
	
WEEK	9:	TITLE	

	
	
	
	
	
	

Client	 side	 Database	 Programming	
with	Java	
	
	
This	week	the	topics	we	will	cover	include:	

• Client-side	programming	in	Java.	
• A	java	environment	(project	structure)	used	in	java	programming.		
• How	java	environment	connects	to	a	MySQL	server	using	JDBC	driver.	
• Some	simple	Java	programs	with	embedded	MySQL	queries.	

	
…	and	will	result	in	the	following	learning	outcomes	

• Understanding	of	how	to	link	a	java	client	program	to	a	database.	
• Understanding	of	java	project	structures	and	why	they	matter.	
• Knowledge	 of	 a	 development	 environment	 to	 develop	 your	 own	 client-side	

applications.	
• Knowledge	of	how	to	execute	MySQL	queries	 from	java	and	do	something	with	the	

result.	
	
	
	 	

	

	 2	

WEEK	9:	TITLE	

Table	of	Contents	
9.1	 Overview	...	2	
9.2	 Client-side	database	programming:	real-world	context	..	3	

9.2.1	 Example:	client	side	logistics	programs	..	3	
9.3	 Java	database	development	environment:	core	project	...	4	

9.3.1	 Java	project	structure	...	5	
9.4	 Java	database	development	environment	..	6	

9.4.1	 JDBC	as	a	‘dependency’	..	7	
9.4.2	 Preparation	for	use	of	MySQL	JDBC	...	7	

9.5	 Simple	connection	class:	MySqlCommunicator.java	...	7	
9.5.1	 Class	declaration	and	imports	..	7	
9.5.2	 Class	fields	..	8	
9.5.3	 Constructor	method	...	8	
9.5.4	 The	toString()	method	..	9	
9.5.5	 The	main()	and	getter	methods	..	9	
9.5.6	 Summary	...	10	

9.6	 Simple	query	set	class:	CodepointQuerySet.java	..	10	
9.6.1	 Class	fields	..	10	
9.6.2	 Constructor	methods	..	11	
9.6.3	 The	main	()	and	getter	methods	...	11	
9.6.4	 Summary	...	12	

9.7	 Querying	RDB	from	java:	MySqlApp.java	...	12	
9.7.1	 Class	fields	..	12	
9.7.2	 Constructor	...	13	
9.7.3	 The	runQueries()	method	...	14	
9.7.4	 tidyUp()	...	14	
9.7.5	 The	main()	method	...	15	

9.8	 Summary	...	16	
	
	
Figure	2:	Project	structure.	...	6	
Figure	3:	Project	structure	for	dependencies.	..	7	
Figure	4:	Console	output	from	MySqlApp.java	..	16	
	
	
Table	1:	MySQL	JDBC,	preparation	for	use	...	7	
Table	2:	MySqlCommunicator	program	outputs.	...	10	
Table	3:	CodepointQuerySet:	program	output.	...	12	
	
	
	
9.1 Overview	
This	week	deals	with	the	topic	of	client-side	database	programming.	Client-side	programming	
can	be	done	in	numerous	languages,	including	Java,	which	is	a	popular	choice	for	developers,	
one	of	the	reasons	the	Java	language	has	already	been	introduced	to	on	this	course.	
	
Java	Database	Connectors	are	software	tools	that	allow	java	developers	to	use	databases	in	
an	embedded	way	–	i.e.,	databases	become	an	inseparable	part	of	a	java	application,	running	

	

	 3	

WEEK	9:	TITLE	

e.g.	on	a	desktop.	In	this	case	the	program	running	on	the	desktop	is	often	referred	to	as	the	
‘client	application’.	We	will	be	providing	some	examples	of	desktop	applications	(see	below).	
	
However,	 desktops	 applications	 are	 not	 the	 only	 potential	 ‘client’	 communicating	 with	 a	
database	on	a	server	–	client	programs	can	exist	on	mobile	phones,	and	other	mobile	devices,	
or	on	bespoke	hardware.	The	latter	might,	for	example,	contain	sensors	whose	states	then	
get	communicated	to	a	database	from	its	client	program.	Inside	a	business,	a	shared	database	
is	likely	to	be	accessed	from	numerous,	and	different	kinds,	of	client	program.				
	
In	other	areas	of	your	course,	you	will	already	have	learned	some	of	the	java	language,	and	
become	familiar	with	java	development	environments.	This	week,	week	we	will	look	at	the	
set-up	of	a	java	development	environment.	Then,	within	this	development	environment	we	
will	start	to	look	at	how	to	connect	to	a	MySQL	database	from	a	java	program,	then	we	will	
develop	some	simple	java	examples	and	applications.	
	
