4.10. Solved Problems - Belt Drive System Design

Problem 1

Calculate the maximum power that may be transmitted by a flat belt driving a pulley 360 mm diameter which rotates at $180 \mathrm{rev} / \mathrm{min}$. The maximum belt tension is 500 N and the angle of lap is 145°. The coefficient of friction between the belt and the pulley is 0.35 .

Solution

Data:
Pulley dia, $\mathrm{d}=360 \mathrm{~mm}=0.36 \mathrm{~m}$
$\therefore \quad \mathrm{r}=0.18 \mathrm{~m}$
$\mathrm{N}=180 \mathrm{rev} / \mathrm{min}$
Max. tension (tight side), $\mathrm{F}_{1}=500 \mathrm{~N}$
Angle of lap, $\theta=145^{\circ}$
$\mu=0.35$
Angle of lap, $\theta=145^{\circ}=(145 / 360) \times 2 \pi=2.5307 \mathrm{rads}$

$$
\frac{F_{1}}{F_{2}}=e^{\mu \theta} \quad \therefore \quad \frac{500}{F_{2}}=e^{0.35 \times 2.5307}=2.425 \quad \therefore \quad \mathrm{~F}_{2}=206.2 \mathrm{~N}
$$

Power, $\mathrm{P}=\mathrm{T} \omega==\left(F_{1}-F_{2}\right) r \omega=\frac{\left(F_{1}-F_{2}\right) \cdot r \cdot 2 \pi N}{60}=\frac{(500-206.2) \times 0.18 \times 2 \pi \times 180}{60}=997 \mathbf{W}$

Problem 2

A multiple vee-belt drive is required to transmit 30 kW from a pulley 160 mm diameter rotating at $450 \mathrm{rev} / \mathrm{min}$. The angle of lap is 170° and the groove angle is 40°. The coefficient of friction between the belt and the pulley is 0.35 and the maximum permissible stress in the belt material is $2.6 \mathrm{MNm}^{-2}$. If the cross-sectional area of each belt is $\mathbf{6 0 0} \mathbf{~ m m}^{2}$, calculate the minimum number of belts required for the drive system.

Solution

Data:
Power, $\mathrm{P}=30 \mathrm{~kW}=30 \times 10^{3} \mathrm{~W}$
Pulley dia, $d=160 \mathrm{~mm}=0.16 \mathrm{~m}$
$\therefore \quad \mathrm{r}=0.08 \mathrm{~m}$
$\mathrm{N}=450 \mathrm{rev} / \mathrm{min}$
Angle of groove, $\alpha=40^{\circ} / 2=20^{\circ}$
Angle of lap, $\theta=170^{\circ}$
$\mu=0.35$
Belt material max stress, $\sigma=2.6 \mathrm{MNm}^{-2}=2.6 \mathrm{Nmm}^{-2}$
Belt cross-sectional area, $\mathrm{A}_{\mathrm{b}}=600 \mathrm{~mm}^{2}$
Angle of lap, $\theta=170^{\circ}=(170 / 360) \times 2 \pi=2.967$ rads

Power, $\mathrm{P}=\mathrm{T} \omega \quad \therefore \quad T=\frac{P}{\omega}=\frac{60 P}{2 \pi N}=\frac{60 \times\left(30 \times 10^{3}\right)}{2 \pi \times 450}=636.6 \mathrm{Nm}$

$$
\begin{array}{ll}
\mathrm{T}=\left(\mathrm{F}_{1}-\mathrm{F}_{2}\right) \mathrm{r} & \therefore \quad F_{1}-F_{2}=\frac{T}{r}=\frac{636.6}{0.08}=7958 \mathrm{~N} \\
\frac{F_{1}}{F_{2}}=e^{\frac{\mu \theta}{\sin \alpha}} \quad \therefore \quad \frac{F_{1}}{F_{2}}=e^{\frac{0.35 \times 2.967}{\sin 20^{\circ}}}=20.83 \quad \therefore \quad F_{2}=\frac{F_{1}}{20.83} \tag{2}
\end{array}
$$

Substitute (2) in (1): $\quad F_{1}-\frac{F_{1}}{20.83}=7958 \quad \therefore \quad \mathrm{~F}_{1}-0.048 \mathrm{~F}_{1}=7958 \therefore \quad \therefore \quad 0.952 \mathrm{~F}_{1}=$ 7958

$$
\therefore \quad \mathrm{F}_{1}=8359 \mathrm{~N} \text { (i.e. total tight side tension) }
$$

Now, $\mathrm{F}_{1}=\sigma \mathrm{A}=2.6 \times 600=1560 \mathrm{~N}$
Minimum number of belts required $=8359 / 1560=5.36$
Hence $\mathbf{6}$ belts will be required!

