
	

	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

	
	
	
	
	
	

DB	Development	 Essentials:	 The	AMP	
Stack	and	MySQL	querying		
	
In	this	week,	we	will	cover	the	following	topics:	

• The	architecture	of	web-based	applications.	
• Importance	 of	 a	 stack	 of	 software	 to	 enable	 web-application	 development	 with	

database	interaction	(AMP	Stack).	
• Typical	AMP-stack	installation	flow.		
• Further	MySQL	queries.	

	
…	and	will	result	in	the	following	learning	outcomes	

• An	 understanding	 of	 the	 location	 of	 various	 tiers	 and	 components	 in	 a	web-based	
application.		

• Appreciation	of	what	the	AMP	stack	is	and	why	is	it	important.	
• Appreciation	of	the	installation	flow	for	Apache,	MySQL,	and	PHP.	

	
	
	 	

	

	 2	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

Table	of	Contents	
7.1	 Overview	...	3	
7.2	 Web	Applications	and	the	4	tiers	...	3	
7.3	 ‘The’	AMP	Stack	...	5	

7.3.1	 AMP	stack	installation	flow	(individual	components)	..	6	
7.3.2	 Example	installation	flow	(AMP	individual	components	on	windows)	6	
7.3.3	 Note	on	ports	..	7	

7.4	 SQL	Querying	...	8	
7.4.1	 Comma-separated	test	data	...	8	
7.4.2	 Simple	Database	creation	script	...	9	
7.4.3	 Using	the	created	database	..	10	
7.4.4	 Creating	the	tables	...	10	
7.4.5	 Loading	the	tables	with	data	..	11	
7.4.6	 SQL:	Selecting	...	11	
7.4.7	 SQL:	Sorting	..	12	
7.4.8	 SQL:	Functions	..	13	
7.4.9	 SQL:	Joining	...	15	

7.5	 Summary	...	16	
	
	
Figure	1:	The	browser	and	the	server-side	stack.	..	4	
Figure	2:	.csv	files	'schemas'	and	data.	...	9	
	
	
Table	1:	The	server	stack	..	5	
	
	 	

	

	 3	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

7.1 Overview	
This	course	is	called	Database	Development.	In	the	first	part	of	the	course,	we	have	focussed	
on	 the	 principles	 of	 relational	 databases,	 and	 we	 have	 covered	 the	 essential	 aspects	 of	
database	design.	In	the	second	part	of	the	course,	which	we	begin	this	week,	we	start	to	focus	
on	the	practice	of	relational	databases.	
	
An	important	part	of	the	practice	of	relational	databases	is	to	get	to	know	your	tools:		
	

• SQL	QURIES:	We	have	already	seen	some	very	basic	SQL	commands,	in	Week	6.	SQL	
commands	or	‘queries’	are	based,	in	part,	on	the	underlying	principles	of	databases;	
more	 specifically,	 as	 we	 have	 discussed	 previously,	 on	 some	 of	 the	mathematical	
definitions	relating	to	sets.	SQL	implementations,	however,	also	contain	many	other	
features.	

• Database	Development	Environment(s):	Database	development	is	usually	very	much	
tied	up	with	web	application	development.	It	is	important,	therefore,	that	you	have	
an	 understanding	 on	 the	 various	 software	 systems	 available	 that	 allow	 a	 web	
application	to	work,	the	programming	languages	related	to	dynamic	web	content,	and	
how	a	database	might	fit	into	this	picture.	

• 	
	
This	week,	we	will	cover	some	of	the	key,	set-based	SQL	commands,	as	well	as	look	of	some	
other	features	of	MySQL.	However,	given	that	the	development	environment	is	assumed	to	
be	in	place,	for	a	database	developer	to	use,	we	will	explain	a	typical	kind	of	software	set-up	
before	 looking	 at	 query	 language	 using	MySQL.	 This	will	 provide	 you,	 generally,	with	 the	
context	for	the	second	part	of	the	course,	which	is	the	practice	of	relational	database	systems.		
	
Let	us	briefly	remind	ourselves	of	what	we	will	cover	in	part	II,	i.e.,	this	week	and	in	weeks	8	
and	9:	

• The	Practice	of	Relational	Database	Systems.	
o Week	7	(this	week):	Web	DB	development	environment	and	Queries.	
o Week	8:	Server	side	database	programming	(with	PHP).	
o Week	9:	Client	side	database	programming	(with	Java).	