On	university	courses	we	are	limited	to	developing	relatively	small	applications.	This	is	helpful,	
firstly,	 because	 it	 helps	 students	 to	 learn	 basic	 principles	 without	 which	 large-scale	
applications	simply	cannot	be	developed.	However,	real	word	applications	and	technologies	
that	get	developed	 in	the	context	of	software	development	teams	are	highly	complicated.				
Therefore,	even	though	we	cannot	introduce	such	large	scale	Java	code,	we	can	consider	this	
real-world	context	and	some	example	client	programs…	
	
9.2 Client-side	database	programming:	real-world	context	
As	we	have	previously	noted,	query	languages	are	powerful	from	the	point	of	view	that	they	
easily	allow	us	to	create	databases	and	declare	what	data	we	want	from	an	existing	database.	
However,	declarative	aspects	of	query	 languages	are	specific	 for	declarative	purposes	and	
cannot	be	used	to	develop	codes	that	perform	different	and	more	complicated	tasks.	Query	
languages	are	often	not	considered	to	be	programming	languages:	
	
As	Ritchie	states	

“A	 non-programming	 interactive	 approach	 is	 clearly	 more	 suitable	 for	 ‘end	 user’	
development,	 where	 did	 database	 designer	 may	 have	 limited	 programming	
knowledge.	However,	it	does	ultimately	limit	the	potential	of	the	software	in	producing	
a	system	exactly	to	the	user	requirements.	Professional	database	system	developers	
typically	have	to	stretch	the	software	to	meet	the	needs	of	the	client	and	this	often	
necessitates	 the	 use	 of	 programming.	 Even	 within	 systems	 offering	 effective	
interactive	 facilities,	 implementations	 can	 often	 be	 improved	 by	 the	 use	
programming.”	

Ritchie	(2002)	
	
9.2.1 Example:	client	side	logistics	programs	
As	we	have	throughout	the	course,	consider	another	‘logistics’	example.	In	the	logistics	sector	
many	software	technologies	exit	that	allow	a	business	to	manage	its	vehicle	fleet.	As	part	of	
such	technology,	a	common	requirement	is	the	provision	of	applications	that	connect	to	a	
database	from	different	kinds	of	client.		
	

	

	 4	

WEEK	9:	TITLE	

For	 example,	 the	 vehicle	 itself	 is	 likely	 to	 be	 equipped	 with	 GPS	 technology.	 A	 client	
application	residing	in	on-board	hardware	will	communicate	information	to	a	database	with	
a	 given	 update	 frequency.	 For	 example,	 accelerometer	 data	 might	 be	 communicated	 at	
relatively	high	frequency	(say	10	Hertz	–	10	times	a	second).	This	information	can	be	used	to	
measure	how	well	the	driver	is	driving	the	vehicle	and	whether	or	not	they	might	benefit	from	
some	training	to	help	them	reduce	the	accelerations	(which	result	in	more	fuel	uptake	and	
increased	costs).		
	
Meanwhile,	 every	 minute,	 GPS	 data,	 which	 indicates	 the	 location	 of	 a	 vehicle	 might	 be	
streamed	to	the	database.		The	database	can	then	be	read	from	another	client	application	
which,	 this	 time,	 sits	on	a	desktop	computer	within	 the	headquarters	office.	This	desktop	
application	will	allow	a	user	to	have	full	visibility	of	the	entire	fleet	of	vehicles	(each	vehicle	
has	the	same	technology	and	communication	ability	with	the	database).	We	can	imagine	on	
a	 desktop	 application,	 that	 a	 user	 will	 be	 responsible,	 like	 an	 air-traffic	 controller,	 for	
managing	the	trajectories	of	vehicles	over	the	day	in	order	to	satisfy	the	needs	of	business	
customers	(domestic,	commercial	etc.)	at	minimum	cost.	It	would	be	unimaginable	for	them	
to	do	this	without	the	ability	to	access,	through	a	desktop	application,	real-time	data	related	
to	vehicle	position,	breakdown,	re-allocation	of	vehicles	etc.	You	can	imagine	as	part	of	this	
software,	 that	 the	 entire	 fleet	 of	 vehicles	 are	 visible	 to	 the	 user	 as	 a	 consequence	 of	 a	
database	programmer	implementing	code	that	renders	GPS	information	to	a	map,	perhaps	
using	one	of	the	many	available	geographic	mapping	services	available.		
	
