
	
WEEK	11:	NOSQL	

	
	
	
	
	
	

NoSQL		
	
In	this	week,	we	will	cover	the	following	topics:	

• Definitions	of	the	NoSQL	‘approach’	to	databases.	
• Alternative	database	forms,	not	just	relational.	
• ACIDity	and	NoSQL.	
• A	closer	look	into	an	industrial-strength	NoSQL	database:	Neo4j.	

	
…	and	will	result	in	the	following	learning	outcomes	

• Appreciation	of	what	NoSQL	means.	
• An	understanding	that	not	all	data	suit	a	relational	solution.	
• Appreciation	that	while	many	alternative	databases	exist,	they	can	be	classified	into	a	

relatively	small	number,	based	on	the	underlying	data	structure.	
• Understanding	of	how	graph	data	 can	be	 stored	and	queried	 in	a	graph	database,	

using	neo4j	as	an	example	technology.		
	
	 	



	

	 2	

WEEK	11:	NOSQL	

Table	of	Contents	
11.1	 Definitions	.....................................................................................................................	3	

11.1.1	 What	is	‘SQL’	in	light	of	‘noSQL’	...................................................................................	3	
11.1.2	 What	is	‘noSQL’	............................................................................................................	4	

11.2	 Classes	of	noSQL	database	.............................................................................................	5	
11.2.1	 Key-value	......................................................................................................................	6	
11.2.2	 Wide	column	................................................................................................................	6	
11.2.3	 Document	.....................................................................................................................	6	
11.2.4	 Graph	............................................................................................................................	7	

11.3	 Summary	.......................................................................................................................	7	
11.4	 The	ACIDITY	of	noSQL	and	other	features	......................................................................	7	

11.4.1	 ACID	reminder	..............................................................................................................	7	
11.5	 A	noSQL	example:	graph	databases	and	neo4J	...............................................................	8	

11.5.1	 What	are	graphs?	.........................................................................................................	8	
11.5.2	 Why	use	a	graph	database?	.........................................................................................	9	
11.5.3	 Flexible	data	structures	..............................................................................................	10	
11.5.4	 Neo4J	Queries:	Cypher	...............................................................................................	12	

11.6	 ACID	and	SQL,	noSQL	...................................................................................................	12	
11.7	 Summary	.....................................................................................................................	13	

	
	
Figure	1:	Database	choices	in	the	post-relational	landscape	...................................................	5	
Figure	2:	Example	graphs	–	social	network	and	road	network.	...............................................	8	
Figure	3:	Relationships	-	Relational	model	v	Graph	model	....................................................	10	
Figure	4:	Dynamic	accumulation	of	data	................................................................................	11	
Figure	5:	Information	from	simple	Cypher	query.	..................................................................	12	
	
	 	



	

	 3	

WEEK	11:	NOSQL	

11.1 Definitions	
11.1.1 What	is	‘SQL’	in	light	of	‘noSQL’	
To	get	an	understanding	of	what	noSQL	means,	it	is	useful	to	define	what	we	mean	by	SQL	in	
this	context,	i.e.,	in	the	phrase	noSQL.	Of	course,	we	have	spent	some	time	looking	at	SQL,	
both	within	the	practical	sessions	and	in	a	previous	week	where	we	had	looked	at	several	
examples…		querying	for:	Reading	data,	updating	data	etc,	from	a	relational	database.	
	
For	the	current	purpose,	SQL	should	be	taken	to	mean	the	structured	query	language,	but	
also	the	object	of	that	language,	i.e.,	the	relational	databases	itself.		As	we	mentioned,	the	
structured	 query	 language	 depends	 on	 the	 underlying	 language	 of	mathematical	 sets,	 as	
described	 by	 Codd	 (TODO).	 	 When	 designing	 a	 database,	 the	 database	 designer	 is,	
consequently,	 required	 to	 think	 in	 terms	 of	 the	 tables,	 and	 the	 rows	 and	 columns	 that	
constitute	the	tables	in	question.		Relationships	are	also	‘coded’	as	tables.		These	constraints	
allow	the	database	to	be	queried	in	a	fast	and	effective	manner,	especially	in	comparison	to	
the	traditional	storage	of	(manually	created)	and	(manually	updated)	files.	
	