	
7.2 Web	Applications	and	the	4	tiers	
Web-based	application	development	consists	of	numerous	components	and	produces	what	
is	therefore	known	as	a	multi-tiered	application.	A	multi-tiered	application	is	best	though	of	
as	consisting	of	four	separate	tiers	as	follows:	
	

• Client	Tier	
o This	consists	of	the	web	browser.	The	web	browser	is	typically	installed	on	a	

local	machine	(this	can	be	a	desktop	computer,	a	mobile	device,	a	laptop	etc.	
–	anything	on	which	you	can	install	a	browser).	The	browser	is	programmed	
with	 an	 ability	 to	 request	 information	 from	 a	 web	 server,	 with	 two-way	
communication	implying	use	of	HTTP,	the	foundational	protocol	for	the	world-
wide-web	(WWW)	where	data	is	transferred	within	its	physical	substrate,	the	

	

	 4	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

Internet.	Browsers	have	the	ability	to	execute	.html	mark-up	and	render	the	
contents	visually	in	the	browser	for	human	‘consumption’.		

• Web	Tier		
o This	 consists	 of	 the	 HTTP	 Server.	 The	 HTTP	 server	 is	 typically	 a	 separate	

machine	which	will	contain	documents	and	data	relating	to	the	static	content	
of	a	website.	Static	content	refers	to	content	such	as	.html	files,	images	(that	
are	 called/tagged	 from	 with	 the	 html	 content)	 and	 cascading	 style	 sheets	
(.CSS),	 files	 that	 describe	 the	 appearance	 of	 the	Website	 in	 questions.	 This	
content	is	often	referred	to	as	static.	The	Web	Server	may	receive	a	message	
from	the	browser	 to	 run	an	executable	 script,	which	 is	 then	 re-layer	 to	 the	
bisiness	tier	…	

• Business	Tier	
o This	 includes	 an	 application	 server.	 It	 will	 receive	 a	 message	 to	 execute	 a	

script/program	 from	 the	Web	 Server,	 upon	which	 it	 does	 so	 and	 returns	 a	
result	from	the	process.	During	the	execution	of	the	script,	the	program	might	
require	access	to	data.	If	so,	then	this	part	of	the	process	is	communicated	to	
a	Data	Server,	in	the	form	of	a	query.		

• Data	Tier	
o This	includes	the	database	server	and	the	database	itself.	As	a	consequence	of	

being	queried,	the	Database	server	will	return	a	response,	via	communication	
with	the	database	store,	back	to	the	business	tier.	

	
	
	
The	positioning	of	all	of	these	components	is	therefore	more	complicated	than	the	mere	user-
interface	of	the	browser.	The	process	as	a	whole	is	summarised	in	Figure	1.	
	
	

	
Figure	1:	The	browser	and	the	server-side	stack.	

DATA DATABASE SERVER
Database

(e.g., MySQL)

CSS HTML images etc

BROWSER WEB SERVER
(e.g. APACHE)

Web Applications
(e.g., PHP)

Internet APPLICATION SERVER

Data

“Server Side Stack”

	

	 5	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

	
The	web	tier,	the	business	tier	and	the	data	tier	are	known	as	the	server-side	stack	or	server	
stack.	 In	 Table	 1	 we	 summarise	 the	 technologies	 typically	 associated	 with	 these	 tiers,	
depending	on	the	operating	system	being	used	for	development	–	i.e.,	windows	or	the	Unix	
based	OS’	Mac	OS	and	Linux.	
	
Tier	/	Server	 Relevant	technologies	
Web	 Apache	(Windows,	Unix)	

Internet	Information	Services	(Windows)	
Business	/	Application	 PHP	(Windows,	Unix)	

ASP.net	(Windows)	
Data		 MySQL	(Windows,	Unix)		

Oracle	(Windows,	Unix)	
SQL	Server	(Windows)	

Table	1:	The	server	stack	

In	 enterprise	 development	 (industrial	 software	 settings),	 different	 companies	 will	 use	
different	development	technologies.	Nevertheless,	the	general	configuration	outlines	above	
will	be	relevant	to	many	of	them	running	relational	databases.	
	
