Design of a Helical Spring

Worked Example

A typical spring design problem:

- (a) List and discuss FOUR of the principal factors which a designer should consider in designing and specifying a close-coiled helical spring.
- (b) With reference to Figure Ex.1, determine the spring stiffness, wire diameter and number of active coils of a close-coiled helical spring which will maintain the follower in contact with the cam at all times.
- (c) Check the suitability of steel music wire, having a torsional yield strength of 720 MN/m², as a material for the spring.

Relevant data:

Mass of follower: 5.5 kg

Maximum acceptable axial load between the cam and the follower: 400N

Maximum displacement of follower: 20 mm

Spring index: 6

Maximum diametrical space available for spring: 46 mm

Modulus of rigidity of spring material: 83 GN/m²

Other relevant data:

ISO R.10 Range of Preferred Sizes for Wire and Sheet Metal (diameters and thickness in mm)

					46 mm
0.020	0.100	0.500	2.500	12.500	
0.025	0.125	0.630	3.150	16.000	
		0.800 1.000	4.000 5.000	20.000 25.000	
0.050	0.250	1.250	6.300		Spring
0.063	0.315	1.600	8.000		20 mm
0.080	0.400	2.000	10.000		Lift
					Figure Ex.1

Solution

- (a) Some principle design factors include:
 - Geometrical space into which the spring must fit and operate.
 - Physical magnitudes and effects of working forces/loads and deformations.
 - Environmental type of service conditions such as temperature, atmosphere etc.
 - Economic cost of material and quantity for manufacture.
 - Material material properties such as E, G, σ , τ etc.

Other factors can include:

- Spring availability (standard stockist sizes).
- Spring material availability.
- Spring capability to absorb energy (stiffness/rate etc).
- Natural frequency.
- Nature of loading *light service*: static loads up to 10000 cycles of loading with a low rate of loading without significant impact on spring.

 *average service: typical machine design situations moderate rate of loading and up to 10⁶ cycles.

 *severe service: rapid cycling for above 10⁶ cycles; possibility of shock or impact loading, e.g. engine valve springs.

(b)

Spring Rate (or stiffness) S:
$$s = \frac{F}{\delta} = \frac{400}{20} = 20 \text{ N/mm}$$

Wire Diameter, d: From specification, max. diameter clearance = 46 mm \therefore 46 > D + d

Spring index,
$$C = D/d = 6$$
 \therefore $D = 6d$

$$46 > 6d + d = 7d$$
 $d = 6.57mm$

Hence from the wire diameter size data table, d = 6.3 mm is selected, giving a radial clearance of:

$$[46 - (7 \times 6.3)]/2 = 0.95 \text{ mm}.$$

Number spring coils (or turns), n:
$$s = \frac{Gd}{8C^3n}$$
 : $n = \frac{Gd}{8C^3s} = \frac{(83x10^3)x6.3}{8x6^3x20} = 15.13$

Hence, in the absence of spring end finish information, the number of active coils is taken as 16.

(c)

Suitability of steel music wire:

Assume a Wahl factor given by:
$$K = \frac{4C - 1}{4C - 4} + \frac{0.615}{C} = \frac{(4x6) - 1}{(4x6) - 4} + \frac{0.615}{6} = 1.2525$$

Max. torsional shear stress:
$$\tau_{\text{max}} = \frac{8KFD}{\pi d^3} = \frac{8x1.2525x400x6x6.3}{\pi x6.3^3} = 192.86 \text{ MN/m}^2$$

Hence, since τ_{max} =192.86 MN/m² < 720 MN/m², then steel music wire is suitable for this application!