	Relational	databases	and	SQL	have	now	existed	for	decades.		Relational	databases	and	SQL	
will	not	disappear	any	time	soon:	
	

• The	theory	and	practice	of	the	relational	approach	is	very	well-established.	Therefore,	
so	is	the	technology	of	relational	database	management	systems,	and	the	generation	
of	developers	who	have	the	skills	to	work	with	this	technology.		

	
• The	ACID	transactional	features	of	the	technology	mean	that	these	systems	are	very	

reliable,	an	important	feature	in	an	industrial	context.	
	

• As	a	consequence	of	being	well-established,	many	software	ecosystems	integrate	the	
use	of	SQL		

	
Notwithstanding	 these	 facts,	 it	 is	 certainly	 true	 the	 relational	 database	 systems	 are	 not	
necessarily	the	only,	or	the	best,	choice	of	technology	available.	The	relational	model	was	
intended	for	use	in	the	context	at	data	that	is	very	well	understood	ahead	of	time.	This	means	
that	the	structure	of	the	database	can	be	very	well-defined	without	the	need	for	constantly	
changing	its	structure,	the	tabular	schemas	etc.	In	many	applications	this	is	still	the	case,	and	
in	these	situations	the	use	of	the	relational	approach	is	still	highly	appropriate	and,	therefore,	
is	 frequently	 used.	 However,	 since	 the	 1970s,	 which	 is	 the	 decade	 associated	 with	 the	
invention	of	relational	database	systems,	the	availability	of	data	has	exploded.		No	longer	are	
organizations	only	interested	in	well-established	and	predictable	sets	of	ordered	data,	they	
are	 adapting	 to	 the	 modern	 landscape	 and	 data	 availability,	 and	 trying	 to	 exploit	 the	
information	that	is	inherent	in	all	kinds	of	data.		This	includes	data	which	is	semi-structured,	
and	generated	in	huge	volumes.	
	
	The	‘noSQL	movement’	is	the	response	to	this	changing	landscape.	It	is	important	to	realise	
however	that	it	does	not	replace	relational	database	Systems,	which	is	sometimes	impression	
one	 can	 get	 from	 the	 literature.	 	 The	 ‘noSQL’	 technologies	 very	 much	 exist	 alongside	
traditional	 relational	 database	 systems,	 to	 serve	 a	different	purpose,	 but	possibly	 to	 fill	 a	



	

	 4	

WEEK	11:	NOSQL	

niche	within	the	overall	software	ecosystem.	Database	developers	are	therefore	having	to	
develop	 an	 ‘agnostic’	 attitude	 towards	 database	 technologies,	 just	 as	 they	 are	 having	 to	
develop	a	similar	attitude	towards	programming	languages.		It	is	becoming	less	common	for	
a	programmer	to	be	referred	to,	for	example,	as	a	‘Java	developer’	and	programmers	must	
increasingly	 develop	 a	 repertoire	 of	 coding	 skills	 across	 different	 languages.	 Similarly,	
database	development	is	becoming	less	about	relational	database	development,	even	though	
this	 will	 remain	 very	 important.	 	 Database	 developers	 certainly	 should	 be	 aware	 no	 SQL	
approaches,	hence	the	devotion	of	this	week	to	this	subject.	
	
11.1.2 What	is	‘noSQL’	
In	 the	 history	 definitions	 ‘noSQL’	 is	 possibly	 one	 of	 the	most	 useless.	 This	 is	 because	 the	
phrase	‘noSQL’	is	not	really	a	definition;	it	merely	refers	to	something	that	it	is	not	–	not	SQL,	
not	relational,	etc.		This	is	a	bit	like	defining	your	country,	and	all	the	institutions	and	cultures	
within	 it,	by	 listing	a	set	of	other	countries	with	different	customs,	rules	of	 law	etc.	 It	 is	a	
negative	 definition.	 By	 defining	 something	 in	 his	 negative	 terms,	 we	 don’t	 get	 any	
understanding	of	what	‘noSQL’	actually	is,	just	a	list	of	relational	features	we	are	familiar	with	
that	should	be	understood	as	‘not	that’.	
	