7.3 	‘The’	AMP	Stack	
The	‘AMP’	prefix	to	the	phrase	AMP	stack	refers	to	Apache	MySQL	and	PHP.	In	this	section	
we	highlight	some	of	the	different	installation	options	that	are	available.	Each	one	will	give	
you	 a	 slightly	 different	 AMP	 stack,	 but	 all	 will	 allow	 you	 to	 undertake	 web	 application	
development	on	a	local	machine.		
	
Why	are	we	looking	into	this?	As	a	software	developer,	database	developer,	web	application	
developer	etc.	you	will,	in	an	industrial	setting	be	expected	to	know	about	the	technologies	
that	you	are	using.	Although	in	some	companies	a	standard,	company-wide	installation	for	a	
given	software	environment	might	be	available,	this	 is	not	always	the	case.	Indeed,	during	
your	fist	days	as	a	software	develop	or	web	application	developer,	you	might	be	asked	to	“set-
up	you	development	environment”	for	the	specific	role	you	have	been	recruited	for.	You	need	
to	get	to	know	the	tools	you	are	using.	
	
In	terms	of	AMP	stack	installation,	there	is	an	excellent	resource	available	on	Linda.com.	The	
course	Installing	Apache,	MySQL,	and	PHP	describes	in	detail…	
	
“how	to	install	and	configure	Apache	HTTP	Server,	MySQL	database	server,	and	PHP,	known	
collectively	as	the	AMP	stack,	on	a	local	computer…:	installing	the	components	separately	on	
Windows	..	Mac…Linux;	 installing	the	prepackaged	WampServer	and	MAMP	environments;	
and	..	cross	platform	stacks	XAMP	and	Bitnami”.	

Linda.com	
	
We	 recommend	 taking	 a	 look	 at	 this	 course	 and	 getting	 interested	 in	 the	 details	 of	 the	
installation	and	having	a	think	about	what	each	step	does.	Essentially,	the	course	allows	you	
to	set-up	your	machine	to	represent	the	network	depicted	in	Figure	1.	That	is,	it	educates	in	
for	machine	set-up	for	web	application	development.	

	

	 6	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

	
7.3.1 AMP	stack	installation	flow	(individual	components)	
Here,	we	focus	on	the	installation	of	individual	components	gives	you	the	most	insight	into	
configuring	your	AMP	stack,	because	it	is	not	just	a	click	and	install	option	where	everything	
is	done	for	you.	For	those	interested	in	following	and	practicing	AMP	stack	 installation	we	
refer	you	to	the	aforementioned	course.	
	
It	is	also	useful,	on	the	other	hand	to	see	the	overall	installation	flow,	and	how	each	different	
part	related	to	the	set-up	shown	in	Figure	1.	We	therefore	provide	the	installation	flow	for	
the	AMP	stack	on		Windows,	as	an	example.	
	
7.3.2 Example	installation	flow	(AMP	individual	components	on	windows)	
	
A	-	Install	Apache	(Web	Server)	

1. Install	V	C++	Redistributable		
2. Download	Apache	and	extract	to	an	apache	home	folder	of	your	choice.	For	example:		

<C:\apache>	
3. Depending	on	the	location	of	Apache	and	the	folder	name	chosen	in	step	2.,	configure	

the	httpd.conf	file	to	connect	to	localhost.		
4. Start	the	server.	Once	done,	the	server	is	now	in	a	state	in	which	it	can	communicate	

with	a	web	browser	
5. Browser	interface	test:	type	localhost	into	a	browser.	If	a	request	is	successfully	sent	

to	and	received	from,	the	server,	then	“It	works!”	is	rendered	by	you	browser.		
6. Know	your	htdocs	document	root	folder.	This	is	the	default	place	for	the	web	content:	

o CSSS,	HTML,	Images,	etc.	
The	folder	is	here,	assuming	the	above	paths:	

<C:\apache\htdocs>	
	
**	At	this	point	you	have	
simulated	 the	 browser-
server	communication	in	
Figure	1.	
	

Figure	1	subfigure	

	
	
B	-	Install	(PHP)	