Therefore,	while	you	are	learning	essential	programming	skills,	it	is	important	to	have	in	mind	
the	 kinds	 of	 applications	 that	 good	 programming	 skills	 can	 eventually	 lead	 a	 qualified	
graduate	into	creating.	There	is,	of	course,	no	need	to	restrict	your	own	imagination	to	any	of	
the	 examples	 given	 to	 you,	 and,	 as	 you	 learn	 how	 to	 program,	 you	 should	 think	 about	
application	development	as	a	creative	process;	all	 successful	software	applications	started	
with	an	idea!	
	
9.3 Java	database	development	environment:	core	project	
Not	something	usually	very	well	covered	in	text	books,	but	is	very	important.**	
In	 this	 section,	 we	 will	 look	 into	 how	 to	 organise	 a	 java	 project.	 During	 the	 process	 of	
converting	source	code	into	an	executable	program,	as	long	as	the	program	source	code	is	on	
the	Java	compiler	classpath,	and	the	code	syntax	is	valid,		then	the	compiler	will	generate	an	
executable	 program	 from	 the	 source	 code.	 	 Consequently,	 poorly	 (even	 very	 poorly)	
organised	source	code	will	compile.		
	
However,	will	have	already	learned	that	organising	code	within	a	file	is	very	important	i.e.,	
statements,	 loops,	 and	 functions	 etc.	 should	 all	 be	 clearly	 indented	 and	 easily	 readable.	
Similarly,	 this	 is	 true	 when	 we	 come	 to	 organise	 our	 classes,	 and	 place	 our	 classes	 into	
appropriate	packages.	At	this	level,	organisation	is	critical	to	the	readability,	and	therefore	
understanding,	of	the	source	code,	both	to	the	developers	of	the	code	and	other	developers	
who	may	use	the	code	in	the	future.	
	
We	will	cover	three		

1. Organisation	 is	 also	 critical	 in	 terms	 of	 the	 overall	 project	 structure.	 Therefore,	
because	we	will	be	developing	some	applications,	 it	 is	 important	to	establish	some	

	

	 5	

WEEK	9:	TITLE	

good	 principles	 concerning	 project	 organisation.	 This	 will	 give	 you	 confidence	 in	
organising	your	own	code	in	the	future	and	will	help	you	to	easily	navigate	around	a	
Java	 project.	 	 The	 project	 structure	 that	 we	 will	 follow	 is	 based	 on	 an	 industrial	
strength	approach.	Java	files	will	be	organised	into	packages,	inside	a	nested	directory	
structure,	which	is	based	on	the	assumption	that	the	main	codebase	is	separated	from	
the	test	codebase.		

	
2. Once	 we	 have	 detailed	 this	 approach	 we	 will	 go	 through	 the	 steps	 necessary	 to	

connect	such	a	project	to	an	external	codebase,	which	will	be	packed	as	a	.jar	file.	This	
external	codebase	will,	in	fact,	be	a	version	of	the	MySQL	JDBC	and	we	will	thus	learn	
about	external	jar	files	generally	while	undertaking	the	specific	task	of	connecting	out	
project	to	the	MYSQL	JDBC.	

	
3. We	will	also	take	a	closer	look	at	preparing	a	real-world	database,	using	the	code	point	

resource	available	from	the	UK	government	website.	This	will	involve	the	writing	and	
execution	of	an	SQL	script,	which	is	designed	to	read	a	comma	separated	file	version		
of	code	point	Open	into	a	database	version.	This	database	will	then	form	the	basis	of	
the	JDBC	example	Applications.	

	
	
Once	 we	 have	 covered	 these	 three	 points	 we	 will	 be	 in	 a	 position	 to	 develop	 some	
applications	where	we	will	connect	to	the	database	then	write	some	code	to	interact	with	the	
database,	by	executing	embedded	MySQL	queries	from	pure	Java	code.	
	
9.3.1 Java	project	structure	
You	should	already	be	familiar	with	the	distinction	between	source	files	and	executable	files,	
which	 is	 a	 typical	 distinction	 in	 many	 programming	 languages.	 However,	 here	 is	 a	 quick	
summary	for	Java.	In	java	you	store	source	code	within	files	that	have	a	<.java>	extension.	
When	you	compile/build	your	source	code	(i.e.,	the	collection	of	.java	files),	typically,	you	will	
compile	to	a	different	kind	of	file	known	as	a	<.class>	file.	It	is	a	good	idea	to	separate	the	
storage	of	these	files.	This	can,	simply,	be	that	you	do	not	confuse	.class	with	.java	files	during	
development.	For	example,	.java	files	are	more	precious	than	.class	files	because	the	latter	
are	built	from	the	former;	if	you	delete	a	.class	file,	you	can	easily	recompile.	However,	if	you	
delete	a	.java	file,	you	have	to	re-write	the	code.	This	is	also	reflected	in	the	use	of	version	
control	systems	(cvs,	svn,	git	etc)	where	it	is	only	the	.java	files	that	are	versioned.		
	