The	 phrase	 noSQL	 should	 really	 be	 used	 to	 indicate	 that	 there	 are	 other	 database	
technologies	available.	Furthermore,	a	 less	polemic	 interpretation	of	 the	phrase	would	be	
‘not	 only	 SQL’.	 In	 other	words,	 as	we	 have	 suggested,	 although	 you	might	 use	 relational	
database	systems,	you	should	be	aware	of	different	database	approaches,	and	how	they	fit	
with	different	data	requirements.	
	
As	Redmond	and	Wilson	suggest:	
	
“This	is	a	pivotal	time	for	the	database	world.	For	years	the	relational	model	has	been	the	de	
facto	option	for	problems	big	and	small.	We	don’t	expect	relational	databases	will	fade	away	
anytime	soon,	but	people	are	emerging	from	the	RDMS	fog	to	discover	alternative	options...	
These	options	are	collectively	known	as	noSQL…”	

Redmond	and	Wilson	(2012)	
	

	
On	 starting	 a	 database	 project,	 rather	 than	 immediately	 thinking	 about	 a	 relational	
representation	of	the	data,	some	relevant	example	questions	might	be:	
	

• Is	 the	 client	 data	 conducive	 to	 a	 relational	 database	 approach	 or	 a	 non-relational	
approach?	

	
• How	might	we	represent	certain	aspects	of	the	data	in	relation	away	and	other	aspect	

of	the	data	in	a	non-relational	way?	
	

• If	the	data	speaks	to	a	non-relational	representation,	then	what	is	this	representation	
and	what	are	the	most	appropriate	database	technologies	available?	

	
• If	the	amounts	of	data	increases	rapidly,	how	will	the	database	perform?	



	

	 5	

WEEK	11:	NOSQL	

	
• 	Is	the	relational	model	an	efficient	way	of	storing	this	data?	Where	are	you	to	going	

back	with	
	
Therefore,	while	relational	databases	should	not	be	looked	upon	as	defunct	technology,	on	
the	one	hand,	one	the	other,	 faced	with	questions	regarding	data,	one	can	no	 longer	 just	
presume	 that	 a	 relational	 approach	will	 be	 the	 ‘best	 fit’.	 Being	 responsible	 as	 a	 database	
developer	can	mean,	firstly,	asking	the	above	kinds	of	questions.	
	
11.2 Classes	of	noSQL	database	
Figure	 1	 illustrates	 the	 choice	 of	 database	 available	 in	 the	 post-relational	 landscape.	We	
distinguish	four	general	kinds	of	database	in	addition	to	the	relational	database	kind	that	has	
been	the	main	stay	of	the	course.	Notice,	each	type	of	database	is	of	a	specific	overall	kind	–	
i.e.,	we	are	not	 speaking	 at	 the	 level	 of	 a	 given	database	product	 (MySQL,	 sequel	 server,	
Oracle),	but	we	are	referring	to	the	core	nature	of	the	type/class	of	database	system	itself.	
	
	In	 the	 diagram	we	 distinguish	 between	 the	 database	 and	 the	 query	 language.	 	We	 have	
previously	said	that	no	SQL	refers	to	‘not	only	SQL’,	for	example,	but	in	Figure	1	it	should	be	
read	‘no	SQL	querying’.	Whereas	relational	databases	are	perfect	to	act	targets	for	an	SQL	
language	implementation,	this	is	not	the	case	for	noSQL	databases.		Such	databases	Will	have	
not	only	different	underlying	representations	for	data,	but	different	means	of	accessing	the	
database,	such	as	a	different	query	language.	
	
