

1

## **GLASGOW CALEDONIAN UNIVERSITY**

#### **School of Engineering & Built Environment**

# ENGINEERING DESIGN & ANALYSIS 2 (M2H721926) – Direct and Bending Stresses - Revision

## Loads

Types of loading imposed on components/structures:

- a) STATIC or DEAD LOADS non-fluctuating, non-moving (static), gravity (weight), thermal.
- b) LIVE LOADS short time span, moving (dynamic).
- c) **IMPACT or SHOCK LOADS** very short time span, large magnitudes.
- d) ALTERNATING or FATIGUE LOADS magnitude and sign (+ve / -ve) changes with time.

Effects of loading on components/structures:



**DIRECT STRESS** 

Direct Stress,  $\sigma = \frac{P}{A}(N/m^2)$  [Note: +ve for tensile load, -ve for compression load]

Note: Units:  $1 \text{ N/m}^2 = 1 \text{ Pascal (Pa)}$  $1 \text{ MN/m}^2 = 1 \times 10^6 \text{ N/m}^2 = 1 \text{ N/mm}^2$ 



#### DIRECT STRAIN

Longitudinal Strain, 
$$\varepsilon_L = \frac{\delta L}{L}$$
 [Note:  $\varepsilon_L$  has *no* units!]



#### ELASTIC MATERIAL

Young's Modulus of Elasticity,  $E = \frac{\sigma}{\varepsilon_L}$  (N/m<sup>2</sup>)

A value for E for a material can be obtained from a *tensile test* where a test specimen of the material of specified shape and dimensions is stretched until it breaks. E is calculated as the gradient of the straight line within the elastic behaviour region of the stress-strain graph obtained from the test. The graph below shows typical tensile test curves for various materials with significant points highlighted.

Note: For Low Carbon Steel,  $E = 200 \text{ GN/m}^2$ ; Aluminium,  $E = 70 \text{ GN/m}^2$ 

## **POISSON'S RATIO**

Lateral strain,  $\varepsilon_{Lat} = \frac{\delta R}{R}$  or  $\varepsilon_{Lat} = \frac{\delta d}{d}$  or  $\varepsilon_{Lat} = \frac{\delta W}{W}$ 

Poisson's ratio,  $v = \frac{\varepsilon_{Lat}}{\varepsilon_L}$  [Note: v has *no* units!]



3

## **INDIRECT STRESS: SHEAR STRESS**



4

The bending stress can be calculated from:  $\sigma_b = \frac{My}{I}$  (N/m<sup>2</sup>)

Bending stress is distributed down through a cross-section as follows:

Symmetrical Cross-Sections:



Unsymmetrical Cross-Sections:

