8.1 What is meant by a 'two-port network', and what are the two ports?
8.2 Derive expressions for the voltage gain, current gain and power gain of a two-port network in terms of the input and output voltages, and the input and output currents.
8.3 Determine the voltage gain, current gain and power gain of the following arrangement.

8.4 Calculate the overall power gain of the following arrangement if the power gain of each stage is a shown in the diagram.

8.5 For the arrangement shown in Exercise 8.4, determine the gain of each stage in decibels, and then compute the gain of the overall arrangement in decibels.
8.6 A circuit has a gain of 25 dB . What is its power gain (expressed as a simple ratio)?
8.7 A circuit has a gain of 25 dB . What is its voltage gain?
8.8 Calculate the reactance of a $1 \mu \mathrm{~F}$ capacitor at a frequency of 10 kHz , and the reactance of a 20 mH inductor at a frequency of $100 \mathrm{rad} / \mathrm{s}$. In each case include the units in your answer.
8.9 Express an angular frequency of $250 \mathrm{rad} / \mathrm{s}$ as a cyclic frequency (in Hz).
8.10 Express a cyclic frequency of 250 Hz as an angular frequency (in rad/s).
8.11 Determine the transfer function of the following circuit.

8.12 A series $R C$ circuit is formed from a resistor of $33 \mathrm{k} \Omega$ and a capacitor or 15 nF . What is the time constant of this circuit?
8.13 Calculate the time constant T, the angular cut-off frequency ω_{c} and the cyclic cut-off frequency f_{c} of the following arrangement. Is this a high- or a lowfrequency cut-off?

8.14 Determine the frequencies that correspond to:
a) an octave below 30 Hz ;
b) two octaves above 25 kHz ;
c) three octaves above 1 kHz ;
d) adecade above 1 MHz ;
e) two decades below 300 Hz ;
f) threedecades above 50 Hz .
8.15 Calculate the time constant T, the angular cut-off frequency ω_{c} and the cyclic cut-off frequency f_{c} of the following arrangement. Is this a high- or a lowfrequency cut-off?

8.16 A parallel RL circuit is formed from a resistor of 150Ω and an inductor of 30 mH . What is the time constant of this circuit?
8.17 Calculate the time constant T, the angular cut-off frequency ω_{c} and the cyclic cut-off frequency f_{c} of the following arrangement. Is this a high- or a lowfrequency cut-off?

8.18 Calculate the time constant T, the angular cut-off frequency ω_{c} and the cyclic cut-off frequency f_{c} of the following arrangement. Is this a high- or a lowfrequency cut-off?

8.19 Sketch a straight-line approximation to the Bode diagram of the circuit of Exercise 8.18. Use this approximation to produce a more realistic plot of the gain and phase responses of the circuit.
8.20 A circuit contains three high-frequency cut-offs and two low-frequency cut-offs. What are the rates of change of gain of this circuit at very high and very low frequencies?
8.21 In the arrangement described in Exercise 8.20, what phase shift is produced at very high and very low frequencies?
8.22 Explain what is meant by the term 'resonance'.
8.23 Calculate the resonant frequency f_{0}, the quality factor Qand the bandwidth Bofthe following circuit.

8.24 Calculate the resonant frequency f_{0}, the quality factor Q and the bandwidth B of a parallel circuit with a resistor of $1 \mathrm{k} \Omega$, an inductor of 50 mH and a capacitor of $22 \mu \mathrm{~F}$.
8.25 Why is it more common to construct first order filters using combinations of resistors and capacitors, rather than resistors and inductors.
8.26 Explain the difference between a passive and an active filter.
8.27 Why are inductors often avoided in the construction of filters?
8.28 What form of active filter is optimised to producea flatresponse withinits pass band?
8.29 What form of active filter is optimised to producea sharp transition from the pass band to the stop band?
8.30 What form of filter is optimised for a linear phase response?
8.31 Explain why stray capacitance and stray inductance affect the frequency response of electronic circuits.