	
	
	

	
Figure	1:	Database	choices	in	the	post-relational	landscape	

	

Database types/choices

Relational

Document

Key/Value

Wide-Column Graph

noSQLSQL



	

	 6	

WEEK	11:	NOSQL	

11.2.1 Key-value		
Key-value	storage	is	relatively	simple.		Each	database	entry	maps	a	key	to	an	associated	value.	
The	key,	of	course,	must	be	unique,	such	that	when	accessed	we	get	the	value	required	with.		
The	 purpose	 of	 the	 key-value	 database	 is	 therefore	 to	 provide	 a	mechanism	where	 large	
quantities	of	separate	data	can	be	stored	for	rapid	look-up.		This	model	is	very	simple,	which	
supports	 the	 high	 speed.	 Conversely,	 where	 the	 requirement	 is	 for	 more	 complicated	
aggregate	 information,	possibly	which	depends	on	the	ability	to	 join	sets	of	data,	the	key-
value	model	is	likely	to	be	unhelpful.	
	
Key-value	databases	can	be	held	either	in-memory	or	on	disk.	These	kinds	of	database	have	
arisen	as	a	consequence	of	big	data.	Many	countries,	for	example,	have	digitized	healthcare	
records	 for	 the	 entire	 population.	 This	 use-case	 often	 requires	 a	 specific	 key	 (customer	
number)	per-person-name;	an	example	of	a	fast	 look-up	requirement.	As	a	data	structure,	
the	key-value	database	can	therefore	be	thought	of	as	related	to	the	hash	map	(or	hash	table)	
where	keys	are	mapped	to	values	through	a	given	function	to	‘map’	one	to	another.	The	key-
value	database,	however,	may	be	very,	very	large	and	distributed	across	several	servers.	
	
11.2.2 Wide	column	
Wide-column	storage	uses	tables	rows	and	columns.	Of	course	this	is	familiar	to	us.		However,	
the	distinguishing	feature	compared	with	relational	databases	is	that	the	names	and	structure	
of	the	columns	may	vary	from	row	to	row,	within	the	same	table	in	a	database.		This	feature	
is,	therefore,	very	different	to	the	strict	tabular	format	of	the	relational	database	model	we	
have	covered	early	on	during	the	course.		Put	differently,	a	wide-column	database	does	not	
need	to	adhere	to	a	common	schema	to	exist	in	the	same	table.	
	
Do	not	be	misled	by	the	similarities	to	relational	databases	here.	As	Redmond	states	“The	
difference	may	seem	inconsequential,	but	the	 impact	of	this	design	decision	runs	deep.	 In	
column	orientate	databases,	adding	columns	 is	quite	 inexpensive	and	is	done	on	a	row-by	
row-basis.	Each	 row	can	have	a	different	 set	of	columns	or	none	at	all,	allowing	 tables	 to	
remain	sparse	without	incurring	storage	cost	for	null	values”.		This	is	an	advantage	over	the	
relational	model,	which	has	to	store	a	null	where	no	other	value	is	required,	and	this	takes	up	
memory.			
	
This	no-null	storage	feature	of	wide-column	databases,	or	in	other	words	support	for	sparse	
data,	is	often	a	common	advantage	of	noSQL	databases	options	over	the	relational	database	
framework.		We	will	see	in	a	later	example	what	we	mean	by	sparse	data	and	why	the	tabular	
restriction	of	forced	rectangular	shapes	(i.e.,	forced	null-storage)	are	an	unwanted	constraint	
in	the	context	of	a	sparse	data	example. 

	
11.2.3 Document	
In	document	databases	the	unit	of	storage	is	the	document.	The	document	itself	is	accessed	
with	 an	 identifier	 along	 with	 a	 number	 of	 types	 contained	 within	 the	 document.	 	 The	
appearance	of	the	documents	is	often	as	a	nested	structure,	which	often	look	familiar	to	those	
who	 have	 ever	 studied	 (or	 even	 eye-balled)	 the	 structure	 of	 XML	 (Extensible	 Markup	
Language).	 Document	 databases	 are	 most	 frequently	 chosen	 when	 the	 data	 in	 question	
adheres	to	a.	JSON	(JavaScript	Object	Notation)	format.	This	format	is	human-readable	(quite	



	

	 7	

WEEK	11:	NOSQL	

easily	 for	programmers	due	 to	 the	name-value	pairs	and	array,	 list,	sequence,	vector	data	
types	it	supports),	and	is	also	easy	for	machines	to	parse	and	generate.	
	
