SAMPLE PROBLEM 4/3

Calculate the forces induced in members $K L, C L$, and $C B$ by the 20 -ton load on the cantilever truss.

Solution. Although the vertical components of the reactions at A and M are statically indeterminate with the two fixed supports, all members other than $A M$ are statically determinate. We may pass a section directly through members $K L$, $C L$, and $C B$ and analyze the portion of the truss to the left of this section as a 1) statically determinate rigid body.

The free-body diagram of the portion of the truss to the left of the section is shown. A moment sum about L quickly verifies the assignment of $C B$ as compression, and a moment sum about C quickly discloses that $K L$ is in tension. The direction of $C L$ is not quite so obvious until we observe that $K L$ and $C B$ intersect at a point P to the right of G. A moment sum about P eliminates reference to $K L$ and $C B$ and shows that $C L$ must be compressive to balance the moment of the 20 -ton force about P. With these considerations in mind the solution becomes straightforward, as we now see how to solve for each of the three unknowns independently of the other two.

Summing moments about L requires finding the moment arm $\overline{B L}=16+$ 2 $(26-16) / 2=21 \mathrm{ft}$. Thus,

$$
\left[\Sigma M_{L}=0\right] \quad 20(5)(12)-C B(21)=0 \quad C B=57.1 \text { tons } C \quad \text { Ans. }
$$

Next we take moments about C, which requires a calculation of $\cos \theta$. From the given dimensions we see $\theta=\tan ^{-1}(5 / 12)$ so that $\cos \theta=12 / 13$. Therefore,

$$
\left[\Sigma M_{C}=0\right] \quad 20(4)(12)-\frac{12}{13} K L(16)=0 \quad K L=65 \text { tons } T
$$

Ans.
Finally, we may find $C L$ by a moment sum about P, whose distance from C is given by $\overline{P C} / 16=24 /(26-16)$ or $\overline{P C}=38.4 \mathrm{ft}$. We also need β, which is given by $\beta=\tan ^{-1}(\overline{C B} / \overline{B L})=\tan ^{-1}(12 / 21)=29.7^{\circ}$ and $\cos \beta=0.868$. We now have
$\left[\Sigma M_{p}=0\right]$

$$
\begin{aligned}
& 20(48-38.4)-C L(0.868)(38.4)=0 \\
& C L=5.76 \text { tons } C
\end{aligned}
$$

Helpful Hints

(1) We note that analysis by the method of joints would necessitate working with eight joints in order to calculate the three forces in question. Thus, the method of sections offers a considerable advantage in this case.
(2) We could have started with moments about C or P just as well.
(3) We could also have determined $C L$ by a force summation in either the x - or y-direction.