1. Download	PHP	to	your	system	
2. Extract	the	contents	to	a	php	home	folder	of	your	choice.	For	example:		

<C:\php>	
	

3. Configure	your	Apache	server	to	‘be	aware’	of	PHP.	Relevant	changes	are	made	to	the	
following	configuration	file:		

<C:\apache\conf\httpd.conf>	
	

Test:	 place	 a	 basic	 php	 script	 into	 the	 htdocs	 root	 folder	 of	 Apache	 server.	 For	
example:		

	

	 7	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

<C:\apache\htdocs\phpinfo.php>	
	
Ensure	that	the	server	is	running,	then	call	the	script	from	the	browser	by	typing,	for	
example:	
		 	 <http://localhost/phpinfo.php>	
	
Into	the	browser.	
	
Information	should	be	rendered	in	the	browser.	

	
At	this	point	you	have	simulated	
the	 browser	 -web	 server	 -	
communication	 in	 Figure	 1,	 as	
shown	opposite.	

	

	
	

	
Install	(MySQL)	

1. Download	and	install	MySQL	community	edition,	the	full	size	package	
2. Simply	launch	the	installer	and	follow	the	instructions	from	Lynda.com	

i. Keep	the	default	port	3306	
ii. Set-up	a	MySQL	root	account	and	password	

3. Launch	MySQL	Workbench	
i. Connect	to	the	localhost	root	account	instance.	

	
	
**	At	this	point	you	have	
simulated	 the	 creation	
of	 a	 database	 server	 in	
Figure	1.		
	
	

	
	
	
7.3.3 Note	on	ports	
When	you	install	an	AMP	stack	it	is	important	to	recognise	that	the	software	“listens”	(i.e.,	
listens	 for	 communication	 on	 certain	 ports).	 A	 port	 is	 the	 hardware	 interface	 between	 a	
computer	and	other	computers.		
	

CSS HTML images etc

BROWSER WEB SERVER
(e.g. APACHE)

Internet

DATA DATABASE SERVER
Database

(e.g., MySQL)

CSS HTML images etc

BROWSER WEB SERVER
(e.g. APACHE)

Internet

Data

No communication to this yet

	

	 8	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

Two	separate	applications	should	not	listen	on	the	same	port	at	the	same	time.	Therefore,	if	
you	would	like	to	experiment	with	different	AMP	stack	installations	it	is	worth	knowing	this…	
	
When	you	use	different	AMP	stacks	you	should	uninstall	or	‘turn	of’	the	‘other’	AMP	stacks	
on	your	machine.	If	you	do	not	do	this	then	AMP	Stack	in	hand	is	unlikely	to	install	properly	
and	work	as	should	be	expected.		
		
7.4 SQL	Querying	
Logically,	we	can	think	of	SQL	statement	types	as	either	part	of	SQLs	Data	Manipulation	(DML)	
Language	or	as	part	of	its	Data	Definition	Language	(DDL).	Whereas	DDL:	
	
“…allows	 database	 objects	 such	 as	 schemas,	 domains,	 tables,	 views,	 and	 indexes	 to	 be	
created	and	destroyed”.	

(Conolly	and	Begg	2015)	
	
DML	refers	to:		
	
“..that	part	of	the	SQL	language	that	deals	with	working	with	and	manipulating	data	in	your	
table”	

(Allardice	2015)	
	
	
In	practical	terms	the	distinction	is	not	overly	important,	although	it	is	worth	noting	that	DDL	
allows	you	to	alter	the	structure	of	the	actual	database	etc.	While	you	are	developing	your	
SQL	skills	you	will	be	working	 interchangeably	with	data	manipulation	and	data	definition.	
With	this	in	mind	the	following	sections	are	designed	to	demonstrate	how	to		
	

• create	a	database,	named	retail_db		
• create	tables	within	the	database,	named	Employee	and	Department	
• Select	data	for	viewing	

o Sorting	data	
o Calling	SQL	aggregate	functions	
o Joining	data	

	
7.4.1 Comma-separated	test	data	
For	the	following	examples	we	have	created	two	sets	of	data,	stored	as	.csv	files.	The	structure	
of	the	files	is	are	fairly	well	organised,	and	reflect	what	you	might	want	to	see	from	a	well	
organised	set	of	data,	contained	in	files	stored	on	a	disk.	These	files	relate	to	Employee	data	
and	Department	data:	
	
Header	Files:	

• <Department_header.csv>.
o Contains	 the	 ‘header’	 information,	 the	 fields	names,	 for	 the	 set	of	 columns	

contained	in	Department_data.csv.	We	will	draw	on	the	names	of	these	
fields	when	we	write	a	script	to	create	the	Department	table.	

