
What is JavaScript?

When the web was conceived, browsers were limited to text and image - later tables
and frames. The extent to which they provided interactivity with the user was very
limited. JavaScript was developed by Netscape as a simple programming language
(often referred to as a scripting language). It is easy to learn and small sections of
JavaScript can be added to a web page rather than needing to develop complicated
programs. It was specially designed for web page interaction and manipulating the
web browser and page elements. It is often used to respond to user actions such as
mouse clicks. Although developed by Netscape, and other variants exist, such as
JScript from Microsoft, a standard has been developed by the European Computer
Manufacturers Association. It is known as ECMAScript, using the standard
ECMA262, which can be found fully documented at the address on the slide.

 JavaScript is called a scripting language

 JavaScript is interpreted, each of code is translated to machine code and
run a line at a time.

 The interpreter is built into the web browser. So no need to compile.

 A browser reads a web page with a JavaScript program in it, the web
browser translates the JavaScript in order to let the computer understands.

 A scripting language operates slowly than a compiled language, so every
time it runs JavaScript, the program must be translated for the computer.

 Javacript is an object-based client-side scripting language

 Browsers have limited functionality
o Text, images, tables etc

 JavaScript allows for interactivity

 Browser/page manipulation
o Reacting to user actions

 A type of programming language
o Easy to learn

What is scripting language?

 Scripting language is good for Web developers Scripts are less complex
and smaller than other desktop languages such as java, c++ etc.

 Using Scripting language is fast process.

 All Web Browsers are built to understand HTML and CSS and execute
these languages, in order to display on the computer screen.

 Browsers are built in JavaScript interpreter in order to execute JavaScript.

 So, if you want to add JavaScript in your webpage, you need to tell the
browser by using the <script> tag.

 When a browser meet the closing </script> tag, it knows it is end of
JavaScript, so it will get back to its normal behaviour.

A Limited-Featured Programming Language

You can do many things using JavaScript that you can’t do by simply using HTML.
Here are a few of them:

 Build dynamic web pages

 Display alert boxes

 Control features of the browser

 Open new browser windows

 Customize reactions to mouse actions and keystrokes

 Perform calculations

 Validate information in forms

 Create interactive forms

Although JavaScript is more powerful than HTML, JavaScript can’t do everything.
Here are some common things that JavaScript can’t do:

 Write files to your hard disk

 Read files from your hard disk (except for cookies)

 Close windows other than those the JavaScript application opened

 Read information from a web page that resides on a domain different from
the domain where the JavaScript resides

How Does It Work?

JavaScript is embedded/included within HTML. You can often see JavaScript in the
source of a web page or it is provided for information on the page as with the
calculator example.

JavaScript is mainly used as a client-side language - it downloads with the web
page. Once the page has downloaded and is on the users' machine, it is actually the
web browser which then interprets the JavaScript instructions. JavaScript pages run
quickly, you are not relying on an internet connection to a web server. Short pieces
of JavaScript can be combined with HTML without the need to develop a fully blown
program.

There are two types of computer language, compiled and interpreted. To write or edit
a compiled language requires a special piece of software called a compiler.
JavaScript belongs to the other category, called interpreted. In the case of
JavaScript, this interpretation is done by the browser software at run-time. Because
JavaScript is interpreted, this means that no special tools are required to write or edit
JavaScript, just a normal text editor. JavaScript web pages can be platform
independent i.e. they will run on different browsers and computers (as long as the
browser is JavaScript enabled). If you see a JavaScript web page that you like, you
may be able to take that JavaScript and use it for your own purposes. (Remember to
acknowledge the original author!)

 Embedded within HTML page
o View source

 Executes on client
o Fast, no connection needed once loaded

 Simple programming statements combined with HTML tags

 Interpreted (not compiled)
o No special tools required

Interactivity

HTML pages are static

.... Using JavaScript - now they become more interactive :

 The page “responds” to user activity,

 It changes somehow in response to user input.

 User input needs to be detected.

 The browser needs to know what to do in response to which activity

The <script> Element

 The <script> Element is part of HTML.

 Is used to place script code, e.g. JavaScript statements and data, into the
HMTL page.

 You cannot place HTML code in a <script> section.

 Is often placed into the <head> section

 Can also place scripts in external files.

 The script is interpreted when the page is loaded unless specified
differently.

<Script> tag

You can add the <script> tag in the <head> section like this:

<head>
<script type="text/JavaScript">
 script code goes here.........
</script>
</head>
For Example:
<head>
<title> My first JavaScript webpage</title>
<script type="text/JavaScript">
document.write("Hello World!");
</script>
</head>

Syntax: Element name: script, Required attributes: type, Type values: text/javascript

When to use Comments in JavaScript

When you need to remind yourself what you have done your code successfully and
how you did it and what you have achieved such as

 What is that variable for? and

 why would you program it like this?

