Answers to Exercises in Chapter 1

1.1 The prefixes are:

 10^{-12} р 10^{-9} n 10^{-6} μ 10^{-3} m 10^{3} k 10^{6} Μ 10^{9} G 10^{12} Т

- 1.2 1 ms is 1 millisecond, 1 m/s is 1 metre per second and 1mS is 1 milliSiemen (the meaning of Siemens will be covered later but these are clearly not seconds!).
- 1.3 1 m Ω is 1 milliohm (10⁻³ ohms) and 1 M Ω is 1 megohm (10⁶ ohms).
- 1.4 Direct current describes the situation where the current in a conductor always flows in the same direction. Alternating current describes the situation where the direction of the current periodically changes.
- 1.5 The unit of measurement of resistance is the ohm (Ω) .
- **1.6** The unit of measurement of capacitance is the farad (F).
- **1.7** The unit of measurement of inductance is the henry (H).
- **1.8** From Kirchoff's current law, the currents flowing into any note must sum to zero, so here $I_1 + I_2 + I_3 = 0$, which gives $5A + 3A + I_3 = 0$. So $I_3 = -8A$.
- 1.9 From Kirchoff's voltage law, the voltages around the loop must sum to zero, so here $E V_1 V_2 + V_3 = 0$, which gives $12V 8V 5V + V_3 = 0$. So $V_3 = 1V$.
- 1.10 By Ohm's law, $I = V/R = 5/10^3 = 5$ mA.
- 1.11 By Ohm's law, $R = V/I = 9/(1.5 \times 10^{-3}) = 6 \text{ k}\Omega$.
- 1.12 $P = V^2/R = 25^2/25 = 25$ W.
- **1.13** $P = I^2 R = (5 \times 10^{-6})^2 \times 400 = 10 \text{ nW}.$

Neil Storey, Electronics: A Systems Approach, 6e, Instructor's Manual

- 1.14 $R = R_1 + R_2 = 20 \ \Omega + 30 \ \Omega = 50 \ \Omega.$
- 1.15 $1/R = 1/R_1 + 1/R_2$. Therefore, $R = 1/(1/20 + 1/30) = 12 \Omega$.
- **1.16** $R = R_1 + R_2 + R_3 = 1k\Omega + 2.2 k\Omega + 4.7 k\Omega = 7.9 k\Omega$.
- 1.17 $1/R = 1/R_1 + 1/R_2 + 1/R_3$. Therefore, $R = 1/(1/1k\Omega + 1/2.2k\Omega + 1/4.7k\Omega) = 584 \Omega$.

(a) This is 10 Ω , in series with 20 Ω //20 Ω , which is 10 Ω + 10 Ω = 20 Ω .

(b) This is 30 Ω , in series with 60 Ω //60 Ω //60 Ω = 30 Ω + 20 Ω = 50 Ω .

(a) This is $(1k\Omega + 1.2 k\Omega)//(3.3 k\Omega + 1.5 k\Omega) = 2.2 k\Omega//4.8 k\Omega = 1.51 k\Omega$.

(b) This is $(150 \Omega / / 300 \Omega) + (270 \Omega / / 180 \Omega) = 100 \Omega + 108 \Omega = 208 \Omega$.

1.21

(b) (C) V_1 $1 \, k\Omega$ 6 kΩ 2 kΩ 18 V 9 V

(a)
$$V_{I} = 9 + (18 - 9) \frac{1k\Omega + 6k\Omega}{1k\Omega + 6k\Omega + 2k\Omega}$$
$$= 9 + 9\frac{7}{9}$$
$$= 16 \text{ V}$$

(b)
$$V_2 = 9 \frac{R_2}{R_1 + R_2}$$
$$= 9 \frac{20\Omega}{20\Omega + 25\Omega}$$
$$= 4V$$

(c)
$$V_{3} = (-14 + 2) \frac{0032}{60\Omega + 30\Omega}$$

= $-12 \frac{2}{3}$
= $-8V$

1.22 $T = 1/f = 1/10^3 = 1$ ms.

1.23
$$f = 1/T = 1/(20 \times 10^{-6}) = 50$$
 kHz.