SAMPLE PROBLEM 5/3

Centroid of the area of a circular sector. Locate the centroid of the area of a circular sector with respect to its vertex.

Solution 1. The *x*-axis is chosen as the axis of symmetry, and \bar{y} is therefore automatically zero. We may cover the area by moving an element in the form of a partial circular ring, as shown in the figure, from the center to the outer periphery. The radius of the ring is r_0 and its thickness is dr_0 , so that its area is $dA = 2r_0\alpha dr_0$.

The *x*-coordinate to the centroid of the element from Sample Problem 5/1 is $x_c = r_0 \sin \alpha / \alpha$, where r_0 replaces *r* in the formula. Thus, the first of Eqs. 5/5*a* gives

Solution II. The area may also be covered by swinging a triangle of differential area about the vertex and through the total angle of the sector. This triangle, shown in the illustration, has an area $dA = (r/2)(r d\theta)$, where higher-order terms are neglected. From Sample Problem 5/2 the centroid of the triangular element of area is two-thirds of its altitude from its vertex, so that the *x*-coordinate to the centroid of the element is $x_c = \frac{2}{3}r \cos \theta$. Applying the first of Eqs. 5/5*a* gives

$$[A\overline{x} = \int x_c \, dA] \qquad (r^2 \alpha)\overline{x} = \int_{-\alpha}^{\alpha} (\frac{2}{3}r \cos \theta)(\frac{1}{2}r^2 \, d\theta)$$
$$r^2 \alpha \overline{x} = \frac{2}{3}r^3 \sin \alpha$$
and as before
$$\overline{x} = \frac{2}{3}\frac{r \sin \alpha}{\alpha} \qquad Ans.$$

For a semicircular area $2\alpha = \pi$, which gives $\overline{x} = 4r/3\pi$. By symmetry we see immediately that this result also applies to the quarter-circular area where the measurement is made as shown.

It should be noted that, if we had chosen a second-order element $r_0 dr_0 d\theta$, one integration with respect to θ would yield the ring with which *Solution I* began. On the other hand, integration with respect to r_0 initially would give the triangular element with which *Solution II* began.

Helpful Hints

- 1 Note carefully that we must distinguish between the variable r_0 and the constant r.
- 2 Be careful not to use r_0 as the centroidal coordinate for the element.