• <Employee_header.csv>.

	

	 9	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

o Contains	 the	 ‘header’	 information,	 the	 fields	names,	 for	 the	 set	of	 columns	
contained	 in	Employee_data.csv.	We	will	 draw	 on	 the	 names	 of	 these	
fields	when	we	write	a	script	to	create	the	Employee	table.	

Data	files:	
	

• <Department_data.csv>
o Contains	the	actual	data	of	interest	with	respect	to	the	Department	table.	

We	will	read	this	data	into	our	Department	table,	after	it	has	been	created,	
again	using	a	script.	

• <Employee_data.csv>
o Contains	the	data	of	interest	with	respect	to	the	Employee	table.	We	will	

read	this	data	into	our	Employee	table,	after	it	has	been	created,	likewise	
using	a	script.	

	

	
Figure	2:	.csv	files	'schemas'	and	data.	

	
Our	aim	is	to	convert	this	example	.csv	data	into	a	MySQL	database	representation,	then	run	
some	typical	queries	over	the	data	and	view	the	outputs.	Finally,	we	will	delete	the	database.	
These	steps	will	introduce	you	to	some	of	the	typical	commands	that	you	will	expect	to	use,	
and	cover	aspects	of	both	the	DDL	and	DML	aspects	of	MySQL.	
		
	
7.4.2 Simple	Database	creation	script		

Console input
mysql> source create_retail_db.sql;

Console output

+--------------------+
| Database |
+--------------------+
| information_schema |
| codepoint_db |

SCRIPT create_retail_db.sql

show databases;
CREATE DATABASE retail_db;
show databases;

Employee_data.csv

Department_header.csv

Department_data.csv

Employee_header.csv

‘headers/fields’

‘data/values’
Employee Department

	

	 10	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

| mysql |
| performance_schema |
| sys |
+--------------------+
5 rows in set (0.00 sec)

Query OK, 1 row affected (0.00 sec)

+--------------------+
| Database |
+--------------------+
| information_schema |
| codepoint_db |
| mysql |
| performance_schema |
| retail_db |
| sys |
+--------------------+
6 rows in set (0.00 sec)

	
7.4.3 Using	the	created	database	
The	following	sections	now	assume	that	we	call	the	following	SQL	command,	which	tells	SQL	
that	these	commands	wil	apply	to	the	<retail_db>	just	created.	In	other	words	the	following	
commands	are	within	the	scope	of	<retail_db>:	
	
Console input
mysql> use retail_db;

Console output

Database changed	

7.4.4 Creating	the	tables	
	

Console input
mysql> source create_department_table.sql

Console output

Query OK, 0 rows affected (0.02 sec)

+---------------------+
| Tables_in_retail_db |
+---------------------+
| Department |
+---------------------+
1 row in set (0.00 sec)

SCRIPT create_depertment_table.sql

CREATE TABLE retail_db.Department (
 DepartmentID int(11),
 DeptName text,
 Postcode text
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
show tables;

	
Console input
mysql> source create_employee_table.sql

Console output

Query OK, 0 rows affected (0.02 sec)

+---------------------+

SCRIPT create_employee_table.sql

CREATE TABLE retail_db.Employee (
 EmployeeID int(11),
 FirstName text,

	

	 11	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

| Tables_in_retail_db |
+---------------------+
| Department |
| Employee |
+---------------------+
2 rows in set (0.00 sec)

 LastName text,
 Department text,
 Salary int(11),
 DepartmentID int(11)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
show tables;

7.4.5 Loading	the	tables	with	data	
	
Console input
mysql> source load_department_data.sql

Console output

Query OK, 4 rows affected (0.02 sec)
Records: 4 Deleted: 0 Skipped: 0
Warnings: 0

SCRIPT load_department_data.sql

LOAD DATA LOCAL INFILE '../week-7-
data/Department_data.csv'
 INTO TABLE retail_db.Department
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'

	
Console input
mysql> source load_employee_data.sql

Console output

Query OK, 9 rows affected (0.01 sec)
Records: 9 Deleted: 0 Skipped: 0
Warnings: 0

SCRIPT load_employee_data.sql

LOAD DATA LOCAL INFILE '../week-7-
data/Employee_data.csv'
 INTO TABLE retail_db.Employee
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n'

At	 this	 point	 we	 are	 in	 a	 position	 to	 undertake	 data	 manipulation,	 using	 MySQL	 DML	
commands.	Some	example	commands	follow.		
	