11.2.4 Graph	
Graph	databases	are	designed	to	deal	with	data	that	is	inherently	‘relational’	in	the	sense	of	
being	 linked	or	connected.	A	graph	data	structure,	as	a	mathematical	object,	 is	defined	as	
nodes	(or	vertices)	and	links	(or	edges).	The	graph	representation	is	best	used	when	data	can	
therefore	be	represented	in	this	way.	The	mathematics	relating	to	graphs	is	also	concerned	
with	how	one	can	easily	(or	quickly)	traverse	a	graph	between,	for	example,	two	given	nodes,	
what	the	shortest	path	between	the	nodes	is	etc.		
	
Graph	databases	are	often	a	good	choice	where	the	data	can	be	seen	as	a	network.	Of	course,	
there	 can	 be	many	 kinds	 of	 network	 –	 examples	 include	 transportation	 networks,	 social	
networks,	networks	based	on	customer-product	interactions.	The	list	is	literally	endless.		
	
Redmond	(2012)	states	that	graph	databases	are	“One	of	the	less	commonly	used	database	
styles”,	although	it	is	worth	bearing	in	mind	(this	is	true	of	any	textbook)	that	the	printed	page	
is	often	rapidly	out	of	date,	especially	in	computational	subjects:	
	
“We’ve	seen	industry	after	industry	being	eaten	by	graphs.	In	each	case,	the	adoption	of	graph	
technology	has	resulted	in	better	products	and	more	remarkable	customer	experiences…	Four	
of	the	top	10	global	retailers	today	use	Neo4J.		Behind	them,	their	non-adapting	competitors	
are	struggling	to	make	it...”	

Ian	Robinson	graph	databases	(2015)	
	
11.3 Summary	

	
	
	
11.4 The	ACIDITY	of	noSQL	and	other	features	
11.4.1 ACID	reminder	
	

noSQL

key-value document wide column graph

Redis

HBaseAWS DynamoDB

documents
(BSON, JSON, XML)

mark-up

MongoDB

Format 

Class/Type 

key value
147 16, Market Square
140 21, Hayfield Rd

Riak

Example
Technology Neo4J



	

	 8	

WEEK	11:	NOSQL	

11.5 A	noSQL	example:	graph	databases	and	neo4J	
	
11.5.1 What	are	graphs?	
The	notion	of	 graphs	originates	 from	 the	 ideas	of	 graph	 theory.	As	mentioned,	nodes	 (or	
vertices)	and	links	(or	edges)	are	used	as	the	basic	units.	A	node,	for	example	could	represent	
an	object/thing	and	the	links	represents	relationships	between	objects/things.	 	Graphs	are	
highly	abstract	and	can	represent	many	kinds	of	objects	and	relationships.		It	is	a	good	idea	
therefore	to	think	about	some	examples.	
	
	Geographic	example:		transport	networks	can	be	represented	as	graphs.	For	example,	road	
networks	consist	of	nodes	and	links.		The	links	can	represent	the	roads	themselves.	The	nodes	
can	represent	the	places	where	roads	meet,	or	in	other	words	road	junctions.	In	this	example,	
we	might	be	interested	in	knowing	the	distance	between	two	given	junctions.		One	way	to	
proceed	 would	 be	 to	 record	 the	 distance	 of	 each	 road	 and	 store	 this	 as	 a	 value	 on	 the	
associated	link	in	the	database.			
	
Social	network	example:	social	networks	are	also	graphs	and	consist	of	nodes	and	links.	In	this	
case,	the	nodes	are	usually	represented	as	people	and	the	interactions	between	people	as	
the	links.	These	days,	Facebook	is	a	commonly	understood	social	network,	where	each	person	
is	related	to	others	by	the	‘friend	relationship’.		
	