Problem 3

A multiple vee-belt drive is required to transmit 24 kW from a pulley 150 mm in diameter to another pulley 300 mm in diameter rotating at $300 \mathrm{rev} / \mathrm{min}$. The centre distance (C - see the figure below) is 1000 mm and the groove angle is 40°. The coefficient of friction between the belt and the pulley is 0.31 and the maximum permissible belt tension is 500 N . For this geometry and conditions, calculate the minimum number of belts required for the drive system.

Solution

Data:
Power, $\mathrm{P}=24 \mathrm{~kW}=24 \times 10^{3} \mathrm{~W}$
Small Pulley dia, $\mathrm{d}_{1}=150 \mathrm{~mm}=0.15 \mathrm{~m}$
$\therefore \quad \mathrm{r}_{1}=0.075 \mathrm{~m}$
Large Pulley dia, $\mathrm{d}_{2}=300 \mathrm{~mm}=0.30 \mathrm{~m}$
$\therefore \quad \mathrm{r}_{2}=0.15 \mathrm{~m}$
$\mathrm{N}_{2}=300 \mathrm{rev} / \mathrm{min}$
Angle of groove, $\alpha=40^{\circ} / 2=20^{\circ}$

$$
\mu=0.31
$$

Belt material max permissible tension, $\mathrm{F}_{\max }=500 \mathrm{~N}$
Belt angle, γ (from the geometry)

$$
\begin{aligned}
\sin \gamma & =\left(r_{2}-r_{1}\right) / C \\
& =(150-75) / 1000 \\
& \Rightarrow \gamma=\sin ^{-1}(0.075) \\
& =4.30^{\circ} \\
& =0.075 \mathrm{rad}
\end{aligned}
$$

Angle of lap, $\theta_{\mathrm{S}}=\pi-2 . \gamma=2.9915 \mathrm{rads}$
Speed of small pulley, $N_{1}=N_{2} \times \frac{d_{2}}{d_{1}}=300 \times \frac{0.30}{0.15}=600 \mathrm{rpm}$
Power, $\mathrm{P}=\mathrm{T} \omega \quad \therefore \quad T=\frac{P}{\omega}=\frac{60 P}{2 \pi N_{1}}=\frac{60 \times\left(24 \times 10^{3}\right)}{2 \pi \times 600}=381.97 \mathrm{Nm}$
$\mathrm{T}=\left(\mathrm{F}_{1}-\mathrm{F}_{2}\right) \mathrm{r} \quad \therefore \quad F_{1}-F_{2}=\frac{T}{r_{1}}=\frac{381.97}{0.075}=5092.96 \mathrm{~N}$
$\frac{F_{1}}{F_{2}}=e^{\frac{\mu \theta}{\sin \alpha}} \quad \therefore \quad \frac{F_{1}}{F_{2}}=e^{\frac{0.31 \times 2.9915}{\sin 20^{\circ}}}=15.05 \quad \therefore \quad F_{2}=\frac{F_{1}}{15.05}$
Substitute (2) in (1): $\quad F_{1}-\frac{F_{1}}{15.05}=5092.96 \quad \therefore \quad \mathrm{~F}_{1}-0.0664 \mathrm{~F}_{1}=5092.96$
$\therefore \quad 0.9336 \mathrm{~F}_{1}=5092.96$
$\therefore \quad \mathrm{F}_{1}=5455.42 \mathrm{~N}$ (i.e. total tight side tension)
Minimum number of belts required $=5455.42 / 500=10.91$
Hence $\mathbf{1 1}$ belts will be required!