 What is going on in this section of the program?

 Why is this new feature? Etc.

Using comments are for as follows:

 Add the comments to help you understand the overall logic of the program

 Explain any particularly confusing or complex codes.

Adding a lot of comments to a script make the script slower to download but also
make it easier to remember the logic behind the code. There is a trade off between
machine efficiency and programmer efficiency.

Comments in JavaScript

JavaScript supports two types of comments:

Double-slashes (//)

 JavaScript will ignore everything to the end of the line.

 used most often to describe what is happening on a particular line

 // …………………..

Block quotes (/* …. */)

 JavaScript will ignore everything from the start of the comment block (/*)
until it encounters an asterisk-slash (*/).

 Block quotes are useful for detailed comments across many lines or for
temporally disabling large areas of code,
/* ……
…….
…….. */

Scripts can be found in three places:

Scripts can be found in three places:

Head Section:

 Scripts placed in the head section are loaded before anyone can use it
and are only executed when they are called or when triggered by an event.

Body Section:

 Scripts placed in the body section are executed when the page is loaded
and can be used to generate page content.

External File:
This allows us to write scripts that can be used across several pages. The script is
written once and saved in a file with a .js extension. The external script file does not
contain the <script> tag. The script tag will be used in the HTML document to point to
the external script file.

Place JavaScript in External file

External File:

 This allows us to write scripts that can be used across several pages. The
script is written once and saved in a file with a .js extension. The external
script file does not contain the <script> tag. The script tag will be used in
the HTML document to point to the external script file.

 The src attribute of the <script> tag works same as the src iattribute of an
 tag, or an <a> tag’s href attribute.

 When adding the src attribute to link to an external javaScript file, no need
to add any JavaScript code between the opening and closing
<script></script> tags.

 But if you want to add some JavaScript code to a page for extra functions,
use a second set of opening and closing <script></script> tags.

For Example:

Hello World Example

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Hello World</title>
</head>
<body>
<script type="text/javascript">
//Script within Body Section (Not very common – Usually Head Section)

// how to use document.write(..) to write a text on a web page
// Comment

document.write("Hello World");
//Display “Hello World” Text on Web Page
</script>
</body>
</html>

Writing a text on a webpage

When you want to show a message directly onto your web page using JavaScript.
You can use alert () or document.write() function, they are JavaScript commands
which allow you to write out whatever you want to your webpage. Remember you
need to place these functions between opening and closing <script> tags.

For example: using alert() function

<script>
 alert(“Have a good day!");
</script>

For example: using document.write() function

<script>
 document.write("Hello World!");
</script>

Make your webpage more interactive with user by using events

JavaScript allows for interactivity, which means JavaScript allows your webpages
react to something a user does, such as when you move your mouse over a
navigation button which contain a link or set of links. You can also create a radio
button which allow user to select a set of form options; When you clicking a image
makes the image larger or change colour, etc.

What are Events?

Events are when each page loading or moving a mouse or typing a keyword or
resizing the browser window or select the options from a radio button, etc.

 Often trigger the execution of scripts.

 Occur when the page is loaded, rendered or being browsed by the user.

To make the webpage more interactive, we write programs that respond to events,
e.g. click the submit button when you have completed your booking form online, etc.

Handling Events

Events go unnoticed unless an event handler for this event has been implemented.
Event handlers can be attached to HTML elements, e.g.

 <body onload="alert('Hiya!');">

We will come back to Events/Event Handlers – but they may appear in certain
examples

“If” statement

checks an age – pay senior fare if 60 or above ...

function TestAge()
{
 var age = parseInt (document.getElementById("in_Age").value) ;

 if (isNaN(age))
 {
 alert("The input is NOT valid");
 }
 else
 {
 if(age >= 60)
 {
 alert("You pay the senior fare! ");
 }
 else
 {
 alert("You pay the regular adult fare. ");
 }
 }
}

Invalid Data

 Must always check for INVALID data

 Software must deal with all scenarios that may cause errors

 parseInt() function: it takes a value and tries to convert it to an integer
(whole number, e.g. 1, 4,8, 10 etc).

 If user types in text, the parseInt() command won’t able to convert text to
number. That is why, we need isNan() function to check if user enter text,
then the webpage will pup up an alert box and tell the user, it is an invalid
number.

 The isNan() function in JavaScript.

 NaN stands for “not a number”, you can use this information to pop up
another prompt dialog box, if a number is not entered the first time.

Boolean Logical Operators

Boolean data type is either true or false.
And

condition_a && condition_b
Is true if condition_a and condition_b are both true.

OR

condition_a || condition_b
Is true if condition_a or condition_b are both true.

