SAMPLE PROBLEM 5/11

Determine the equivalent concentrated load(s) and external reactions for the simply supported beam which is subjected to the distributed load shown.

Solution. The area associated with the load distribution is divided into the rectangular and triangular areas shown. The concentrated-load values are determined by computing the areas, and these loads are located at the centroids of the respective areas.

Once the concentrated loads are determined, they are placed on the freebody diagram of the beam along with the external reactions at A and B. Using principles of equilibrium, we have

$$
\begin{array}{cc}
{\left[\Sigma M_{A}=0\right]} & 1200(5)+480(8)-R_{B}(10)=0 \\
& R_{B}=984 \mathrm{lb} \\
{\left[\Sigma M_{B}=0\right]} & R_{A}(10)-1200(5)-480(2)=0 \\
R_{A}=696 \mathrm{lb}
\end{array}
$$

Ans.

Ans.

SAMPLE PROBLEM 5/12

Determine the reaction at the support A of the loaded cantilever beam.

Solution. The constants in the load distribution are found to be $w_{0}=1000$ (1) N / m and $k=2 \mathrm{~N} / \mathrm{m}^{4}$. The load R is then

$$
R=\int w d x=\int_{0}^{8}\left(1000+2 x^{3}\right) d x=\left.\left(1000 x+\frac{x^{4}}{2}\right)\right|_{0} ^{8}=10050 \mathrm{~N}
$$

(2) The x-coordinate of the centroid of the area is found by

$$
\begin{aligned}
\bar{x} & =\frac{\int x w d x}{R}=\frac{1}{10050} \int_{0}^{8} x\left(1000+2 x^{3}\right) d x \\
& =\left.\frac{1}{10050}\left(500 x^{2}+\frac{2}{5} x^{5}\right)\right|_{0} ^{8}=4.49 \mathrm{~m}
\end{aligned}
$$

From the free-body diagram of the beam, we have

$$
\begin{array}{cc}
{\left[\Sigma M_{A}=0\right]} & M_{A}-(10050)(4.49)=0 \\
& M_{A}=45100 \mathrm{~N} \cdot \mathrm{~m} \\
{\left[\Sigma F_{y}=0\right]} & A_{y}=10050 \mathrm{~N}
\end{array}
$$

Ans.

Helpful Hints

(1) Use caution with the units of the constants w_{0} and k.
(2) The student should recognize that the calculation of R and its location \bar{x} is simply an application of centroids as treated in Art. 5/3.

Note that $A_{x}=0$ by inspection.