Either	 way,	 the	 .class	 (built)	 files	 and	 the	 .java	 (developed	 source)	 files	 sit	 in	 separate	
directories	within	a	project.	

	

	

	 6	

WEEK	9:	TITLE	

	
Figure	1:	Project	structure.	

	
We	will	be	using	src	for	the	source	files	and	build	for	the	built	files.		
	
The	src	directory:	There	is	more	internal	structure	within	the	source	folder.	Within	the	src	
directory	 you	 should	 separate	 tests	 from	 the	main	 source	 code.	 This	 is	 because,	 as	 a	
developer	you	will	develop	tests	for	your	code,	but	these	should	not	be	considered	as	part	of	
the	main	source	code	–	i.e.,	the	tests	are	not	something	you	would	release	as	part	of	your	
final	executable	software,	because	are	tests	of	the	codebase,	not	part	of	the	final	software	
product	itself	in	anyway.	However,	tests	are	source	code	<.java>	so	they	go	in	their	own	test	
folder.	Additionally,	within	the	main	and	the	test	directories	there	will	be	more	folders.	For	
example,	 if	a	program	relies	on	the	use	of	 images,	 then	this	 is	 likely	to	be	stored	within	a	
folder	 named	 resources.	 All	 .java	 files	 will	 be	 stored	 in	 the	 java	 sub-directories	 of	 the	
respective	main	or	test	folders,	depending	on	their	purpose.	
	
The	build	directory:	the	typical	default	file	that	a	.java	is	converted	to	is	a	.class	file.	Therefore,	
within	the	build	folder	we	have	a	classes	folder,	and	this	will	contain	the	directories	that	are	
created	from	the	packages,	and	then	inside	those	packages	the	appropriate	.class	files	will	
reside.	However,	in	java	we	can	chose	what	kind	of	‘binary’	file	we	want	to	create.	Instead	of	
having	lots	of	.class	files	we	might	choose	to	build	our	.java	files	and	archive	them	to	a	.jar	
file.	This,	for	example,	is	something	that	was	done	during	the	build	of	the	MySQL	JDBC,	which	
will	download	later.	This	important	point	here,	then,	is	that	the	build	directory	can	have	sub-
directories.	 Later	 on	 in	 the	 development	 of	 the	 project,	 this	 structure	makes	 it	 easier	 to	
configure	different	build	options	without	affecting	the	ones	that	exist.	
	
9.4 Java	database	development	environment	
	

src

rh-database

test main

build

jarsclasses

java resources etc. java resources etc.

package

sub-
package

sub-sub-
package

package

sub-
package

sub-sub-
package

package.package.package

package.package.package

	

	 7	

WEEK	9:	TITLE	

9.4.1 JDBC	as	a	‘dependency’		
Within	 any	 industrial	 development	 environment,	 we	will,	 typically,	 draw	 on	 a	 number	 of	
resources.	 These	 resources	 are	 not	 part	 of	 our	 own	 products,	 but	 our	 own	 source	 code	
depends	on	these	resources.	From	the	point	of	view	of	our	own	codebase,	these	resources	
define	our	‘dependencies’.	
	
For	example,	when	we	connect	 to	 the	database,	 the	 JDBC	 is	 such	a	 resource.	 	Third-party	
software	 is	also	often	referred	to	as	a	 library,	on	which	our	source	code	depends.	We	will	
therefore	create	a	standard	project	called	library.	Within	this	project	we	will	assume	that	we	
store	all	of	the	third-party	code	in	an	in	an	appropriate	folder	name.	

	

	
Figure	2:	Project	structure	for	dependencies.	

	
9.4.2 Preparation	for	use	of	MySQL	JDBC		
	

• Download	the	platform	independent	zip	archive	from:	
https://dev.mysql.com/downloads/connector/j/	

• Extract	the	zip	archive.	You	will	see	a	number	of	files,	e.g.,	build.xml,	
CHANGES,	COPYING	etc.	The	file	we	are	interested	in	is:	

mysql-connector-java-5.1.40-bin	
• Copy	 the	 mysql-connector-java-5.1.40-bin.jar	 to	 apt	 dependencies	

folder:	
• Add	the	mysql-connector-java-5.1.40-bin.jar	to	the	.classpath	of	the	

java	project	outlined	in	section	9.3.1.	
Table	1:	MySQL	JDBC,	preparation	for	use	