The	 entire	 graph	 represents	 the	 network	 of	 relationships;	 it	 consists	 of	 the	 entire	 set	 of	
objects	within	a	system	and	the	interactions	between	them.	An	illustration	of	the	example	
graphs	considered	is	presented	in	Figure	2.	

	

Figure	2:	Example	graphs	–	social	network	and	road	network.	

Abstract Graph

Brian

Sue

Bob

Ann

Tina

J0

J3J4

J1

J2

Real Graphs
5km

3km

2km

1km

30km

Friend with

Friend with
Friend with

Friend with

Friend with

Social Network Road Network



	

	 9	

WEEK	11:	NOSQL	

11.5.2 Why	use	a	graph	database?	
	
Graph	databases	are	a	relatively	new	‘kid	on	the	block’.	The	reasons	you	might	use	a	graph	
database	can	be	appreciated	by	the	critique	often	level	against	the	relational	approach	when	
the	 data	 speaks	 naturally	 to	 a	 network	 representation.	 That	 is,	 the	 relational	 approach	
cannot:	
	

• model	or	store	data	and	relationships	without	complexity.	
• perform	well	when	 the	number	and	 levels	of	 relationship	 increase.	 In	other	words	

relational	databases	do	not	scale	well	when	the	data	is	naturally	relational.	
	
These	disadvantages	can	have	other	consequences.	When	the	data	is	best	represented	as	a	
graph,	the	relational	approach	will	often:		
	

• result	in	query	complexity	grows	with	need	for	complex	joins.	
• Result	in	schema	re-design	when	new	data	types	are	introduced.	

	
This	brings	us	to	the	reasons	why	we	might	want	to	use	a	graph	database.	Graph	databases:	
	

• contain	 structures	 to	 directly	 model	 and	 store	 relationships.	 The	 modelling	 of	
relationships	do	not	require	the	creation	of	tables.	

• Exist	with	query	languages	that	support	data	relationships	naturally,	so	queries	on	the	
database	are	often	simpler.	

• Carries	forward	the	advantage	of	ACID	from	SQL.	This	is	not	necessarily	true	of	other	
noSQL	databases.	

• are	whiteboard	friendly.	This	means	that	they	model	data	as	it	occurs	naturally.	
• scalability	optimized	for	graphs.		
• also	 often	 have	 drivers,	 as	 MySQL	 does,	 to	 support	 application	 programming	 in	

popular	high-level	languages.	
	
It	seems	a	strange	thing	to	say	that	‘relational	database	management	systems	do	not	naturally	
support	relational	data’.	However,	let	us	think	about	what	we	must	do	when	adopting	the	
relational	approach	to	represent	relationships,	following	the	social	network	example,	above.	
We	must	create	a	table	to	represent	the	relationships,	whereas	using	a	graph	model	we	can	
accomplish	the	data	storage	in	a	way	that	is	more	natural,	storing	it	as	a	‘relationship’.	This	is	
illustrated	in	Figure	3.	
	
	Therefore,	when	we	come	to	choosing	which	database	model	to	use,	it	is	important	to	think	
about	the	modelling	domain	I’m	what	it	is	we	want	to	achieve	by	storing	the	data.	A	further	
example	of	an	appropriate	use-case	for	graph	databases,	again	as	 illustrated	above,	 is	 the	
storage	of	transport	networks.	Transport	networks	are	sparse	networks	–	i.e.,	junctions	are	
connected	by	a	relatively	small	number	of	links,	compare	to	the	number	of	links	possible	and,	
given	the	number	of	junctions	in	the	transport	network.		The	point	is	not	that	it	is	impossible	
to	store	transport	network	data	within	relational	database	system,	but	that	these	days,	it	is	
not	necessary	 to	do	 this	and	 ‘better’	 technologies	are	available,	 i.e.,	 technologies	 is	more	
appropriate	to	the	task.	



