that	we	will	
have	a	 short-hand	 identifier	 (the	name	 to	be	used	within	 the	database)	 for	each	piece	of	
relevant	data.	The	following	table	(not	in	the	sense	of	entities	and	relationships)	is	produced,	
which	 is	 just	 a	 list	 of	 the	 relevant	 data	 and	 a	 description/justification,	 followed	 by	 the	
identifier:	
	
	
Data	 Description/Justification	 Identifier	
Invoice	number	 A	 recording	 of	 the	 invoice	

itself.	
Inv_No	

Customer	name	 The	name	of	the	customer	 Cust_Name	
Customer	number	 Unique	 identity	 of	 the	

customer.	
Cust_No	

Customer	address	 The	address	of	the	customer	 Cust_Adr	
Invoice	date	 The	 date	 on	 which	 the	

invoice	was	printed.	
Inv_Date	

Product_ID	 The	 unique	 identity	 of	 a	
product.	

Product_ID	

Product	description	 A	written	description	of	 the	
product	 to	 help	 a	 human	
easily	identify	the	product.	

Description	

Unit_Price	 The	 price	 per	 single	 unit	 of	
the	product.	

Unit_Price	

Quantity	 The	quantity	of	units	bought	
by	the	customer.	

Quantity	

Price	 The	Unit_Price	multipled	by	
the	Quantity.	

Price	

Total	 Sum	of	prices	 Total	
	
	
Notice	that	when	you	are	designing	a	database,	and	you	have	client	data	to	hand,	there	might	
well	be	data	that	is	available	but	which	you	want	to	ignore.	For	example,	in	this	case	we	are	
interested	in	representing	the	invoice	itself,	and	any	other	relevant	information,	but	not	to	
the	 point	 where	 we	 also	 including	 information	 about	 the	 ‘Payment	 options’	 (bottom	 of	
invoice)	because,	for	this	example,	we	only	want	to	capture	the	invoice	data,	which	is	logically	
distinct	from	exactly	how	(Visa,	Cheque,	BACS	payment	etc)	the	client	might	pay.	
	
5.5.1 Creating	t	first	normal	form	(1NF)	
We	have	identified	the	data	we	are	dealing	with.	We	are	now	ready	to	move	from	this	data	
to	1NF.	Firstly,	however,	let	us	take	a	look	at	the	list	of	data,	above,	when	all	of	the	data	is	
included,	including	all	of	the	repeated	data,	as	a	table	we	might	recognise	better	as	an	entity	
table	called	Invoice.	This	table	is	presented	in	Figure	8.	
	

	

	 11	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

	
Figure	8:	Invoice	as	an	table/entity	

	
The	un-normalised	form	of	the	invoice	as	a	table	includes	all	of	the	repeated	patters	in	the	
data.	That	is	all	of	the	repeated	entries	for	the	items	bough	by	the	company.		
	
So,	the	processes	of	normalisation	states	that	to	reach	1NF,	from	UNF,	we	need	to:	
	

• REMOVE	ALL	REPEATING	GROUPS	OF	DATA	
o Repeating	groups	are	placed	into	their	own	table.		

	
In	this	example,	the	repetition	is	apparent	as	repeating	groups	(*)	of	a	set	of	attributes	in	the	
invoice	 table,	 which	 we	 will	 call	 ‘Product	 Detail’	 =	 {Product_ID,	 Description,	 Unit_Price,	
Quantity,	Price}.	These	groups	and	the	data	are	highlighted	in	grey,	in	Figure	8,	the	groups	
that	need	to	be	placed	 into	their	own	table.	The	1NF	form	of	the	 invoice	database	 is	now	
presented	in	Figure	9.	
	

	
Figure	9:	Invoice	database	(1NF)	

	
5.5.2 Second	normal	form	(2NF)	
The	 second	 normal	 form	 (2NF)	 requires	 that	 non-key	 fields	 are	 dependent	 on	 the	 entire	
primary	key.	In	the	example	we	are	using,	the	Invoice	table	is	fine	from	this	point	of	view.	All	
non-key	fields	depend	on	the	primary	key	by	definition	of	the	primary	key	(i.e.,	the	primary	
key	is	a	not	a	composite	key)	However,	let	us	take	a	look	at	the	Product_Detail	table	more	
closely.	 If	we	only	use	 the	Product_ID	as	 the	primary	key	 there	 is	 a	problem	because	 the	
Product_ID	field	can	repeat	across	different	invoices.	This	is	true	in	the	example	where	the	

Unit_Price QuantityDescription
£16.60 60Strong Bleach

Product_ID
52343 29892

99892 11111

Price
£996.00 £18.50 40Toothpaste £740.00

£20.00 20Shampoo £400.00 £20.50 30Soap Powder £615.00

Inv_No Cust_AdrCust_No Cust_Nme Inv_Date Unit_Price QuantityDescriptionProduct_ID Price