	
9.5 Simple	connection	class:	MySqlCommunicator.java	
	
9.5.1 Class	declaration	and	imports	
package ac.uk.gcu.data.db.rbd.conn;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class MySqlCommunicator {

database-
drivers

rh-database

FolderName1 FolderName1

* * * *

my-sql no-sql

— mysql-connector-java-5.1.40-bin.jar
— neo4j-kernel-2.3.3.jar
— another.jar
— another.jar
— another.jar
— another.jar

	

	 8	

WEEK	9:	TITLE	

…
…
…	
	
Code	commentary	
This	 is	very	simple.	We	will	be	using	 resources	 ffrom	the	 java.sql.*	package.	That	 is	 the	
‘Connection’,		DriveManager’and	‘SQLException’	classes.	
	
9.5.2 Class	fields		
/**
 * Username to connect to database, associated with {@link PASSWORD}
 */
 private static final String USERNAME = "root";

/**
 * Password to connect to database, associated with {@link USERNAME}
 */
 private static final String PASSWORD = "password";

/**
 * This is the target url of the JDBC connection.
 */
 private static final String TARGET_URL = "jdbc:mysql://localhost?&useSSL=false&/";

/**
 * The connection to the database
 */
private Connection connnection;	
	
Code	commentary	
The	first	three	fields	to	notice	are	three	String	types.	These	fields	will	be	used	to	connect	
to	the	database.	As	we	now	know,	in	order	to	connect	to	a	database,	we	need	a	password	
and	a	username.	Of	course	we	also	need	a	database	server	to	connect	to.	The	username	
(USERNAME)	and	password	(PASSWORD)	are	set	as	static	final	strings.	That	is,	they	are	not	
going	to	change	value	at	all	during	the	execution	of	the	program.	The	same	is	true	of	the	
the	 target	 url	 (TARGET_URL).	 It	 is	 typical	 in	 Java	 programming	 that	 fields	 like	 this	 are	
expressed	in	upper	case.	Notice,	java	does	not	require	this,	but	it	is	considered	good	form	
to	do	this.	These	three	strings	will	be	used	to	parameterised	a	call	 to	a	new	connection	
object	(see	below).	
	
This	connection	object	will	be	stored	in	the	class	field	connection.	Notice	that	we	are	now	
using	the	Connection	class,	which	is	within	view	due	to	the	java.sql.Connection	import,	
as	described	above.	
	
9.5.3 Constructor	method	
/**
 * Default constructor
 */
 public MySqlCommunicator(){

 try {
 connnection = DriverManager.getConnection(TARGET_URL, USERNAME, PASSWORD);
 } catch (SQLException e) {
 e.printStackTrace();
 }

	

	 9	

WEEK	9:	TITLE	

 System.out.println(toString());
}
	
Code	commentary	
The	constructor	sets	the	connection	field	to	a	new	object,	but	this	can	only	occur	 if	 the	
parameters	 to	 the	 getConnection(String,	 String,	 String)	 method,	 which	 belongs	 to	 the	
DriverManager	class,		are	valid.	If	they	are	not	valid	then	the	getConnection(String,	String,	
String)	will	throw	an	exception.	Therefore,	we	try	to	connect,	but	if	the	exception	is	thrown	
we	need	to	catch	it	and	deal	with	it.	This	is	done	by	printing	the	stack	trace	to	the	console.	
Hence,	the	try	{}	catch	{}	block.	
	
The	final	line	of	the	constructor	is	a	call	to	its	toString	method(),	printing	the	content	to	the	
console.	
	
9.5.4 The	toString()	method	
/**
 * Indicate whether or not the connection failed or is exists
 */
 public String toString(){

 String str = this.getClass().getSimpleName() + " ...\n";
 str += "...Using TARGET_URL: <" + TARGET_URL + "> \n";
 str += "...Using USERNAME: <" + USERNAME + "> \n";
 str += "...Using PASSWORD: <" + PASSWORD + ">\n";

 if(connnection == null) {
 str += "FAILED";
 } else {
 str += "EXISTS";
 }

 return str;
}
	
Code	commentary	
This	is	used	for	indicating	the	state	of	the	connection	field	to	the	user.	It	informs	the	user	
whether	or	not	the	connection	has	been	successful.	In	either	case,	it	will	be	useful	to	send	
the	values	of	the	PASSWORD,	USERNAME	and	TARGET_URL	to	the	console,	along	with	an	
associated	state	concerning	the	connection	<EXISTS	or	FAILED>	depending	on	the	state.	
	
