
	

	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

	
	
	
	
	
	

Object-orientated	DB	and	persistence	
	
	
In	this	week,	we	will	cover	the	following	topics:	

• Object	orientated	approaches	to	databases.	
• Brief	relevance	of	certain	object-orientated	concepts	(classes	and	objects).	
• Critique	of	relational	‘objects’	or	entities	(object	fragmentation).	
• Persistence	and	maintenance	of	object-orientated	code	for	client-side	programming	

using	JDBC	within	a	Hibernate	framework	context.	
	
…	and	will	result	in	the	following	learning	outcomes	

• Understanding	 of	 the	 relevance	 of	 object-orientation	 and	 problems	 with	 database	
persistence.	

• Appreciation	of	relational	entities	as	‘objects’	from	a	java	developer’s	perspective.	
• Understanding	of	how	to	access	relational	databases	without	direct	use	of	embedded	

queries,	but	by	using	objects.	
	
	
	 	

	

	 2	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

Table	of	Contents	
10.1	 Object	orientated	concepts	ch	2	paterson	..	3	

10.1.1	 Objects	...	3	
10.1.2	 Classes	..	3	
10.1.3	 Inheritance	...	4	

10.2	 Object	oriented	databases	...	4	
10.3	 Fragmentation	of	objects	into	relational	entities	..	6	
10.4	 Persistence	using	hibernate	...	8	

10.4.1	 What	is	XML	...	9	
10.4.2	 Hibernate	object-relational	mappings	using	XML	..	9	
10.4.3	 Summary	..	13	

10.5	 Summary	...	13	
	
	
Figure	1:	classes	and	objects	..	3	
Figure	2:	Inheritance	diagram.	...	4	
Figure	3:	Publication	class	types	v	associated	relational	form.	..	6	
Figure	4:	the	whole	cat	and	the	fragmented	cat	..	7	
Figure	5:	Basic	latex	mark-up.	..	9	
Figure	6:	Basic	html	mark-up	..	9	
Figure	7:	Client-hibernate-db	architecture	..	11	
	
	 	

	

	 3	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

10.1 Object	orientated	concepts	ch	2	paterson	
10.1.1 Objects	
Object-oriented	 programming	 is	 an	 approach	 to	 computer	 programming	 based	 on	 the	
concept	of	an	 ‘object’.	An	object,	 like	an	entity,	 is	made	up	of	separate	data	 types.	These	
types,	 like	 entities,	 can	 be	 primitive	 (integer,	 floating	 point,	 string	 etc.).	 However,	 unlike	
entities,	objects	can	also	be	made	up	of	other	objects,	which,	in	turn,	are	typically	constituted	
from	various	primitive	data	types	and	other	objects.	Therefore,	the	ability	to	store	objects	
inside	 other	 objects,	 in	 addition	 to	 having	 primitive	 datatypes,	 is	 for	 our	 purposes	 a	 key	
distinction	between	an	object	and	what	we	have	been	referring	to	as	an	entity.	
	
Furthermore,	while	entities	are	entirely	made	up	of	data,	and	are	the	target	of	programming	
code,	objects	that	contain	data	and	other	objects	also	have	methods,	which	provide	objects	
with	behavior.	As	such,	objects	are	explicitly	defined	by	using	computer	programming	code	
typically	implemented	using	object-orientated	computer	programming	languages	(C++,	Java,	
C#	etc.).	Entities,	on	the	other	hand,	exist	inside	a	relational	database,	which	is	to	be	accessed	
via	queries,	either	directly	using	MySQL,	for	example,	or	by	embedding	MySQL	within	an	a	
programming	language.	Relational	database	entities	are	therefore	relatively	straightforward	
when	compared	with	objects,	which	can	take	on	arbitrary	complexity.	
	
Object-orientated	 languages	 therefore	 support	 the	 development	 of	 more	 complexity.	 To	
understand	how	object-orientated	languages	provide	this	support,	we	need	to	understand	
classes.		
	
