SAMPLE PROBLEM 5/3

Centroid of the area of a circular sector. Locate the centroid of the area of a circular sector with respect to its vertex.

Solution I. The x-axis is chosen as the axis of symmetry, and \bar{y} is therefore automatically zero. We may cover the area by moving an element in the form of a partial circular ring, as shown in the figure, from the center to the outer periphery. The radius of the ring is r_{0} and its thickness is $d r_{0}$, so that its area is $d A=2 r_{0} \alpha d r_{0}$.

The x-coordinate to the centroid of the element from Sample Problem $5 / 1$ is (2) $x_{c}=r_{0} \sin \alpha / \alpha$, where r_{0} replaces r in the formula. Thus, the first of Eqs. $5 / 5 a$ gives

$$
\left[A \bar{x}=\int x_{c} d A\right] \quad \frac{2 \alpha}{2 \pi}\left(\pi r^{2}\right) \bar{x}=\int_{0}^{r}\left(\frac{r_{0} \sin \alpha}{\alpha}\right)\left(2 r_{0} \alpha d r_{0}\right), ~ \begin{aligned}
r^{2} \alpha \bar{x} & =\frac{2}{3} r^{3} \sin \alpha \\
\bar{x} & =\frac{2}{3} \frac{r \sin \alpha}{\alpha}
\end{aligned}
$$

Ans.

Solution II. The area may also be covered by swinging a triangle of differential area about the vertex and through the total angle of the sector. This triangle, shown in the illustration, has an area $d A=(r / 2)(r d \theta)$, where higher-order terms are neglected. From Sample Problem 5/2 the centroid of the triangular element of area is two-thirds of its altitude from its vertex, so that the x-coordinate to the centroid of the element is $x_{c}=\frac{2}{3} r \cos \theta$. Applying the first of Eqs. $5 / 5 a$ gives
$\left[A \bar{x}=\int x_{c} d A\right] \quad\left(r^{2} \alpha\right) \bar{x}=\int_{-\alpha}^{\alpha}\left(\frac{2}{3} r \cos \theta\right)\left(\frac{1}{2} r^{2} d \theta\right)$
and as before

$$
\begin{aligned}
r^{2} \alpha \bar{x} & =\frac{2}{3} r^{3} \sin \alpha \\
\bar{x} & =\frac{2}{3} \frac{r \sin \alpha}{\alpha}
\end{aligned}
$$

Ans.
For a semicircular area $2 \alpha=\pi$, which gives $\bar{x}=4 r / 3 \pi$. By symmetry we see immediately that this result also applies to the quarter-circular area where the measurement is made as shown.

It should be noted that, if we had chosen a second-order element $r_{0} d r_{0} d \theta$, one integration with respect to θ would yield the ring with which Solution I began. On the other hand, integration with respect to r_{0} initially would give the triangular element with which Solution II began.

Solution I

Helpful Hints

(1) Note carefully that we must distinguish between the variable r_{0} and the constant r.
Be careful not to use r_{0} as the centroidal coordinate for the element.

Solution II