9.5.5 The	main()	and	getter	methods	
// Getters

public Connection getConnnection() {
 return connnection;
}

// Local test driver
public static void main(String[] args) {

 MySqlCommunicator comm = new MySqlCommunicator();
 Connection conn = comm.getConnnection();

 if(conn != null) {
 System.out.println("conn is ready to use");
 }

	

	 10	

WEEK	9:	TITLE	

}

} // end of class

	
Code	commentary	
The	main	method	 creates	 a	MySqlCommunicator object	 named	 comm.	 Then,	 the	 local	
Connection	 variable	 conn	 is	 set	 to	 the	 value	 of	 the	 connection	 field	 in	 the	
MySqlCommunicator class,	through	a	call	to	its	getter	method	getConnnection().	
	
Notice,	if	all	was	well	with	the	creation	of	that	connection	then	conn	is	ready	to	be	used.	
	

With	code	supplied	(correct)	 Incorrect	password	(passwor)	
MySqlCommunicator ...
...Using TARGET_URL:
<jdbc:mysql://localhost?&useSSL=false&/>
...Using USERNAME: <root>
...Using PASSWORD: <password>
EXISTS
conn is ready to use	

at java.sql.DriverManager….
at ac.uk.gcu.data.db.rbd.co…
at ac.uk.gcu.data.db.rbd….
MySqlCommunicator ...
...Using TARGET_URL:
<jdbc:mysql://localhost?&useSSL=false&/>
...Using USERNAME: <roo>
...Using PASSWORD: <passwor>
FAILED	

Table	2:	MySqlCommunicator	program	outputs.	

9.5.6 Summary		
In	summary,	the	MySqlCommunicator.java	file	encodes	very	simple	functionality.	It	provides	
static	strings	to	connect	to	a	database,	and	stores	the	value	of	the	connection	for	later	use.	
	
The	DatabaseMySqlConnectionApp example	uses	this	class	to	establish	a	connection	and	
then	runs	some	queries	on	a	database	selected	from	the	server.	We	will	 look	at	 this	class	
shortly,	but	first	we	will	look	at	another	class	that	DatabaseMySqlConnectionApp will	use	
to	specify	the	said	queries.
	
9.6 Simple	query	set	class:	CodepointQuerySet.java	
9.6.1 Class	fields	
	
/**
 * The upper limit of the number of rows returned from the database
 */
 private int limit = 10;

/**
 * A list of String MySQL queries
 */
 private ArrayList<String> queries;

/**
 * The name of the database this class has been coded for
 */
 private String dbname = "codepoint_db";	

	
Code	commentary	

	

	 11	

WEEK	9:	TITLE	

This	code	is	simply	the	declarationsof	fields.	The	limit	is	given	a	default	value	of	10	and	the	
dbname	a	value	of	“codepoint_db”.	The	latter	is	the	name	of	the	database	on	the	server	
and	 the	 queries	 that	 are	 specified	 in	 this	 class	 are	 designed	 to	 work	 with	 this	
database/schema.		
	
9.6.2 Constructor	methods	
	
/**
 *
 * @param lim
 */
public CodepointQuerySet(int lim) {

 limit = lim;

 queries = createQuerySet(lim);
}

/**
 *
 */
public CodepointQuerySet() {

 queries = createQuerySet(limit);
}
	
Code	commentary	
Two	constructors	are	given.	This	first	takes	as	a	parameter	a	limit	on	the	number	of	rows	
in	 question,	 storing	 this	 to	 the	 limit	 field	 value	 as	 appropriate,	 whereas	 the	 second	
constructor	will	not	change	the	default	limit	value	of	10.	Both	constructors	allocate	a	list	of	
String	types	to	the	field	queries	via	the	call	to	createQuerySet(int).	
	
	
9.6.3 The	main	()	and	getter	methods	
	
// Getters

public ArrayList<String> getQueries() {
 return queries;
}

public String getQuery(int i) {
 return queries.get(i);
}

public String getDbName() {
 return dbname;
}

// Main method
public static void main(String[] args) throws SQLException {

 CodepointQuerySet qs = new CodepointQuerySet();
 System.out.println(qs.toString());
}
	

	

	 12	

WEEK	9:	TITLE	

Code	commentary	
The	main	method	simply	creates	a	CodepointQuerySet and	prints	the	content	to	the	console	
(see	Table	3,	below).	This	content	is	available	to	other	classes	through	calls	to	the	getter	
methods	getQueries()	and	getQuery(int i), as	is	the	value	of	the	dbname	field	via	a	call	to	
the	getter	method	getDbName().	

