SAMPLE PROBLEM 4/2

The simple truss shown supports the two loads, each of magnitude L. Determine the forces in members $D E, D F, D G$, and $C D$.

Solution. First of all, we note that the curved members of this simple truss are all two-force members, so that the effect of each curved member within the truss is the same as that of a straight member.

We can begin with joint E because there are only two unknown member forces acting there. With reference to the free-body diagram and accompanying geometry for joint E, we note that $\beta=180^{\circ}-11.25^{\circ}-90^{\circ}=78.8^{\circ}$.
(1)

$$
\begin{array}{lrl}
{\left[\Sigma F_{y}=0\right]} & D E \sin 78.8^{\circ}-L=0 & D E=1.020 L T \\
{\left[\Sigma F_{x}=0\right]} & E F-D E \cos 78.8^{\circ}=0 & E F=0.1989 L C
\end{array}
$$

Ans.

We must now move to joint F, as there are still three unknown members at joint D. From the geometric diagram,

$$
\gamma=\tan ^{-1}\left[\frac{2 R \sin 22.5^{\circ}}{2 R \cos 22.5^{\circ}-R}\right]=42.1^{\circ}
$$

From the free-body diagram of joint F,

$$
\begin{array}{rr}
{\left[\Sigma F_{x}=0\right]} & -G F \cos 67.5^{\circ}+D F \cos 42.1^{\circ}-0.1989 L=0 \\
{\left[\Sigma F_{y}=0\right]} & G F \sin 67.5^{\circ}+D F \sin 42.1^{\circ}-L=0
\end{array}
$$

Simultaneous solution of these two equations yields

$$
G F=0.646 L T \quad D F=0.601 L T
$$

Ans.

For member $D G$, we move to the free-body diagram of joint D and the accompanying geometry.

$$
\begin{aligned}
\delta & =\tan ^{-1}\left[\frac{2 R \cos 22.5^{\circ}-2 R \cos 45^{\circ}}{2 R \sin 45^{\circ}-2 R \sin 22.5^{\circ}}\right]=33.8^{\circ} \\
\epsilon & =\tan ^{-1}\left[\frac{2 R \sin 22.5^{\circ}-R \sin 45^{\circ}}{2 R \cos 22.5^{\circ}-R \cos 45^{\circ}}\right]=2.92^{\circ}
\end{aligned}
$$

Then from joint D :

$$
\begin{aligned}
& {\left[\Sigma F_{x}=0\right]-D G \cos 2.92^{\circ}-C D \sin 33.8^{\circ}-0.601 L \sin 47.9^{\circ}+1.020 L \cos 78.8^{\circ}=0} \\
& {\left[\Sigma F_{y}=0\right]-D G \sin 2.92^{\circ}+C D \cos 33.8^{\circ}-0.601 L \cos 47.9^{\circ}-1.020 L \sin 78.8^{\circ}=0}
\end{aligned}
$$

The simultaneous solution is

$$
C D=1.617 L T \quad D G=-1.147 L \text { or } D G=1.147 L C \quad \text { Ans. }
$$

Note that ϵ is shown exaggerated in the accompanying figures.

