Example 1 - Solution

Since we are required to calculate the sending-end voltage, nominally 11 kV, we refer all impedances to the 11 kV side of the transformer:

 0.01Ω becomes $0.01 \times (11000/400)^2 = 7.56 \Omega$

j0.005 Ω becomes j0.005 x $(11000/400)^2 = j 3.78 Ω$

Simplified diagram with impedances referred to 11kV

Hence,

$$Z$$
total = 10.56 + j 12.78

The next step is to calculate I_{R} (and I_{S}) from the three-phase power delivered,

250 kW:

Power delivered = $3V_RI_R\cos\Theta$ 250 x 10³ = 3 x (400/√3) x I_R I_R = 360.8 A

However, in order to calculate the voltage drop down the equivalent network referred to 11 kV.

$$I'_R = 360.8 \text{ x} (400/11000) = 13.12 \text{ A}$$

 $V_S = V_R + I_R Z_t$
 $= (11000/\checkmark 3) + 13.12(10.56 = J12.78)$