Unit_Price QuantityDescriptionProduct_ID PriceUnit_Price QuantityDescriptionProduct_ID Price

Inv_DateWes.. SQ9Test Cust..09853591027 * *

UNF
Invoice

£2751.00

Total

Inv_No (PK) Cust_AdrCust_No Cust_Nme Inv_Date
03-02-2016Wes.. SQ9Test Cust..09853591027

1NF

Invoice

Unit_Price QuantityDescription
£16.60 60Strong Bleach

Product_ID <PK>
52343

29892
99892

11111

Price
£996.00

£18.50 40Toothpaste £740.00

£20.00 20Shampoo £400.00

£20.50 30Soap Powder £615.00

Inv_No (PF)
1027
1027
1027
1027

Product_Detail

29892
52343

£18.50 20Toothpaste £370.00

£20.50 10Strong Bleach £200.00

1028
1028

Total
£2751.00 *

- Remove repeating attributes, then …
- Place in new table (Product_Detail)

This gap is for visual purposes This data relates to ‘different invoice’

03-02-2016Eas.. 5RPNext Cust.16340951028 £570.00

This gap is for visual purposes Steps

different invoice

	

	 12	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

‘different	invoice’	(invoice	number	1028)	data	overlaps	products	that	exist	in	association	with	
the	existing	invoice	data	(invoice	number	1027).		
	
However,	given	that	in	each	separate	invoice	we	record	the	quantity	of	products	purchased	
with	the	same	Product_ID,	then	we	expect	that	the	Product_ID	is	unique	to	each	individual	
invoice,	 and	 thus	 each	 invoice	 number.	 As	 a	 consequence,	 we	 can	 combine	 the	 invoice	
number	 Inv_No	with	 the	 Product_ID	 to	 produce	 a	 composite	 key,	which	 is	 then	 also	 the	
primary	key.	We	have	 re-arranged	 the	Product_Detail	 table.	 Take	a	 look	at	 this	 table	and	
convince	yourself	that	this	is	the	case,	that	the	composite	key	is	unique.	
	
	
Product_ID		 Inv_No	 Description	 Unit_Price	 Quantity	 Price	
52343	 1027	 Strong	

Bleach	
£16.60	 60	 £996	

99892	 1027	 Shampoo	 £20.00	 20	 £400	
29892	 1027	 Toothpaste	 £18.50	 40	 £740	
11111	 1027	 Soap	Powder	 £20.50	 30	 £615	
29892	 1028	 Toothpaste	 £18.50	 20	 £370	
52343	 1028	 Strong	

Bleach	
£20.50	 10	 £200	

Table	1:	Product_Detail.	

	
Now,	remember,	2NF	applies	to	composite	keys.	So	for	this	example	we	now	ask	ourselves	
the	relevant	question:	
	

• Are	 there	 any	non-key	 fields	 (cells	 in	white)	 that	 are	not	dependent	on	 the	entire	
primary	key?	

	
The	answer	is	yes.	For	example,	the	Description	fields	and	the	Unit_Price	fields	depend	only	
on	the	Product_Id.	That	is,	if	we	alter	the	invoice	number,	these	values	remain	the	same,	but	
the	values	do	vary	depending	on	what	that	product	is	(identified	with	the	Product_Id).	As	a	
consequence,	we	separate	the	data	into	appropriate	tables.	In	this	case	we	move	the	Quantity	
and	Price	into	a	new	table	called	Invoice_Detail,	maintaining	the	composite	key	to	link	this	
detail	 to	 the	 invoice	 in	 question	 and	 the	 appropriate	 products,	 both	 as	 foreign	 keys.	
Remaining	 in	 the	Product_Detail	 table	are	only	 those	 fields	 that	 relate	 to	 the	Product_Id,	
keeping	 the	 association	 with	 the	 invoice	 in	 question	 as	 a	 foreign	 key.	 The	 new	 tables,	
presented	in	Figure	10,	are	in	second	normal	form	(2NF).	
	

	

	 13	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

	
Figure	10:	Invoice	database	(2NF)	

	
5.5.3 Third	normal	form	(3NF)	
In	order	to	arrive	at	3NF	we	need	to	look	again	at	all	of	the	tables	and	ask:	
	

• are	any	of	the	non-key	fields	are	dependent	on	any	of	the	other	non-key	fields?	
	
Again,	an	example	helps.	If	we	look	again	at	Figure	10,	then	we	can	see	that	the	customer	
address	 (Cust_Adr)	 and	 the	 customer	 name	 (Cust_Nme)	 are,	 really,	 dependent	 on	 the	
customer	number	(Cust_No).	They	are	dependent	in	a	technical	sense	on	the	invoice	number,	
but	the	idea	is	to	move	clearly	defined	dependencies	into	separate	tales.	Therefore,	we	might	
rephrase	the	question	we	ask	to	arrive	at	3NF:	
	

• Are	there	any	key	fields	that	are	acting	as	the	key	for	non-key	fields,	but	look	as	though	
they	shouldn’t	be.	

