Answers to Exercises in Chapter 8

8.1 A two-port network is a circuit configuration that has two 'ports' - these are an input port and an output port.
8.2 As discussed in Section 8.2:

$$
\begin{aligned}
& \text { Voltage gain }\left(A_{v}\right)=V_{o} / V_{i} \\
& \text { Current gain }\left(A_{i}\right)=I_{o} / I_{i} \\
& \text { Power gain }\left(A_{p}\right)=P_{o} / P_{i}
\end{aligned}
$$

8.3

$$
\left.\begin{array}{l}
\text { Voltage gain }\left(A_{v}\right)=V_{o} / V_{i}=15 \mathrm{~V} / 2 \mathrm{~V}=7.5 \\
\text { Current gain }\left(A_{i}\right)
\end{array}=I_{o} / I_{i}=10 \mathrm{~mA} / 1 \mathrm{~mA}=10\right) ~ \begin{aligned}
\text { Power gain }\left(A_{p}\right) & =P_{o} / P_{i}=\left(V_{o} \times I_{o}\right) /\left(V_{i} \times I_{i}\right) \\
& =(15 \mathrm{~V} \times 10 \mathrm{~mA}) /(2 \mathrm{~V} \times 1 \mathrm{~mA}) \\
& =(150 \mathrm{~mW}) /(2 \mathrm{~mW}) \\
& =75
\end{aligned}
$$

8.4 The overal gain is the product of the gain of each stage. Therefore,

$$
\text { Power gain }=75 \times 25 \times 0.3=562.5
$$

8.5 The gain of each stage in decibels is give by

1st stage - power gain $=75$, so gain in $\mathrm{dB}=10 \log _{10} 75=18.75 \mathrm{~dB}$
2 nd stage - power gain $=25$, so gain in $\mathrm{dB}=10 \log _{10} 25=13.98 \mathrm{~dB}$
3 rd stage - power gain $=0.5$, so gain in $\mathrm{dB}=10 \log _{10} 0.3=-5.229 \mathrm{~dB}$
So the gain of the three stages in series is $18.75+13.98-5.229=27.501 \mathrm{~dB}$
This corresponds to a power gain of 562.5 as determined in Example 8.5.
8.6 If the gain of a ciruit is 25 dB , the gain as a ratio is $10^{25 / 10}=316.2$.
8.7 If the gain of a circuit is 25 dB , the voltage gain is $10^{25 / 20}=17.8$.
$8.8 \quad X_{C}=1 / \omega C=1 / 2 \pi f C=1 /\left(2 \times \pi \times 10^{4} \times 10^{-6}\right)=15.9 \Omega$.
$X_{L}=\omega L=100 \times 20 \times 10^{-3}=2 \Omega$.
8.9 $f=\omega / 2 \pi=250 / 2 \pi=39.8 \mathrm{~Hz}$.
8.10 $\omega=2 \pi f=2 \times \pi \times 250=1,571 \mathrm{rad} / \mathrm{s}$.
8.11

$$
\begin{aligned}
\frac{v_{o}}{v_{i}} & =\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \\
& =\frac{R_{2}}{R_{2}+R_{1}-\mathrm{j} \frac{1}{\omega C}}
\end{aligned}
$$

8.12 $\mathrm{T}=C R=15 \times 10^{-9} \times 33 \times 10^{3}=495 \mu \mathrm{~s}$.
8.13

$\mathrm{T}=C R=100 \times 10^{-9} \times 33 \times 10^{3}=3.3 \mathrm{~ms} . \omega_{c}=1 / \mathrm{T}=1 / 3.3 \mathrm{~ms}=303 \mathrm{rad} / \mathrm{s} . f_{c}=$ $\omega_{c} / 2 \pi=303 / 2 \pi=48.2 \mathrm{~Hz}$. This is a low-frequency cut-off.
8.14 An octave below 30 Hz is 15 Hz ;
two octaves above 25 kHz is 100 kHz ; three octaves above 1 kHz is 8 kHz ; a decade above 1 MHz is 10 MHz ; two decades below 300 Hz is 3 Hz ; three decades above 50 Hz is 50 kHz .
8.15

