School of Engineering \& Built Environment

MEng/BEng(Hons) in: Mechanical-Electronic Systems Engineering Mechanical \& Power Plant Systems
Electrical Power Engineering Computer-Aided Mechanical Engineering

Module: Engineering Design \& Analysis 2
(Module No. M2H721926)

Revision Notes: Bending and Direct Stress: A Summary

E: mmd3@gcu.ac.uk

GLASGOW CALEDONIAN UNIVERSITY

School of Engineering \& Built Environment

ENGINEERING DESIGN \& ANALYSIS 2 (M2H721926) - Direct and Bending Stresses Revision

Loads

Types of loading imposed on components/structures:
a) STATIC or DEAD LOADS - non-fluctuating, non-moving (static), gravity (weight), thermal.
b) LIVE LOADS - short time span, moving (dynamic).
c) IMPACT or SHOCK LOADS - very short time span, large magnitudes.
d) ALTERNATING or FATIGUE LOADS - magnitude and sign (+ve / -ve) changes with time.

Effects of loading on components/structures:

$$
\text { TENSILE } \quad \text { pulling/stretching }
$$

COMPRESSIVE

BENDING
flexure
sliding
expansion/contraction with change in temperature
THERMAL

TORSION

SHEAR

-

TORSION

expion contraction with chang in terat

DIRECT STRESS

Direct Stress, $\sigma=\frac{P}{A}\left(N / m^{2}\right)$ [Note: + ve for tensile load, -ve for compression load]
Note: Units: $1 \mathrm{~N} / \mathrm{m}^{2}=1$ Pascal (Pa)
$1 \mathrm{MN} / \mathrm{m}^{2}=1 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~N} / \mathrm{mm}^{2}$

DIRECT STRAIN

Longitudinal Strain, $\quad \varepsilon_{L}=\frac{\delta L}{L}$ [Note: ε_{L} has no units!]

ELASTIC MATERIAL

Young's Modulus of Elasticity, $E=\frac{\sigma}{\varepsilon_{L}} \quad\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
A value for E for a material can be obtained from a tensile test where a test specimen of the material of specified shape and dimensions is stretched until it breaks. E is calculated as the gradient of the straight line within the elastic behaviour region of the stress-strain graph obtained from the test. The graph below shows typical tensile test curves for various materials with significant points highlighted.

Note: For Low Carbon Steel, $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$; Aluminium, $\mathrm{E}=70 \mathrm{GN} / \mathrm{m}^{2}$

POISSON'S RATIO

Lateral strain, $\varepsilon_{\text {Lat }}=\frac{\delta R}{R}$ or $\varepsilon_{\text {Lat }}=\frac{\delta d}{d}$ or $\varepsilon_{\text {Lat }}=\frac{\delta W}{W}$
Poisson's ratio, $\quad v=\frac{\varepsilon_{\text {Lat }}}{\varepsilon_{L}}$ [Note: v has no units!]
Note: For most metallic materials, $\underline{0.25<v<0.33}$.

INDIRECT STRESS: SHEAR STRESS

Shear stress, $\quad \tau=\frac{Q}{A_{s}}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$

BENDING STRESS

Beam before moment applied

Beam Cross-Section

The theory of elastic bending equation is gven by: $\frac{M}{I}=\frac{\sigma_{b}}{y}=\frac{E}{R}$

The bending stress can be calculated from: $\sigma_{b}=\frac{M y}{I}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
Bending stress is distributed down through a cross-section as follows:
Symmetrical Cross-Sections:

Unsymmetrical Cross-Sections:

