Example 2 - Solution

Since the sending-end voltage is to be calculated, we must refer the impedance of the $275 / 11 \mathrm{kV}$ transformer to 275 kV :

$$
\begin{gathered}
Z^{\prime}=(2+j 10)(275 / 11)^{2} \Omega \\
Z^{\prime}=1250+\mathrm{j} 6250 \Omega
\end{gathered}
$$

The total impedance referred to 275 kV is now

$$
\begin{gathered}
\text { Ztotal }=1+\mathrm{j} 10+2+\mathrm{j} 15+1250+\mathrm{j} 6250 \Omega \\
\text { Ztotal }=1253+\mathrm{j} 6275 \Omega
\end{gathered}
$$

The system volt drop per phase is now to be calculated. However, we first need to refer the current drawn by the motor to 275 kV

Actual motor current $=300 \mathrm{~A}$ at 400 V at 0.8 power factor
At 275 V,
$I^{\prime}{ }_{R}=300(0.8-j 0.6)(400 / 275000) A$
$I^{\prime}{ }_{R}=0.35-\mathrm{j} 0.26 \mathrm{~A}$
$\mathrm{V}_{\mathrm{S}}-\mathrm{V}^{\prime}{ }_{\mathrm{R}}+\mathrm{I}^{\prime} \mathrm{R}_{\mathrm{R}} \mathrm{Z}_{\mathrm{T}}$ where $\mathrm{V}^{\prime}{ }_{\mathrm{R}}=275 \mathrm{KV} / \checkmark 3$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{S}} & =158.8 \times 10^{3}+2079+\mathrm{j} 1872 \mathrm{~V} \\
& =160.88+\mathrm{j} 1.87 \mathrm{kV} \\
& =\mathbf{1 6 0 . 9} \mathbf{~ V} / \mathbf{p h} \\
& \text { or } \mathbf{2 7 8 . 6} \mathbf{~ k V} \text { line }
\end{aligned}
$$

In order to maintain a supply voltage of 400 V to the motor, the sending-end voltage has to be 278.6 kV.