10.1.2 Classes		
Classes	provide	a	kind	of	general	blueprint.	Using	this	blueprint,	objects	can	be	created	 in	
computer	memory,	which	are	 ‘decorated’	with	specialized	 field	values	and	behaviors,	and	
exist	 independently	 in	 memory	 from	 other	 objects	 created	 using	 the	 same	 class.	 This	 is	
illustrated	in	Figure	1.	
	

	
Figure	1:	classes	and	objects	

src

project-folder

main

java

package

package.MyClass.java

‘Compile’

package.MyClass.class

RAM
(behaviour)

mine
me

a_class

BinaryClass definition

Instantiation
(specialisation)

Build

	

	 4	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

Within	your	 java	project,	 and	within	a	 specific	package,	 you	write	 the	blueprint,	 the	 class	
definition	(e.g.,	MyClass.java)	in	the	.java	file.	Then,	when	this	compiles	it	produces	another	
file,	which	 is	 simply	a	binary	equivalent	 (a	machine-readable	version)	of	 the	 .java	version.	
When	a	program	is	launched,	the	MyClass	representation	can	then	be	instantiated,	which	is	
the	point	at	which	the	general	definition	of	the	class	is	specialized,	depending	on	the	data	and	
object	values.	This	produces	separate	classes	in	memory,	which	may	have	unique	behaviors,	
being	 based	 on	 different	 field	 values.	 Notice	 the	 difference	with	 entities.	 Entities	 have	 a	
number	properties,	which	are	unique	to	that	entity.	While	this	is	a	requirement	for	an	entity,	
such	that	they	can	be	uniquely	accessed,	the	uniqueness	of	a	class	is	not	related	to	its	data,	
but	rather	is	related	to	its	unique	place	in	memory.	In	fact,	instances	of	classes	are	typically	
specialized,	but	this	is	by	no	means	a	requirement.	
	
There	are	quite	a	few	technical	points	here,	but	from	a	pragmatic	point	of	view	the	key	points	
is	 that	 relational	 database	 entities	 are	 quite	 different	 from	 object	 orientated	 software	
objects.	We	will	return	to	some	the	differences	below	
	
10.1.3 Inheritance	
A	 key	 feature	 object	 orientated	 design	 is	 that	 of	 the	 inheritance.	 In	 everyday	 usage,	
inheritance	means	that	the	child	of	a	given	parent	will	inherit	certain	features;	the	child	of	a	
parent	with	‘brown-eyed’	genes	is	also	likely	to	have	brown	eyes;	parents	with	dark	hair	are	
likely	to	have	offspring	with	dark	hair	etc.	
	
In	object-orientated	software	design,	the	notion	of	inheritance	is	similar.	The	parent	class	is	
often	 referred	 to	 as	 the	 ‘superclass’.	 A	 ‘subclass’	 can	 then	 inherit	 properties	 (field	
data/objects	etc.)	from	the	superclass.	This	capacity	is	often	depicted	in	UML,	as	indicated	in	
Figure	2.	
	

	
Figure	2:	Inheritance	diagram.	

	
10.2 Object	oriented	databases	
With	these	basic	definitions	concerning	object-orientation	in	place,	we	can	draw	on	these	to	
further	think	about	how	relational	databases	differ	from	object-orientated	databases.	
	
As	we	noted	earlier	on	in	the	course,	relational	databases	are	by	far	the	most	commonly	used	
database	paradigm.	We	have	explained	that	relational	databases	are	used	to	store	attributes	
about	given	entities.	A	key	feature	of	the	relational	approach,	and	the	SQL	 languages	that	
support	it,	is	that	the	units	of	storage	are	primitive	datatypes.	For	example,	integer	numbers,	
floating	 point	 numbers,	 strings	 etc.	 are	 used	 to	 declare	 the	 values	 of	 the	 attributes	 that	

Superclass

Subclass Child

Hair = dark
EyeColour = brown

Parent

	

	 5	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

constitute	 entities.	While	 it	 is	 true	 that	different	 kinds	of	 data	 types	have	been	added	 to	
implementations	of	SQL,	over	time,	the	basic	point	is	that	the	units	of	storage	are	relatively	
simple.	
	