	
If	the	answer	to	either	of	the	above	questions	is	yes,	then	the	identified	dependencies	need	
to	be	represented	in	separate	tables	such	that	the	dependent	field	has	as	its	key	the	field	that	
it	should	depends	on.	After	this	step	is	successfully	completed	your	database	is	in	third	normal	
form	(3NF).	Following	our	example,	we	present	this	final	step	in	Figure	11.	
	

	
Figure	11:	Invoice	database	(3NF	

Inv_No (PK) Cust_AdrCust_No Cust_Nme Inv_Date
03-02-2016Wes.. SQ9Test Cust..09853591027

2NF
Invoice

Unit_PriceDescription
£16.60Strong Bleach

Product_ID <PK>
52343

29892
99892

11111
£18.50Toothpaste

£20.00Shampoo

£20.50Soap Powder

Inv_No (FK)
1027
1027
1027
1027

Product_Detail

29892
52343

£18.50Toothpaste

£20.50Strong Bleach

1028
1028

Total
£2751.00

03-02-2016Eas.. 5RPNext Cust.16340951028 £570.00

Quantity
60

Product_ID <PF>
52343

29892
99892

11111

Price
£996.00

40 £740.00

20 £400.00

30 £615.00

Inv_No (PF)
1027
1027
1027
1027

Invoice_Detail

29892
52343

20 £370.00

10 £200.00

1028
1028

• Remove attributes from Product_Detail table that do
 not have a functional dependency on the entire primary key
• Place these attributes into a seperate entity table (which,
 here, we call Invoice_Detail).

Steps

Inv_No (PK) Inv_Date
03-02-20161027

3NF

Invoice

Unit_PriceDescription
£16.60Strong Bleach

Product_ID <PK>
52343

29892
99892

11111
£18.50Toothpaste

£20.00Shampoo

£20.50Soap Powder

Inv_No (FK)
1027
1027
1027
1027

Product_Detail

29892
52343

£18.50Toothpaste

£20.50Strong Bleach

1028
1028

Total
£2751.00

03-02-20161028 £570.00

Quantity
60

Product_ID <FK>
52343

29892
99892

11111

Price
£996.00

40 £740.00

20 £400.00

30 £615.00

Inv_No (FK)
1027
1027
1027
1027

Invoice_Detail

29892
52343

20 £370.00

10 £200.00

1028
1028

Cust_AdrCust_No (PK) Cust_Nme
Wes.. SQ9Test Cust..0985359
Eas.. 5RPNext Cust.1634095

Customer

- Identify dependencies/keys that ill-fitting
 dependent data and where better keys can
 be found from current non-key fields.
- Create a new table with this data

Steps

	

	 14	

WEEK	5:	NORMALISING	RELATIONAL	DATA	

	
Figure	12:	Final	invoice	database	design.	

	
The	final	form	of	the	database,	with	all	included	keys	and	relationships	are	provided	in	Figure	
12.	
	
5.6 Summary	

• We	covered	relational	data	optimization,	a.k.a.	‘normalising	relational	data’.		
	

• Several	 ‘anomalies’	 we	 discussed:	 the	 ‘update’,	 ‘insertion’,	 ‘deletion’	 anomalies,	
before	 the	 sequential	 steps	 in	 the	 process	 of	 data	 optimization	 were	 considered.		
These	consist	of	the	process	of	moving	away	from	an	un-normalized	to	one	that	is	well	
designed	and	optimal.		

	
• UNF	–	1NF	–	2NF	–	3NF	were	covered.	

	
• A	 scenario	 concerning	 a	 fictional	 company	 (G&P	 Ltd)	 was	 presented	 in	 order	 to	

demonstrate	the	process	of	normalization.				
	

~~~~~	
	

Inv_No (PK) Inv_Date
03-02-20161027

Invoice

Unit_PriceDescription
£16.60Strong Bleach

Product_ID <PK>
52343

29892
99892

11111
£18.50Toothpaste

£20.00Shampoo

£20.50Soap Powder

Inv_No (FK)
1027
1027
1027
1027

Product_Detail

29892
52343

£18.50Toothpaste

£20.50Strong Bleach

1028
1028

Total
£2751.00

03-02-20161028 £570.00

Quantity
60

Product_ID <FK>
52343

29892
99892

11111

Price
£996.00

40 £740.00

20 £400.00

30 £615.00

Inv_No (FK)
1027
1027
1027
1027

Invoice_Detail

29892
52343

20 £370.00

10 £200.00

1028
1028

Cust_AdrCust_No (PK) Cust_Nme
Wes.. SQ9Test Cust..0985359
Eas.. 5RPNext Cust.1634095

Customer
Inv_No (FK)
1027
1028