NOT

! condition
Is true : if condition is false
or ….
is false : if condition is true

If statement

(assume ‘age’ has been validated using parseInt)

if(age > 0 && age <= 12)
 {
 alert("You pay the child's fare. ");
 }
 else if(age > 12 && age < 60)
 {
 alert("You pay the regular adult fare. ");
 }
 else if (age >= 60)
 {
 alert("You pay the senior fare! ");
 }
 else
 {
 alert("Invalid Age ");
 // catch error age conditions //
 }

Boolean

The userID MUST be "brian" AND the password MUST be “gcu"

function Logon() {
var userID = document.getElementById("in_Id").value;
var password = document.getElementById("in_Pass").value;
if (userID == "brian" && password == "gcu")
 {
 alert ('Logon valid - Welcome !!!')
 }
else
 {
 alert ('Logon invalid')
 }
}
<body>
 Enter User ID : <input type="text" id="in_Id" size="10">

 Enter Password : <input type="text" id="in_Pass" size="5">

 <input type="button" value="Logon" id="B1" onClick="Logon()">
</body>

Examples:

 http://www.w3schools.com/js/js_if_else.asp
Note that these examples using some Javascript methods

 E.g Date(), get_hours() etc
These are all defined in the JS References Section at w3schools :

 JS References -> JavaScript Objects -> Date Object

Loops

Loop is part of conditional statement.
Use Loops when you want to execute code potentially several times.

Examples:

 Add up the numbers from 1 to 100.

 A countdown.

 Add all the correct answers marks for online class test

The for Loop

Syntax:

for (<init>; <test>; <increment>)
{
//...code to execute...
}
Example:
for (var i = 0 ; i<5; i++)
{
document.write("i is " + i);
document.write("
");
}

Output

i is 0

i is 1

i is 2

i is 3

i is 4

http://www.w3schools.com/js/js_if_else.asp

Arrays

Array is a variable, it perfect to keep track of a group of related items or images- e.g.
name of days in a week e.g. Monday, Tuesday, Wednesday…Sunday. Or the list of
images on a web page
An Array is used to store multiple values in a single variable.
It can store one or more elements
It must have a Unique name
A variable is a way to store information so that you can later use and manipulate it.
It is a two-step process to create a variable.
1. declaring the variable
2. name the variable.

Defining an Array :

var myNames = new Array("Peter","Colin","Julie");
OR :
var myNames = new Array;
myNames[0] = "Peter"
myNames[1] = "Colin"
myNames[2] = "Julie"

To iterate over all elements of the array:

for (var i = 0; i < myNames.length; i++) {
//statements go here;
}

 i is initialised to 0 -> start of array

 The array length controls how many times the For loop is used - i.e.
number of elements in the array (from 0 to length – 1)

 will exit loop when i = length

 i++ - ensures we index each item in the array

<script type="text/JavaScript">
function showArray()
{
 // initialise array
 var myNames=new Array("Peter","Colin","Julie");
 // get array length
 var len = myNames.length

 document.write (" The Length (total number of elements) of myNames is " , len);
 document.write("
");

 // use Array length to access each element
 for (var i = 0; i < len; i++)
 {
 document.write ("Element " + i + " is " + myNames[i])
 document.write("
");
 }
}
</script>
</head>
<body>
<h1>Array Example</h1>
<script type="text/JavaScript">
<!--
showArray() ……… USES a Function
// -->
</script>

Sort()

sort() - method used to sort the Array
Use : myNames.sort();

// initialise array
var myNames=new Array("Peter","Colin","Julie");
myNames.sort();

 // use Array length to access each element
 for (var i = 0; i < myNames.length; i++)
 {
 document.write ("Element " + i + " is " + myNames[i])
 document.write("
");
 }

 Element 0 is Colin

 Element 1 is Julie

 Element 2 is Peter

The String Object

String is used any name, text, sentence or any letters, words, or paragraph.
A string is a series of letters and other symbols.
Syntax:

var myStr = new String(“Hello”);

Once a string’s opening quote mark signals to the JavaScript interpreter that the
follows is string. So interpreter will accept what it is without trying to interpret the
string like other commands
or – more simply …

var myStr = “Hello”;

Properties:

 length: the total number of characters in a String

var strlength = myStr.length

return: 5

How to Joining strings?