By	way	of	illustration,	let	us	take	the	perspective	of	a	publisher.	They	are	interested	in	storing	
different	 types	of	publication	 in	 their	database,	and	we	will	consider	 ‘Journal	articles’	and	
‘books’	as	examples.	For	a	journal	article	entity,	we	will	design	a	table	to	store	appropriate	
attributes;	author,	title,	journal,	year,	volume,	number,	pages,	month.	Likewise,	books	have	
the	 following	 attributes;	 author,	 editor,	 title,	 publisher,	 year,	 volume,	 series,	 address,	 in	
addition.	
	
Therefore,	 for	different	 kinds	of	publications,	breaking	up	 the	entities/objects	 in	question	
seems	 a	 natural	 thing	 to	 do.	 However,	 the	 data	model	 itself	 harbors	 is	 a	 high	 degree	 of	
specificity	in	terms	of	the	entities,	when	in	fact	it	is	possible	to	exploit	some	of	the	generality	
implied	in	the	data.	In	other	words,	each	entity,	article	and	book,	share	common	attributes.	
These	common	attributes	are;	author,	title,	volume.		
	
The	 original	 relational	 database	 design	 of	 the	 tables	 is	 in	 one	 sense	 quite	 verbose;	 the	
common	attributes	are	represented	more	than	once	in	the	schema.	From	a	design	point	of	
view,	 this	 feels	 like	 overelaboration,	which	 should	 be	 simplified.	Of	 course,	 the	 relational	
approach	does	not	support	very	well	the	need	to	represent	different	entities	with	a	minimal	
schema.	In	other	words,	relational	database	designs	are	quite	poor	at	exploiting	the	generality	
available	within	a	given	data	domain.	
	
In	 the	 previous	 section,	 we	 introduce	 some	 object-oriented	 concepts	 which	 we	will	 now	
exploit	to	represent	the	data	more	effectively.	Specifically,	the	object	orientated	capacity	for	
inheritance	can	be	used	to	simplify	design	by	exploiting	generalities	available	in	the	data.	
To	do	this,	we	introduce	a	level	of	abstraction	above	our	existing	publication	types	of	article	
and	book.	We	will	 call	 this	 additional	 class	 a	 ‘Publication’	 type.	 The	 publication	 type	will	
specify	the	common	(author,	title,	year,	volume)	fields.	The	classes	article	and	book	will	inherit	
these	fields	from	the	publication	class	while,	at	the	same	time,	specifying	additional	features	
relevant	according	to	the	subclass;	 remember,	 the	classes	 ‘article’	and	 ‘book’	subclass	 the	
‘publication’	class,	which	can	therefore	be	considered	the	superclass.	Using	UML	inheritance	
diagrams,	we	can	easily	visualize	these	relationships,	as	presented	in	Figure	3	and	contrast	
this	approach	to	the	relational	one.	
	

	

	 6	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

	
Figure	3:	Publication	class	types	v	associated	relational	form.	

	
In	example	just	given,	the	object	orientated	schema	contains	fewer	explicit	fields;	from	this	
point	of	view	it	is	simpler.	As	we	have	discussed	previously	in	the	course,	thinking	of	ways	to	
simplify	 the	 schema	 can	 be	 highly	 advantageous.	 You	 might	 argue	 that	 the	 relational	
approach	can	simplify	the	number	of	fields	by	placing	them	in	additional	tables.	However,	this	
requires	the	creation	of	these	tables	and	the	cross-linking	between	tables.	Generally,	when	
the	domain	data	and	the	related	model	become	highly	complex,	object	orientated	databases	
become	more	desirable.	
	
10.3 Fragmentation	of	objects	into	relational	entities	
Furthermore,	 object-oriented	 databases	 are	 not	 only	 useful	 from	 the	 point	 of	 view	 of	
simplifying	 design.	 Object	 orientated	 databases	 are	 inherently	 more	 capable	 of	 storing	
complex	objects,	compared	with	relational	databases.	Relational	databases	must	break	up	
object	complexity	into	primitive	components	whereas	o-o	databases	can	store	objects	‘as	a	
whole’.	
	
