Example 1 - Solution

Since we are required to calculate the sending-end voltage, nominally 11 kV , we refer all impedances to the 11 kV side of the transformer:
0.01Ω becomes $0.01 \times(11000 / 400)^{2}=7.56 \Omega$
$\mathrm{j} 0.005 \Omega$ becomes $\mathrm{j} 0.005 \times(11000 / 400)^{2}=\mathrm{j} 3.78 \Omega$

Simplified diagram with impedances referred to 11 kV

Hence,

$$
\text { Ztotal }=10.56+\mathrm{j} 12.78
$$

The next step is to calculate I_{R} (and I_{S}) from the three-phase power delivered, 250 kW :

$$
\begin{aligned}
& \text { Power delivered }=3 \mathrm{~V}_{\mathrm{R}} \mathrm{I}_{\mathrm{R}} \cos \Theta \\
& \qquad \begin{aligned}
250 \times 10^{3} & =3 \times(400 / \checkmark 3) \times \mathrm{I}_{\mathrm{R}} \\
\mathbf{I}_{\mathbf{R}} & =\mathbf{3 6 0 . 8} \mathbf{~ A}
\end{aligned}
\end{aligned}
$$

However, in order to calculate the voltage drop down the equivalent network referred to 11 kV.

$$
\begin{aligned}
I_{R}=360.8 & \times(400 / 11000)=13.12 \mathrm{~A} \\
& \mathrm{Vs}
\end{aligned}=\mathrm{V}_{\mathrm{R}}+\mathrm{I}_{\mathrm{R}} \mathrm{Z}_{\mathrm{t}} .
$$