	

	 10	

WEEK	11:	NOSQL	

	

	
Figure	3:	Relationships	-	Relational	model	v	Graph	model	

	
11.5.3 Flexible	data	structures	
	
	In	graph	models	the	data	structures	are	‘nodes’	and	‘relationships’:	
	

• Nodes:	are	the	objects	in	the	graph.		Notes	can	be	labelled	and	can	also	have	name-
value	properties.	

	
• Relationships:	the	Late	notify	type	direction.		Relationships	can	also	have	a	main	value	

properties.	
	
A	key	advantage	no	SQL	databases	is	the	ability	to	add	new	types	of	data	overtime	without	
redesigning	the	schema.		As	an	example	of	this,	consider	to	people	who	begin	as	friends,	who	
end	up	falling	in	love,	living	together,	and	sharing	the	things	they	own	such	as	their	cars.	The	
resulting	database	is	then	a	collection	of	objects	whose	type	and	relationships	may	not	be	
known	 ahead	 of	 time.	 Using	 a	 relational	 approach,	 the	 data	 schema	 would	 have	 to	 be	
updated,	but	using	the	noSQL	graph	DB	approach,	the	data	can	simply	be	added	dynamically	
without	the	need	for	such	re-design.		
	
An	example	situation	is	presented	in	Figure	4.	Anne	and	Bob	starts	out	knowing	each	other	
as	friends.	After	some	time,	they	fall	in	love,	then	move	in	together.	At	this	stage,	they	have	
the	relationships	‘Friends	with’,	‘Loves’,	and	‘Lives	with’.	However,	Anne	then	buys	a	car	on	
the	07-04-2013.	She	therefore	‘Owns’	that	car,	but	Bob	has	a	different	relationship	to	it;	he	
‘Drives’	it.	
	

Brian

Sue

Bob

Anne

Tina

Friend with

Friend with
Friend with

Friend with

Friend with

Social Network
Brian

Bob
Sue

Anne

Graph DB ‘is the whiteboard’ (natural)

Relational DB ‘relationship’ (unnatural) 

Brian

Sue

BobAnne

Friend with

Friend with

Friend with

Graph DB ‘is the whiteboard’ (natural)



	

	 11	

WEEK	11:	NOSQL	

	
Figure	4:	Dynamic	accumulation	of	data	

	
There	are	two	aspects	to	this	example	worth	noting:	
	

1. The	data,	added	over,	time	is	not	known	ahead	of	time.	However,	it	can	still	be	added	
to	the	database.	

	
2. The	information	associated	with	the	objects/nodes	(people	and	car	in	this	case)	does	

not	share	the	same	structure.	Notice,	even	the	people	have	a	different	structure	in	
this	respect	(Anne	has	no	e-mail).	

	
In	this	way,	graph	databases	are	said	to	be	good	at	representing	semi-structured	data.	We	
mentioned	 at	 the	 very	 beginning	 of	 the	 course	 the	 difference	 between	 structured	 and	
unstructured	data.	No	SQL	databases	often	target	Data	that	is	not	as	well	structured	as	the	
data	found	within	a	relational	database	system.	In	recent	times,	the	explosion	data	has	meant	
that	semi-structured	solutions	have	emerged	on	the	market	to	cater	for	this	kind	of	data.	Such	
data	is	not	completely	unstructured,	although	it	 is	not	fully	structured,	either,	at	 least	 in	a	
relational	sense.		
	

BobAnne Friend with

BobAnne Loves

Friend with

BobAnne Loves

Friend with

Lives with

Car

Owns

Dr
ive

s

Name : Bob
E-mail: bob@…
DOB: 02-09-1986

Name : Anne
DOB: 07-04-1988

Purchased: 07-04-2013

Tim
e



	

	 12	

WEEK	11:	NOSQL	

11.5.4 Neo4J	Queries:	Cypher	
The	purpose	here	is	not	to	cover	in	any	depth	of	the	Cypher	query	language,	but	rather	just	
to	note,	generally,	that	with	no	SQL	databases,	SQL	is	not	used.	In	the	example	we	have	given,	
Cypher	is	to	Neo4J	what	SQL	is	to	a	relational	database.	
	