Four	example,	let	us	presume	that	we	have	an	object	in	the	real-world	such	as	the	cat.	The	
aim	is	to	store	this	object	within	a	database.	Object-oriented	databases	are,	as	they	‘say	on	
the	tin’,	orientated	towards	objects.	As	such,	the	cat	object	could	be	stored	 in	 its	entirety	
within	the	database	as	a	single	object.	On	the	other	hand,	in	a	relational	database,	to	access	
the	‘whole	cat’	we	would	either	store	all	its	features	within	a	single	attribute,	which	is	not	a	
good	idea,	or	access	each	separate	attribute	at	the	same	time	to	return	all	the	information	
concerning	the	given	cat.	As	we	have	seen	previously	 in	 the	course,	storing	 the	entire	cat	
within	 a	 single	 field	 is	 an	unworkable	 solution	 in	 the	 context	 of	 relational	 databases;	 this	
would	render	the	task	of	querying	the	cat’s	 individual	 features	 impossible.	 In	Figure	4,	we	
present	the	view	of	the	cat	from	object-orientated	and	relational	points	of	view.	
	

author
year
title
volume

Publication

journal
number
pages
month

Journal
editor
publisher
series
address

Book

Book

address

author

series

editor

title

year

publisher

Object Orientated ‘Schema’ Relational ‘Schema’ (duplication)

Journal

month

author

pages

journal

title

year

number

volume

volume

	

	 7	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

	
Figure	4:	the	whole	cat	and	the	fragmented	cat	

	
The	key	point	here	is	that	when	working	with	object	orientated	languages,	such	as	Java,	the	
relational	database	model	does	not	provide	the	best	functionality	for	programmers.	In	fact,	
it	is	quite	awkward.	Many	client-server	applications	use	a	relational	database	to	store	data	
and	an	object	orientated	programming	language	to	develop	the	application.	Consequently,	
to	enable	the	persistence	of	objects	between	application	 launches,	objects	created	during	
runtime	need	to	be	mapped	to	tables	in	the	said	database,	then	tables	need	to	be	mapped	
back	to	the	objects	when	the	application	is	relaunched.	As	we	discovered,	when	data	objects	
accessed	this	involves	the	embedding	one	language	(SQL)	within	another	(Java).	
	
Generally,	the	whole	process	is	considered	quite	disjointed	from	the	point	of	view	of	an	object	
orientated	 programmer,	 and	 the	 frustration	 that	 has	 led	 to	 the	 development	 of	 object-
orientated	databases	is	nicely	captured	by	Paterson:	
	

“Object	 orientation	 models	 and	 encapsulates	 the	 entities	 in a	 domain	 and	 the	
relationships	between	them,	while	relational	databases	aim	to	make	data	independent	
of	 the	 applications	 that	 use	 them,	 thereby	 minimizing	 duplication	 of	 data	 and	
providing	flexibility	in	accessing	that	data…	
	
As	a	result,	saving	the	state	of	a	single	object	may	involve	splitting	the	values	of	its	
attributes	between	two	or	more	relational	tables.	The	difference	between	the	object	
and	relational	views	of	data	is	often	known	as	the	impedance	mismatch.	It’s	a	bit	like	
taking	a	square	peg,	chopping	it	up,	and	fitting	the	little	pieces	into	a	bunch	of	round	
holes.”	

(Paterson,	2006)	–	The	Definitive	Guide	to	db4o	

	
Continuing	with	the	cat	example,	there	is	another	sense	in	which	the	object	might	be	further	
fragmented	when	 represented	within	 relational	 database.	 For	 example,	 each	 cat	 has	 fur,	
which	might	be	represented	as	a	single	attribute	within	a	Cat	table.	We	might,	for	instance,	
record	 the	 colour	 of	 the	 fur	within	 this	 attribute.	However,	 fur	 can	 have	 other	 attributes	
associated	with	it	(length,	softness	etc.).	In	a	relational	database,	these	additional	properties	

Cat - whole object Cat - parts

	

	 8	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

might	be	stored	in	a	separate	table	named	Cat_Fur,	and	the	original	fur	attribute	might	now	
link	to	the	Cat_Fur	table.	When	querying	the	database	from	the	client	application,	we	would,	
under	such	circumstances,	need	to	construct	more	complicated	queries,	 like	 joining	tables	
together.	 As	 the	 domain	 becomes	 more	 complicated,	 the	 joining	 of	 tables	 may	 become	
cumbersome	 programmatically,	 not	 to	 mention	 computationally	 expensive.	 For	 these	
reasons,	 while	 it	 is	 possible	 to	 develop	 client-side	 applications,	 and	 use	 our	 relational	
database	to	capture	all	the	attributes,	it	is	not	necessarily	desirable.	
	
