

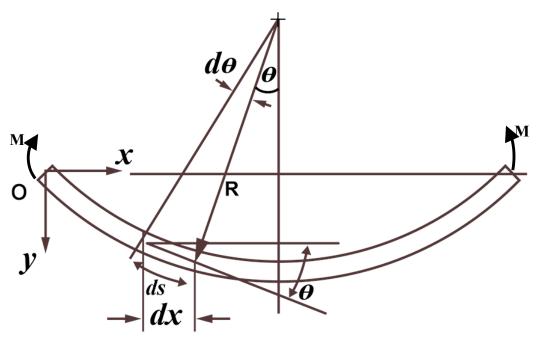
School of Engineering & Built Environment

MEng/BEng(Hons) in:

Mechanical-Electronic Systems Engineering Mechanical & Power Plant Systems Computer-Aided Mechanical Engineering Electrical Power Engineering

Module: Engineering Design & Analysis 2 (Module No. M2H721926)

Deflection of Beams Standard Beams: A Summary


Eur Ing **Professor M. Macdonald** BSc MSc PhD CEng FIMechE FIES FHEA **Department of Engineering T:** 0141 331 3540 **E:** <u>mmd3@gcu.ac.uk</u>

GLASGOW CALEDONIAN UNIVERSITY

School of Engineering & Built Environment

ENGINEERING DESIGN & ANALYSIS 2 (M2H721926)

Deflection of Beams

Differential equation of flexure:

$$EI\frac{d^2y}{dx^2} = -M$$

This equation is known as the, where EI is known as the *flexural stiffness* or *flexural rigidity* of the beam. The equation allows for the determination of beam deflection at any point along the length of a beam, and importantly, the maximum value and where it occurs.

Deflection of Beams – Standard Cases

The table shows the equations derived for maximum slope and maximum deflection for standard beams and cantilevers. In each case, L is the total length and W is the total load. For the distributed load cases, W = wL, where w = load per unit length.

Case	Loading Diagram	Maximum slope	Maximum deflection
1. Cantilever end point load	W L	<u>WL² 2EI</u>	<u>WL³ 3EI</u>
2. Cantilever, uniformly distributed load	W (total) mmmmmm ↓ ↓	WL ² 6EI	<u>WL³</u> 8EI
3. Simply supported beam, central point load	W ↓ t _↓ t	<u>WL</u> 2 16EI	<u>WL³</u> 48EI
4. Simply supported beam, uniformly distributed load	W (total) mmmmmm t₄t	<u>WL²</u> 24EI	<u>5WL³ 384EI</u>