
SAMPLE PROBLEM 5/1

Centroid of a circular arc. Locate the centroid of a circular arc as shown in
the figure.

Solution. Choosing the axis of symmetry as the x-axis makes � 0. A differ-
ential element of arc has the length expressed in polar coordinates,
and the x-coordinate of the element is r cos �.

Applying the first of Eqs. 5/4 and substituting L � 2�r give

Ans.

For a semicircular arc 2� � �, which gives � 2r/�. By symmetry we see
immediately that this result also applies to the quarter-circular arc when the
measurement is made as shown.

Helpful Hint

� It should be perfectly evident that polar coordinates are preferable to rectan-
gular coordinates to express the length of a circular arc.
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Helpful Hint

� We save one integration here by
using the first-order element of area.
Recognize that dA must be expressed
in terms of the integration variable
y; hence, x � ƒ(y) is required.

SAMPLE PROBLEM 5/2

Centroid of a triangular area. Determine the distance from the base of a
triangle of altitude h to the centroid of its area.

Solution. The x-axis is taken to coincide with the base. A differential strip of
area dA � x dy is chosen. By similar triangles x/(h � y) � b/h. Applying the sec-
ond of Eqs. 5/5a gives

and Ans.

This same result holds with respect to either of the other two sides of the
triangle considered a new base with corresponding new altitude. Thus, the cen-
troid lies at the intersection of the medians, since the distance of this point from
any side is one-third the altitude of the triangle with that side considered the
base.
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