Alternatively,	the	idea	behind	an	object	orientated	database	is	to	avoid	such	fragmentation	
of	objects	and	allow	objects	to	be	stored	‘inside’	other	objects	using	pointers.	In	this	way,	the	
entire	cat	can	be	queried	before	specific	information	about	the	cat	is	used	in	the	client	side	
program.	 This	 reduces	 the	 tedium	 of	 having	 to	 record	 and	 reconstruct	 objects	 from	 the	
fragmented	parts/attributes	(see	Figure	4).	
	
However,	relational	databases	remain	useful	for:	
	

• Storing	 straightforward,	 primitive	 datatypes.	 Many	 applications	 still	 require	
interaction	with	very	simple	data,	not	necessarily	complicated	objects,	and	in	such	
situations,	 the	 relational	 database	 remains	 a	 strong	 choice.	Where	 a	 data-driven	
application	relies	on	such	data,	there	would	be	little	point	in	using	object-oriented	
database.	So,	even	though	object	orientated	databases	merged	from	the	concern	that	
relational	databases	working	adequate,	this	is	only	true	incident	situations.	

	
and…	
	

• From	a	purely	pragmatic	point	of	view,	because	object-oriented	databases	our	more	
recent	developments,	compared	to	relational	databases,	there	are	fewer	standards.	
Therefore,	when	one	type	of	object-oriented	databases	adopted	for	development,	it	
is	 more	 likely	 that	 the	 code	 gets	 ‘tied’	 to	 the	 specific	 application	 programming	
interface.		Unfortunately,	with	fewer	standards	changing	between	different	API	can	
result	in	a	large	degree	of	code	rewriting,	which	costs	time	and	therefore	money.	

	
• Object	orientated	databases	are	not	underpinned	by	any	formal	mathematical	logic,	

unlike	 relational	 databases.	 Object	 orientated	 databases	 do	 not	 therefore	 benefit	
from	the	power	of	mathematical	analysis.	

	
Therefore,	 as	 is	 often	 the	 case	 in	 software	 engineering,	 the	 choice	 over	which	 is	 kind	 of	
database	to	use	very	much	depends	on	the	context…	there	is	no	absolute	‘right’	or	‘wrong’	
database	choice.	
	
10.4 Persistence	using	hibernate	
Hibernate	 uses	 XML	 so,	 and	 you	will	 be	 learning	 how	 to	 implement	mappings	 from	 java	
objects	to	relational	storage.	So,	llet	us	start	by	briefly	reminding	ourselves	about	what	XML	
is.		
	

	

	 9	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

10.4.1 What	is	XML	
Before	answering	this	question,	it	is	useful	to	ask	what	the	ML	part	of	XML	stands	for.	It	stands	
for	mark-up	language.	The	‘X’	stands	for	‘extensible’.	
	
When	you	begin	to	learn	mark-up	language,	a	good	way	to	start	is	by	looking	at	some	basic	
examples	that	are	visual.	One	such	mark-up	language	is	Latex,	a	typesetting	mark-up	language	
which	is	interpreted/compiled	into	a	visual	rendering,	not	to	a	browser	but	to	a	document	
type,	like	.pdf.	So,	let	us	look	at	a	basic	document	in	Figure	5.	
	

	
Figure	5:	Basic	latex	mark-up.	

In	this	example,	we	use	the	Latex	mark-up	language	to	typeset	a	document.	The	text	is	marked	
up	 by	 the	 commands	 (\begin	 \end,	 \section	 etc.).	When	 such	 a	 document	 contains	 valid	
sysntax	 it	 can	 be	 compiled	 by	 a	 latext	 program,	 such	 as	 pdflatex,	 which	 creates	 the	
document.pdf.	
	