$\mathrm{T}=C R=25 \times 10^{-3} \times 180=4.5 \mathrm{~s} . \omega_{c}=1 / \mathrm{T}=1 / 4.5=0.222 \mathrm{rad} / \mathrm{s} . f_{c}=\omega_{c} / 2 \pi=$ $0.222 / 2 \pi=35.4 \mathrm{mHz}$. This is a high-frequency cut-off.
8.16 $\mathrm{T}=L / R=30 \times 10^{-3} / 150=200 \mu \mathrm{~s}$.
8.17

$\mathrm{T}=L / R=50 \times 10^{-3} / 1 \times 10^{3}=50 \mu \mathrm{~s} . \omega_{c}=1 / \mathrm{T}=1 /\left(50 \times 10^{-6}\right)=20 \mathrm{krad} / \mathrm{s} . f_{c}=$ $\omega_{c} / 2 \pi=\left(20 \times 10^{3}\right) / 2 \pi=3.18 \mathrm{kHz}$. This is a high-frequency cut-off.
8.18

$\mathrm{T}=L / R=20 \times 10^{-3} / 25=800 \mu \mathrm{~s} . \omega_{c}=1 / \mathrm{T}=1 /\left(800 \times 10^{-6}\right)=1,250 \mathrm{rad} / \mathrm{s} . f_{c}=$ $\omega_{c} / 2 \pi=\left(20 \times 10^{3}\right) / 2 \pi=199 \mathrm{~Hz}$. This is a low-frequency cut-off.
8.19 The straight-line approximations should resemble those in Figure 8.11(a), with the cut-off frequency $f_{c}=199 \mathrm{~Hz}$. The more realistic curves should resemble those in Figure 8.12(a), again with $f_{c}=199 \mathrm{~Hz}$.
8.20 At high frequencies, the gain will fall at 18 dB per octave increase in frequency. At low frequencies, it will fall at 12 dB per octave decrease in frequency.
8.21 At high frequencies the gain will tend to -270°, at low frequencies it will tend to $+180^{\circ}$.
8.22 Resonance is discussed in Section 8.9.
8.23

$$
\begin{aligned}
f_{0} & =\frac{1}{2 \pi \sqrt{L C}} \\
& =\frac{1}{2 \pi \sqrt{\left(50 \times 10^{-3} \times 22 \times 10^{-6}\right)}} \\
& =152 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{aligned}
Q & =\frac{1}{R} \sqrt{\frac{L}{C}} \\
& =\frac{1}{3} \sqrt{\frac{50 \times 10^{-3}}{22 \times 10^{-6}}} \\
& =15.9
\end{aligned}
$$

$$
B=\frac{R}{2 \pi L}
$$

$$
=\frac{3}{2 \times \pi \times 50 \times 10^{-3}}
$$

$$
=9.55 \mathrm{~Hz}
$$

8.24

$$
\begin{gathered}
f_{0}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{50 \mathrm{mH} \times 22 \mu \mathrm{~F}}}=152 \mathrm{~Hz} \\
Q=R \sqrt{\frac{C}{L}}=1 \mathrm{k} \Omega \sqrt{\frac{22 \mu \mathrm{~F}}{50 \mathrm{mH}}}=21 \\
B=\frac{1}{2 \pi R C}=\frac{1}{2 \pi \times 1 \mathrm{k} \Omega \times 22 \mu \mathrm{~F}}=7.2 \mathrm{~Hz}
\end{gathered}
$$

8.25 RC circuits are more commonly used than RL circuits, because inductors are expensive, bulky and have greater losses than capacitors.
8.26 Passive filters contain no active components and examples include $R C$ and $R L$ filters. Active filters incorporate an active amplifying element, such as an opamp.
8.27 Inductors are often avoided in the construction of filters because they are expensive, bulky and suffer from greater losses than other passive components.
8.28 The Butterworth filter is optimised to produce a flat response within its passband.
8.29 The Chebyshev filter is optimised to produce a sharp transition from the passband to the stop-band.
8.30 The Bessel filter is optimised for a linear phase response and is sometimes called a linear phase filter.
8.31 The effects of stray capacitance and inductance are discussed in Section 8.11.