Joining strings : Simple just use “+”

var str1 = “hello”
var str2 = “world”
var str3 = str1 + " " + str2
document.write (str3)
-> “hello world”

The String Object

String object reference:
http://www.w3schools.com/jsref/jsref_obj_string.asp
MANY of the following examples are from the above website.
You should refer to this website to view AND execute the code
You can also modify the code

charAt()

charAt()

 Returns the character at the specified index

 First character is at position : ‘0’

 Last Character is at position : length – 1

http://www.w3schools.com/jsref/jsref_obj_string.asp

Parameter Description

index Required. An integer between 0 and string.length-1

var str = "Hello World!";
str.charAt(0)
//-> H (output: the first letter of Hello World!)

str.charAt(6)
//-> W (output: the six letter of Hello World!)

indexOf() / lastIndexOf()

indexOf() - returns the position of the FIRST occurrence of a specified value in a
string.
Useful link: http://www.w3schools.com/jsref/jsref_indexof.asp lastIndexOf() - returns
the position of the LAST occurrence of a specified value in a string.
returns -1 if the value to search for NEVER occurs.
Useful link: http://www.w3schools.com/jsref/jsref_lastindexof.asp

Parameter Description

searchstring Required. The string to search for

start
 Optional. The position where to start the search. If omitted, the
 default value is the length of the string

Example of str.indocOf() and str.lastIndexOf()

var str="Hello world!";

indexOf :

str.indexOf("d")
// return "10"

str.indexOf("world")
// return "6"

str.indexOf("WORLD")
// return "-1"

lastIndexOf :

str.lastIndexOf("o")
// return "7"

http://www.w3schools.com/jsref/jsref_indexof.asp
http://www.w3schools.com/jsref/jsref_lastindexof.asp

slice()

extracts a part of a string and returns the extracted part in a new string.
Otherwise it returns -1.
Useful link: http://www.w3schools.com/jsref/jsref_slice_array.asp

Parameter Description

begin
 Required. The index where to begin the extraction. First character
 is at index 0

end
 Optional. Where to end the extraction. If omitted, slice() selects all
 characters from the begin position to the end of the string

var str="Hello happy world!";
// extract all characters, start at position 6:
str.slice(6) //return: happy world!

// extract only the first character:
str.slice(0,1) //return: H

// extract the characters from position 6 to position 11:
str.slice(6,11) //return: happy

substring()

extracts the characters from a string, between two specified indices, and returns the
new sub string.
extracts the characters in a string between "from" and "to", not including "to" itself.
Useful link: http://www.w3schools.com/jsref/jsref_substring.asp

Parameter Description

from
 Required. The index where to start the extraction. First character is
 at index 0

to
 Optional. The index where to stop the extraction. If omitted, it
 extracts the rest of the string

var str="Hello world!";
str.substring(3) //return: lo world!
str.substring(3,7) //return: lo w

toUpperCase / toLowerCase

toUpperCase() - converts a string to uppercase letters.
Useful link: http://www.w3schools.com/jsref/jsref_touppercase.asp
toLowerCase() - converts a string to lowercase letters.
Useful link: http://www.w3schools.com/jsref/jsref_tolowercase.asp

http://www.w3schools.com/jsref/jsref_slice_array.asp
http://www.w3schools.com/jsref/jsref_substring.asp
http://www.w3schools.com/jsref/jsref_touppercase.asp
http://www.w3schools.com/jsref/jsref_tolowercase.asp

var txt="Hello World!";
txt.toLowerCase() // return: hello world!
txt.toUpperCase() // return: HELLO WORLD!

split()

used to split a string into an ARRAY of substrings, and returns the new array.
Useful link: http://www.w3schools.com/jsref/jsref_split.asp

Parameter Description

separator
 Optional. Specifies the character to use for splitting the
 string. If omitted, the entire string will be returned

limit Optional. An integer that specifies the number of splits

var str = "How are you doing today?";
NewArray = str.split(" ")
// -> "How" "are" "you" "doing" "today?"

NewArray : "How" "are" "you" "doing" "today?"

 0 1 2 3 4

NewArray = str2.split("=")
//return: "name" "Brian"

NewArray : "name" "Brian"

0 1

Examples -1 string and array

Can divide a string into various elements - and put them into an array

 Use split(" ") to get each element – separated by a " " character

 Elements are then assigned to an Array

 NewArray.length will now contain number of elements in string AND
array

var DataString = "Tom Fred Joe Ian"
document.write("The String is : ", DataString);

var NewArray = DataString.split(" ")

document.write("The Array elements are: ");
 for (i=0; i<NewArray.length; i++)
 {
 document.write(NewArray[i])
 document.write('
')
 }

http://www.w3schools.com/jsref/jsref_split.asp

The String is : Tom Fred Joe Ian
The Array elements are : Tom,Fred,Joe,Ian

This example gets the email address from the user
It breaks it down into the username and website - uses split("@")
Full website is updated by appending “www”

var emailAddress = “b.shields@gcu.ac.uk”

var NewArray = emailAddress.split("@")

var username = NewArray[0];
document.write("Your user name is ... ", username);

var website = NewArray[1];
document.write("The website is ... ", website);

var fullwebsite = "www." + website
document.write("The full website is ", fullwebsite);
Your user name is ... b.shields
The website is gcu.ac.uk
The full website is ...www.gcu.ac.uk