The	same	essential	process	happens	when	we	can	an	index.html	file.		In	Figure	6,	we	present	
a	very	basic	file,	which	is	rendered	in	a	browswer	as	illustrated.	
	

	
Figure	6:	Basic	html	mark-up	

	
	
10.4.2 Hibernate	object-relational	mappings	using	XML	
Now	we	have	briefly	seen	what	mark-up	language	is,	using	examples	related	to	the	mark-up	
of	text	for	visual	rendering	in	two	separate	cases,	we	will	go	on	to	look	at	an	example	of	XML	
usage	 that	 is	 specifically	 relevant	 to	 our	 course,	 especially	 in	 relation	 to	 some	 of	 the	
observations	made	 in	 this	week’s	materials	 (object-orientation	v	 relational),	and	when	we	
connected	to	a	MySQL	relational	database	using	the	o-o	programming	language	of	Java,	in	
week	TODO.	Criticisms	we	have	made	about	relational	databases	are	that,	from	the	point	of	
view	of	an	object-orientated	application,	they:	

document.tex document.pdf

‘compile’ and ‘render’

index.html

‘compile’ and ‘render’

	

	 10	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

	
• tend	towards	the	fragmentation	of	objects,	and;	
	
• can	make	the	client-side	code	dependent	on	the	use	of	specific	SQL	syntax.	

	
	
“is	an	object-relational	mapping	framework	for	the	Java	language.	It	provides	a	framework	
for	mapping	 an	 object-oriented	 domain	model	 to	 a	 relational	 database.	 Hibernate	 solves	
object-relational	 impedance	 mismatch	 problems	 by	 replacing	 direct,	 persistent	 database	
accesses	with	high-level	object	handling	functions.”	

Wikkipedia	
	
In	 other	 words,	 object	 orientated	 developers,	 e.g.,	 Java	 programmers,	 like	 to	 work	 with	
objects,	 or	 in	 java-speak	 plain	 old	 java	 objects	 (POJOs).	 We	 will	 now	 briefly	 cover	 the	
Hibernate	framework	and	explain	how	Hibernate	allows	for	the	removal	of	SQL	syntax	from	
java	code,	by	mapping	from	POJOs	to	database	entities/tables.		
	
Note	 that,	 although	Hibernate	 is	 not	 an	object	orientated	database,	 it	 allows	us	 to	work-
around	 some	 of	 the	 disadvantages	 of	 accessing	 relational	 databases	 directly	 (without	 a	
mapping)	 from	 an	 object	 orientated	 language	 like	 Java.	 Therefore,	 Hibernate	 is	 quite	 a	
popular	choice	for	Java	development	teams	who	work	in	an	object-orientated	paradigm.	
	
The	 idea	 of	 Hibernate	 is	 to	 provide	 functionality	 for	 intelligent	 handling	 of	 the	 interface	
between	client-side	code	and	the	storage	of	object	data.	When	a	program	is	closed,	the	states	
of	objects	are	still	written	to	the	database	in	the	same	way,	but	how	this	is	achieved	is	more	
sensible	from	a	Java	developer	point	of	view;	querying	of	data	is	more	straightforward,	code	
is	more	decoupled	from	changes	 in	the	database	and	 is	handled	using	XML	mappings	and	
configurations.	There	are	other	advantages	to	using	Hibernate,	but	we	will	focus	on	these.		
	

	

	 11	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

	
Figure	7:	Client-hibernate-db	architecture	

	
An	illustrative	view	of	the	overall	client-sql-hibernate-database	architecture	is	presented	in	
Figure	7.	When	a	client-side	program	is	executed,	its	objects	are	created,	say	for	the	first	time.	
When	the	program	closes,	 the	objects’	data	needs	 to	be	 recorded,	Data	can	be	stored	by	
querying	the	database	through	the	Hibernate	framework,	depending	on	the	connector	being	
used,	and	the	design	of	the	objects	in	question.	These	aspects	are	defined	in	the	Hibernate	
configuration	and	object	mapping	files.		
	

• Hibernate	configuration:	we	will	see,	in	our	practical	sessions	how	to	configure:	
o the	SQL	dialect.	
o the	SQL	driver	(e.g.,	JDBC	type).	
o The	connection	url,	username	and	password.	
o Console	sql	output	options.	
o Mapping	resources,	i.e.,	Hibernate	mapping	files.	

