
SAMPLE PROBLEM 5/3

Centroid of the area of a circular sector. Locate the centroid of the area
of a circular sector with respect to its vertex.

Solution I. The x-axis is chosen as the axis of symmetry, and is therefore
automatically zero. We may cover the area by moving an element in the form of
a partial circular ring, as shown in the figure, from the center to the outer pe-
riphery. The radius of the ring is r0 and its thickness is dr0, so that its area is
dA � 2r0� dr0.

The x-coordinate to the centroid of the element from Sample Problem 5/1 is
xc � r0 sin �/�, where r0 replaces r in the formula. Thus, the first of Eqs. 5/5a
gives

Ans.

Solution II. The area may also be covered by swinging a triangle of differen-
tial area about the vertex and through the total angle of the sector. This triangle,
shown in the illustration, has an area dA � (r/2)(r d�), where higher-order terms
are neglected. From Sample Problem 5/2 the centroid of the triangular element
of area is two-thirds of its altitude from its vertex, so that the x-coordinate to the
centroid of the element is xc � cos �. Applying the first of Eqs. 5/5a gives

and as before Ans.

For a semicircular area 2� � �, which gives � 4r/3�. By symmetry we see
immediately that this result also applies to the quarter-circular area where the
measurement is made as shown.

It should be noted that, if we had chosen a second-order element r0 dr0 d�,
one integration with respect to � would yield the ring with which Solution I
began. On the other hand, integration with respect to r0 initially would give the
triangular element with which Solution II began.
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Helpful Hints

� Note carefully that we must distin-
guish between the variable r0 and
the constant r.

� Be careful not to use r0 as the cen-
troidal coordinate for the element.
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