7.4.6 SQL:	Selecting	
In	the	following	example,	the	SELECT	and	FROM	commands	are	used.	The		SELECT	word	does	
exactly	what	it	says,	and	is	used	to	select	data	from	a	table.	Here,	we	simply	select	every	(*)	
column	FROM	the	Employee	table.	

mysql> SELECT * FROM Employee;

+------------+-----------+------------+------------+--------+--------------+
| EmployeeID | FirstName | LastName | Department | Salary | DepartmentID |
+------------+-----------+------------+------------+--------+--------------+
1	Richard	Young	Sales	50000	2
2	Sarah	Campbell	Marketing	40000	1
3	Brian	Johns	Payroll	18000	4
4	James	Stephens	ShopFloor	15000	4
5	Danielle	Humphreys	ShopFloor	30000	3
6	Peter	Jeffries	Payroll	19500	4
7	Mary	Smith	Marketing	40000	2
8	Lee	Williams	Sales	32700	4
9	Alison	Williamson	Sales	32700	4
+------------+-----------+------------+------------+--------+--------------+
9 rows in set (0.00 sec)

…and	similarly	FROM	the	Department	table…	

	

	 12	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

mysql> SELECT * FROM Department;
+--------------+-----------+----------+
| DepartmentID | DeptName | Postcode |
+--------------+-----------+----------+
 | 1 | Sales | EH1 3SP
 | 2 | Marketing | EH1 3SP
 | 3 | Payroll | N1C 4QL
| 4 | ShopFloor | N1C 4QL |
+--------------+-----------+----------+
4 rows in set (0.00 sec)

	
SELECT	is	often	also	used	in	conjunction	with	the	WHERE	command.	WHERE	can	be	used	to	
specify	Boolean	conditions	on	the	rows	that	are	returned.	In	the	following,	for	example,	the	
Boolean	condition	is	<Salary > 30000>, such	that	each	row	this	condition	evaluates	to	‘true’	
is	returned	from	the	data.	Note	the	Employees	who	are	missing	and	their	salaries	(from	the	
previous	displayed	Employee	table.		
	
So,	as	is	expected	from	a	query	language	it	is	quite	easy	to	return	only	the	specific	data	you	
are	interested	in.	We	are	only	using	relatively	simple	examples,	here,	but	you	are	getting	a	
feel	for	the	powerful	nature	of	query	based	programming	statements.	One	thing	you	might	
want	to	try,	just	for	fun,	is	to	write	a	program	(say	in	Java),	which	reads	the	same	information	
from	the	.csv	files	provided.	Otherwise,	you	can	simply	trust	that	the	task	will	be	much,	much	
more	time	consuming	and	cumbersome	that	simple	executing	the	statement	below.		

SELECT * FROM Employee WHERE Salary > 30000;

+------------+-----------+------------+------------+--------+--------------+
| EmployeeID | FirstName | LastName | Department | Salary | DepartmentID |
+------------+-----------+------------+------------+--------+--------------+
1	Richard	Young	Sales	50000	2
2	Sarah	Campbell	Marketing	40000	1
7	Mary	Smith	Marketing	40000	2
8	Lee	Williams	Sales	32700	4
9	Alison	Williamson	Sales	32700	4
+------------+-----------+------------+------------+--------+--------------+

	
7.4.7 SQL:	Sorting	
In	the	examples	that	follow,	the	input	commands	build	on	the	previous	ones	by	including	the	
use	of	the	ORDER	BY	words.	The	first	example	orders	the	results	by	Salary,	such	that	the	Salary	
field	 determines	 the	 order	 in	which	 the	 rows	 appear,	 in	 ascending	 order,	 from	 lowest	 to	
highest	(using	the	ACS	word).	The	second	example	used	the	DESC	word,	to	ensure	that	the	
order	by	salary	is	in	descending	order.	Notice,	if	you	omit	ASC	(or	DESC)	then	the	default	is	
ascending.	