We	mentioned	previously	 that	 nodes	 could	be	 labelled	 and	nodes	 and	 relationships	have	
known	value	properties.	So,	continuing	the	above	example	if	we	wanted	to	extract	from	the	
database	people	who	lived	with	each	other	we	could	write	the	following	Cypher	query:	
	
MATCH	(:Person	{	name:“Bob”}	)	-[:LIVES_WITH]->	(:Person	{	name:“Anne”}	)		
	
Which	would	return	the	following	information	from	the	database:	
	

	
Figure	5:	Information	from	simple	Cypher	query.	

	
11.6 ACID	and	SQL,	noSQL	
	
At	transaction,	in	database	terms,	are	typically	a	set	of	instructions	that	are	executed	on	a	
database.	The	instructions	executed,	may	follow	some	sequential	logic	and	therefore	should	
be	ordered	in	a	way,	according	to	that	logic.		To	maintain	the	integrity	of	the	database,	it	is	
said	that	the	transactions	should	be:	
	
• Atomic:	instructions/queries	are	part	of	a	unit	and	therefore	all	the	instructions/queries	

within	that	unit	of	work	should	be	completed	successfully;	or,	the	transaction	is	exited	
due	to	a	failure.	In	the	case	that	the	transaction	fails	the	state	of	the	database	is	returned	
to	its	former	state	before	the	beginning	of	the	transaction	in	question.	There	can	be	no	
partial	transaction,	it	is	all	or	nothing.	

• Consistent:	changes	to	the	data	cannot	break	the	integrity	of	the	database	rules	set.	
• Isolated:	one	 transaction	must	complete	before	any	others	are	executed	on	 the	same	

data.	 This	 is	 to	 prevent	 two	 transaction	 altering	 data,	 together,	 potentially	 creating	
problems	with	the	data	in	question.		

• Durable:	allows	the	results	of	a	transaction	to	persist.	Once	a	transaction	has	occurred	it	
has	been	guaranteed.	

	
	

Bob Anne
LIVES_WITH



	

	 13	

WEEK	11:	NOSQL	

See	 Transactions	 and	 the	 ACID	 test	 (Lynda.com	 ‘Foundations	 of	 Programming’,	 Simon	
Allardice)	
	
Without	 passing	 the	 ACID	 test,	 you	 could	 imagine	 all	 kinds	 undesirable	 scenarios.	 For	
example,	customers	paying	for	holidays	but	without	receiving	a	guarantee	booking	the	room;	
wo	customers	being	able	to	book	the	last	available	seat	on	outgoing	flights	from	Heathrow;	
the	last	available	sofa	being	bought	by	more	than	one	customer	at	the	same	time	etc.	
	
SQL	databases	are	ACID	compliant.	On	the	other	hand,	no	SQL	databases	often	do	not	fulfil	
that	acid	test.	This	is	something	that	is	worth	bearing	in	mind,	therefore,	when	you	come	to	
choosing	which	kind	database	to	use.	
	
However,	although	many	no	SQL	databases	do	not	provide	ACID	support	some	do.		One	of	
the	industrial	strength	features	of	noe4J	is	support	for	fully	ACID	transactions.	
	
11.7 Summary	
	

• The	diverse	field	known	as	the	‘noSQL	movement’	a	growth	area	in	light	of	changes	to	
the	nature	of	data,	which	exploded	in	recent	decades.		

	
• The	relational	database	approach,	is	out	of	date	for	some	modern	purposes,	but	still	

very	useful.			
	

• The	noSQL	movement	consists	of	the	hundreds	of	different	kinds	of	databases	such	
that	you	will	can	do	database	development,	not	only	using	SQL,	but	also	using	other	
kinds	of	databases.	

	
• Other	classes	of	database	system	were	given:	(‘key-value’,	‘wide	column’,	document-

based,	Graph)’.	
	

• Neo4J,	a	leading	industrial	strength	graph	database	introduced	the	concept	of	a	graph	
and	its	components,	and	(very)	briefly	we	looked	at	Cypher,	neo4J’s	query	language.	

	
~~~~~	

	