Looking	at	the	code	output	in	Table	3,	below,	gives	you	a	good	indication	of	the	Strings,	which	
are	loaded	into	the	queries	field	from	the	createQueriesSet()	method.	We	will,	therefore,	not	
explain	this	method	(feel	free	to	look	a	the	codes	provided	at	this	point,	however).	

Queries held in class <ac.uk.gcu.query.CodepointQuerySet> would appear as pure sql as
follows:
SELECT Postcode FROM codepoint_data LIMIT 10
SELECT Eastings FROM codepoint_data LIMIT 10
SELECT Eastings, Northings FROM codepoint_data LIMIT 10
SELECT Postcode, Eastings, Northings FROM codepoint_data LIMIT 10

Table	3:	CodepointQuerySet:	program	output.	

9.6.4 Summary	
Therefore,	the	class	CodepointQuerySet	is	also	very	simple.	It	creates	a	simple	set	of	4	query	
strings,	held	as	a	list.	These	queries	are	accessible	to	other	classes	through	its	getter	methods.	
	
9.7 Querying	RDB	from	java:	MySqlApp.java	
During	the	previous	two	sections	we	have	spent	time	to	explain	some	fairly	simple	classes.	
Now	you	understand	these	classes,	you	will	be	able	to	understand	the	following	codes,	which	
are	stored	in	the	MySqlApp.	The	codes	will:		
	

• connect	to	a	database	from	java,	exploiting	the	MySqlCommunicator	class;	
• create	a	set	of	queries,	using	CodepointQuerySet	class;	
• Run	the	queries	on	the	database	and;	
• display	the	output.	

	
9.7.1 Class	fields		

/**
 * The connection to a MySQL database using the MySqlCommunicator class
 */
Connection connection;

/**
 * The statement object used to execute a query
 */
Statement statement;

/**
 * The result of a given query
 */
ResultSet result;

/**
 * An example set of queries to execute
 */
CodepointQuerySet queries;

	

	 13	

WEEK	9:	TITLE	

	
Code	commentary	
The	connection	fields	is	of	a	type	Connection.	You	have	already	seen	this	code	in	the.	The	
statement	field	is	a	type	of	Statement	and	the	result	field	is	a	type	of	ResultSet.	Each	of	
these	fields	therefore	needs	to	‘see’	the	respective	Connection,	ResultSet	and	Statement	
classes,	so	these,	contained	in	the	java.sql*	package	are	imported	(check	the	source	code).		
	
The	other	field	is	a	type	of	class	that	we	introduced	above,	the	CodepointQuerySet	and	you	
know	the	functionality	this	class	implements	already.		
	
9.7.2 Constructor	
/**
 *
 * @throws SQLException
 */
public MySqlApp() throws SQLException {
 connnection = new MySqlCommunicator().getConnnection();
 statement = connnection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 queries = new CodepointQuerySet();
}

	
Code	commentary	
In	 the	 constructor,	 the	 first	 thing	we	do	 is	 assign	 a	 connection.	 All	 of	 the	 logic	 for	 this	
assignment	is	contained	in	the	MySqlCommunicator	class,	which	we	have	described	above.	
Remember	that	connection	field	of	the	MySqlCommunicator	is	assigned	in	the	constructor,	
so	we	can	access	the	value	of	MySqlCommunicator.connection	by	 	calling	the	appropriate	
getter.	This	is	what	the	line:	
	
	
connnection = new MySqlCommunicator().getConnnection();	
	
…does.	
	
The	statement	is	created	using	the	connnection instance	by	calling	its	createStatement(int,
int)	method	whose	parameters	determine	the	properties	of	the	statement	created:		

• TYPE_SCROLL_INSENSITIVE:	The	cursor	can	scroll	forward	and	backward,	and	the	result	
set	is	not	sensitive	to	changes	made	by	others	to	the	database	that	occur	after	the	
result	set	was	created.	

	
• CONCUR_READ_ONLY:	Creates	a	read-only	result	set.		

	
These	properties	will	allow	us	to	easily	display	some	information	from	the	database	to	the	
console.	
	
	

	

	 14	

WEEK	9:	TITLE	

9.7.3 The	runQueries()	method	
	
/**
 * Run a set of queries
 *
 * @throws SQLException
 */
public void runQueries() throws SQLException {

 // Use the codepoint_db schema
 // ---------------------------
 String query = "USE " + queries.getDbName();
 System.out.println("Running query: " + query);
 statement.executeQuery(query); // no results from this query.