	
• Hibernate	mapping:	these	are	defined	inside	mapping	files	which:	

o Have	 the	 file	 name	 format	 <ClassName.hbm.xml>.	 For	 example,	 the	 class	
declaration	in	<Customer.java>	will	be	mapped	inside	a	mapping	file	named	
<Customer.hbm.xml>.	

	
The	 following	 xml	 file	 would	 be	 stored	 inside	 your	 java	 project	 with	 the	 name	
<Person.hbm.xml>.	Take	a	look	at	the	xml	content:	
	

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

HIBERNATE FRAMEWORK

class pojo

pojo

pojo

pojo
Pe

rs
is

te
nc

e
of

 s
ta

te
s

etc.

MySQL

etc.

SQL Version

Database

Data

Data

Client
Application

- hibernate.cfg.xml
- ClassName.hbm.xml

	

	 12	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

<hibernate-mapping>
 <class name="Person" table="PERSON">
 <meta attribute="class-description">
 This class contains the employee detail.
 </meta>
 <id name="id" type="int" column="id">
 <generator class="native"/>
 </id>
 <property name="name" column="FirstName" type="string"/> </class>
</hibernate-mapping>
	

	
Importantly,	Hibernate	expects	 that	 the	related	 java	class	will	be	a	POJO	with	getters	and	
setters.	Therefore,	the	xml,	above,	would	be	used	to	allow	Hibernate	to	communicate	with	
the	database	as	if	communicating	with	a	POJO	declared	in	Person.java:	
	
	

public class Person {

 private int id;

 private String name;

 public Person() {}

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}
	

	
	
For	 example.	 In	 order,	 to	 create	 a	 person	 in	 our	 database	 through	 java,	without	 any	 SQL	
commands,	we	could	use	code	in	the	following	form	
	
try {
 tx = session.beginTransaction();
 Employee employee = new Employee(“John”);
 employeeID = (Integer) session.save(employee);
 tx.commit();
} 	
	
..	and	we	will	see	some	more	involved	examples	of	this	in	the	practical	sessions.	
	

	

	 13	

WEEK	10:	OBJECT-ORIENTATED	DB	AND	PERSISTENCE	

10.4.3 Summary	
	
You	should	take	away	the	following	points:	
	

• xml	does	not	do	anything	by	itself	other	than	structure	data	inside	tags.	This	can	then	
be	 used	 for	 different	 applications	 (html	 formatting	 for	 browser	 rendering)	 or,	 for	
containing	 data	 on	 specific	 configurations	 and	 mapping	 definitions	 within	 a	
framework	like	Hibernate.	

	
• xml	is	therefore	used	in	all	kinds	of	applications	and	you	should	become	familiar	with	

reading	it.		
	

• Hibernate	allows	us	to	side-step	some	of	the	complications	of	communicating	with	
databases	in	order	to	achieve	persistence	for	objects	in-between	application	runs.	

	
• Basic	knowledge	required	to	developing	with	Hibernate	includes:	

	
o Familiarity	with	the	configuration	file.	
o Familiarity	with	mapping	files	and;	
o Familiarity	with	the	POJO	constrains		

	
10.5 Summary	
	

• There	 are	 ‘issues’	 of	 accessing	 databases	 from	 within	 an	 object-orientated	
perspective.		

	
• Java	programmers	use	object-orientated	principles.	Embedded	queries	make	object-

orientated	development	quite	messy	and,	to	a	typical	java	developer.		
	
	

• Hibernate	is	a	framework	that	allows	embedded	queries	to	be	removed,	and	object-
orientated	methods	of	database	interaction	possible,	and	removing	of	the	problem	of	
‘fragmentation’,	which	has	been	referred	by	previous	commentators	on	these	issues.	

	
	

• Hibernate,	like	many	API’s	exploit	the	use	of	XML.		
	
	

• Hibernate	 specifies	mappings	between	POJOs	and	RDB’s	 to	help	 the	development,	
flexibility	and	maintenance	of	codebases.	

	
	

~~~~~	