SELECT * FROM Employee WHERE Salary > 30000 ORDER BY Salary;
SELECT * FROM Employee WHERE Salary > 30000 ORDER BY Salary ASC;
+------------+-----------+------------+------------+--------+--------------+
| EmployeeID | FirstName | LastName | Department | Salary | DepartmentID |
+------------+-----------+------------+------------+--------+--------------+
8	Lee	Williams	Sales	32700	4
9	Alison	Williamson	Sales	32700	4
2	Sarah	Campbell	Marketing	40000	1
7	Mary	Smith	Marketing	40000	2

	

	 13	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

| 1 | Richard | Young | Sales | 50000 | 2 |
+------------+-----------+------------+------------+--------+--------------+
5 rows in set (0.01 sec)

SELECT * FROM Employee WHERE Salary > 30000 ORDER BY Salary DESC;
+------------+-----------+------------+------------+--------+--------------+
| EmployeeID | FirstName | LastName | Department | Salary | DepartmentID |
+------------+-----------+------------+------------+--------+--------------+
1	Richard	Young	Sales	50000	2
2	Sarah	Campbell	Marketing	40000	1
7	Mary	Smith	Marketing	40000	2
8	Lee	Williams	Sales	32700	4
9	Alison	Williamson	Sales	32700	4
+------------+-----------+------------+------------+--------+--------------+
5 rows in set (0.00 sec)

When	 you	 order	 a	 text	 value,	 such	 as	 Department	 field,	 then	 the	 default	 is	 ascending	
alphabetic	order:

SELECT * FROM Employee WHERE Salary > 30000 ORDER BY Department;
+------------+-----------+------------+------------+--------+-----
---------+
| EmployeeID | FirstName | LastName | Department | Salary | DepartmentID |
+------------+-----------+------------+------------+--------+--------------+
2	Sarah	Campbell	Marketing	40000	1
7	Mary	Smith	Marketing	40000	2
1	Richard	Young	Sales	50000	2
8	Lee	Williams	Sales	32700	4
9	Alison	Williamson	Sales	32700	4
+------------+-----------+------------+------------+--------+--------------+
5 rows in set (0.00 sec)

It	 is	also	possible	to	order	by	one	column	(primary	ordering	column),	and	then	by	another	
(secondary	ordering	column).	For	instance,	in	the	following	example,	we	order	primarily	by	
Department,	so	we	get	the	same	ordering	in	the	Department	column,	but	because	we	then	
order	by	LastName,	the	order	of	the	rows	can	be	seen	to	alter	according	to	this	field	within.	
The	set	of	‘Sales’	Employees:

SELECT * FROM Employee WHERE Salary > 30000 ORDER BY Department, LastName;
+------------+-----------+------------+------------+--------+--------------+
| EmployeeID | FirstName | LastName | Department | Salary | DepartmentID |
+------------+-----------+------------+------------+--------+--------------+
2	Sarah	Campbell	Marketing	40000	1
7	Mary	Smith	Marketing	40000	2
8	Lee	Williams	Sales	32700	4
9	Alison	Williamson	Sales	32700	4
1	Richard	Young	Sales	50000	2
+------------+-----------+------------+------------+--------+--------------+
5 rows in set (0.00 sec)
	
Any	number	of	separate	ordering	can	be	done	in	this	nested	way,	which	makes	it	very	useful	
for	organising	large	amounts	of	rows.
	
7.4.8 SQL:	Functions	
Where	we	are	not	necessarily	 interested	in	the	specific	details	of	the	data	itself,	we	might	
want	to	use	some	the	aggregate	functions	available	in	MySQL.	These	functions	allow	to	count,	

	

	 14	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

find	 minimum,	 maximum	 and	 average	 values	 on	 the	 those	 aspects	 of	 the	 data	 we	 are	
interested.	
	
For	a	very	simple	example,	you	can	simply	count	the	number	of	rows	in	a	table…		

SELECT COUNT(*) FROM Employee;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+
1 row in set (0.01 sec)

SELECT COUNT(*) FROM Department;
+----------+
| COUNT(*) |
+----------+
| 4 |
+----------+
1 row in set (0.00 sec)

Or,	if	you	are	interested	in	counting	a	subset	of	the	data	(like	the	number	of	Employees	who	
earn	over	30000)	you	can	count	on	this	subset.		