 // Run a CodepointQuerySet set of queries
 // --------------------------------------

 for (int i = 0; i < queries.getQueries().size(); i++) {
 query = queries.getQuery(i);
 System.out.println("Running query: " + query);
 result = statement.executeQuery(query);
 Codepoint.displayData(result);
 }
}

	
Code	commentary	
The	common	pattern	of	code	in	this	method	is	to:	

• Specify	query	in	local	String	query.	
• Print	the	query to	the	console.	

	
This	is	true	of	the	code	above	and	within	the	for	loop.	The	code	above	the	for	loop	uses	
queries	fields	to	access	the	name	of	the	database	those	queries	are	relevant	to,	then	runs	
the	query.	Similarly,	a	query	is	set	for	each	iteration	of	the	for	loop,	but	this	time	the	query	
will	contain	results.	We	therefore	assign	these	results	to	the	result field	and	then:	

• Print	the	result	of	the	query	using	the	Codepoint.displayData(String) method.	
	
	
9.7.4 tidyUp()	
	
/**
 * Close the fields that, which are currently in a state capable to affect
 * the state of the database.
 *
 * @throws SQLException
 */
public void tidyUp() throws SQLException {

 if (result != null) {
 result.close();
 }
 if (statement != null) {
 statement.close();
 }
 if (connnection != null) {
 connnection.close();

	

	 15	

WEEK	9:	TITLE	

 }
}

	
Code	commentary	
When	opening	connection	to	a	database,	it	is	always	important	to	close	the	resources,	such	
that	 the	database	 is	not	 still	open	 to	being	communicated	with	after	your	program	has	
exited.	The	way	this	 is	done	is	to	close	the	resources	 in	the	reverse	order	 in	which	they	
were	opened.	In	the	constructor	we	opened	a	connection,	then	created	a	statement.	Then,	
in	the	runQueries(), method	we	loaded	the	results	fields.	We	therefore	close	them	in	
the	opposite	order.			
	
9.7.5 The	main()	method	
	
// Main method
public static void main(String[] args) throws SQLException {

 MySqlApp app = new MySqlApp();
 app.runQueries();
 app.tidyUp();
}

	
Code	commentary	
The	main()	method	is	nice	and	neat.	We	Create	a	the	application,	app	,	which	is	a	MySqlApp,	
type.	Then	app.runQueries() is	the	line	that	results	in	output	to	the	console,	before	we	run	
tidyUp()	as	also	explained.	
	
The	console	output	is	displayed	in	Table	3.	
	

	
MySqlCommunicator ...
...Using TARGET_URL: <jdbc:mysql://localhost?&useSSL=false&/>
...Using USERNAME: <root>
...Using PASSWORD: <password>
EXISTS
Running query: USE codepoint_db
Running query: SELECT Postcode FROM codepoint_data LIMIT 10
 Postcode
1: AB101AA
2: AB101AB
3: AB101AF
4: AB101AG
5: AB101AH
6: AB101AL
7: AB101AN
8: AB101AP
9: AB101AQ
10: AB101AR

Running query: SELECT Eastings FROM codepoint_data LIMIT 10
 Eastings
1: 394251
2: 394232
3: 394181

	

	 16	

WEEK	9:	TITLE	

4: 394251
5: 394371
6: 394326
7: 394367
8: 394291
9: 394371
10: 394371

Running query: SELECT Eastings, Northings FROM codepoint_data LIMIT 10
 Eastings|Northings
1: 394251|806376
2: 394232|806470
3: 394181|806429
4: 394251|806376
5: 394371|806359
6: 394326|806522
7: 394367|806542
8: 394291|806424
9: 394371|806359
10: 394371|806359

Running query: SELECT Postcode, Eastings, Northings FROM codepoint_data LIMIT 10
 Postcode|Eastings|Northings
1: AB101AA|394251|806376
2: AB101AB|394232|806470
3: AB101AF|394181|806429
4: AB101AG|394251|806376
5: AB101AH|394371|806359
6: AB101AL|394326|806522
7: AB101AN|394367|806542
8: AB101AP|394291|806424
9: AB101AQ|394371|806359
10: AB101AR|394371|806359

Figure	3:	Console	output	from	MySqlApp.java	

	
9.8 Summary	

• We	learned	about	java	programming	in	relation	to	MySQL	queries.		
	

• We	highlighted	the	important	features	of	a	typical	Java	project.	
	

• we	then	covered	the	steps	involved	in	installing	the	MySQL	connector.	
	

• Java	code	examples	were	presented	which	show	a	simple	application	to	run	a	number	
of	MySQL	queries	on	an	existing	database	from	java.	

	
• The	intention	is	to	help	provide	you	with	basic	 java	skills	to	allow	you	to	use	these	

technologies.	
	

~~~~~	