SELECT COUNT(*) FROM Employee WHERE Salary > 30000;
+----------+
| COUNT(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

Min	and	Max	can	be	used.	Who	earns	the	least…		

SELECT MIN(Salary) FROM Employee;
+-------------+
| MIN(Salary) |
+-------------+
| 15000 |
+-------------+
1 row in set (0.00 sec)

…and	who	earns	the	most…	

SELECT MAX(Salary) FROM Employee;
+-------------+
| MAX(Salary) |
+-------------+
| 50000 |
+-------------+
1 row in set (0.00 sec)

What	the	total	salary	of	all	employees	is:		

SELECT SUM(Salary) FROM Employee;
+-------------+
| SUM(Salary) |
+-------------+

	

	 15	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

| 277900 |
+-------------+
1 row in set (0.01 sec)

	

the	average…

SELECT AVG(Salary) FROM Employee;
+-------------+
| AVG(Salary) |
+-------------+
| 30877.7778 |
+-------------+
1 row in set (0.00 sec)

The	following	use	of	the	function	count	is	undertaken	on	a	set	of	groups,	grouped	by	salary.		

SELECT COUNT(Salary), Salary FROM Employee GROUP BY Salary;
+---------------+--------+
| COUNT(Salary) | Salary |
+---------------+--------+
1	15000
1	18000
1	19500
1	30000
2	32700
2	40000
1	50000
+---------------+--------+
7 rows in set (0.00 sec)
	
7.4.9 SQL:	Joining	
When	we	created	the	database,	above,	we	created	two	tables.	However,	as	we	have	seen	in	
earlier	 parts	 of	 the	 course,	 the	 idea	 behind	 database	 organisation,	 isn’t	 just	 to	 separate	
logically	related	data,	but	to	then	allow	separate	tables	to	be	related	to	each	other.		
	
A	key	SQL	table	command	for	 this	 is	 the	JOIN	command.	This	allows	us	 to	 join	two	tables	
together.	 In	 the	 following	example,	we	select	FirstName,	LastName	and	DeptName.	Note,	
FirstName	and	LastName	are	fields	within	the	Employee	table.	DeptName	is	a	field	within	the	
Department	 table.	However	 the	geneal	<SELECT	contents	FROM	table>	syntax	works	on	a	
table	which	is	the	joined	table	of	Employee	and	Department.	You	can	think	of	this	as	a	table	
that	 exists	 as	 a	 consequence	 of	 the	 JOIN.	 In	 this	 case,	 the	 join	 is	 made	 on	 (ON)	 the	
DepartmentID	of	both	the	Employee	and	the	Department	tables.	

SELECT FirstName,LastName,DeptName FROM Employee INNER JOIN Department ON
Employee.DepartmentID = Department.DepartmentID;
+-----------+------------+-----------+
| FirstName | LastName | DeptName |
+-----------+------------+-----------+
Richard	Young	Marketing
Sarah	Campbell	Sales
Brian	Johns	ShopFloor
James	Stephens	ShopFloor
Danielle	Humphreys	Payroll
Peter	Jeffries	ShopFloor
Mary	Smith	Marketing
Lee	Williams	ShopFloor
Alison	Williamson	ShopFloor
+-----------+------------+-----------+
9 rows in set (0.00 sec)

	

	 16	

WEEK	7:	DB	DEVELOPMENT	ESSENTIALS	

7.5 Summary	
• We	 covered	 a	 topic	 related	 to	 web	 applications,	 and	 the	 various	 software	 tiers	

relevant	-	‘client’,	‘web’,	‘business’,	‘data’.			
	

• Following	on	from	last	week,	covered	something	known	as	the	AMP	stack,	and	briefly	
the	main	steps	of	the	AMP	stack	installation	flow.		

	
• Following	this	introduced	SQL	querying	with	the	number	of	Basic	MySQL	commands	

to	create	a	database,	create	tables	with	a	database,	select,	sort	data,	and	join	data	
tables	together.		

	
~~~~~	

	
	
	
	
	


