
12. BUILDING GRAPHICAL USER INTERFACES

Working with an advanced IDE ...1
User interfaces ...3
GUI toolkits ...4
Java GUI toolkits ..5
Creating a JavaFX application...6
Models and GUIs ..9
Creating a GUI with FXML ..9
The GCU Adventure game as a JavaFX application .. 14
Wrap up ... 16

Working with an advanced IDE
In this module you have been using the BlueJ IDE, which is ideal when you are learning
to program in Java and work with classes and objects. However, you don’t need to use
BlueJ to write programs, and most advanced and professional developers prefer to use
one of a range of sophisticated IDEs that are available for Java and provide a wide range
of features to make development as productive as possible. BlueJ includes some of
these features, but IDEs such as Eclipse, NetBeans, Oracle JDeveloper and IntelliJ IDEA
take them to a different level. They are, however, complex applications that, unlike BlueJ,
require a lot of time spent learning how to use them in order to get the best out of them.

Advanced features typically found in professional-level IDEs include:

• Support for many project types, including GUI applications, web applications,
mobile applications

• Flexible organisation of project files, which is essential in larger projects
• Sophisticated code editors with code completion and real-time error checking
• Refactoring support
• Sophisticated debuggers and profilers
• Integration with Java and other tools, e.g. documentation, testing, version control
• UI design tools

The following figure shows a version of the adventure game project that has been
created as a project in NetBeans 8 and is running inside the IDE. Note that the classes in
this project are based on the final version of the game that you will see in the next
lecture, and so there are a few classes and features you haven’t seen yet.

The Game class in the Projects window on the left is marked with a green arrow,
showing that NetBeans has detected that it has a main method. You can run the program
by clicking the similar green arrow icon in the main toolbar, and the program output is
printed to the Output window at the bottom of the screen.

 M1I322909: PROGRAMMING 1

 2

Packages and libriaries
Note that the Java source files in the screenshot are organised into packages. A
package is a collection of related classes. We have previously used API classes which
belong to packages, such as the Date class in the java.util package.

NetBeans encourages you to organise your own classes into packages, and in this case
the classes in the adventure game are in a package called uk.ac.gcu.adventure. It
is common when naming packages for an organisation to use its internet domain name,
reversed, as the first part of the package name, to make sure that the package name will
be globally unique. In a larger program, the classes will often be organised into many
different packages. Note also that NetBeans has organised the unit test classes into a
separate test package.

When you want a class to be in a specific package, you need to put a package
statement at the top of the source file, before the class itself and before any import
statements. For the adventure game, all source files include the statement:

package uk.ac.gcu.adventure;

It is usual for a Java IDE to organise source code for packages in a folder stucture
which is derived from the package name. Typically, all source files are placed in a
folder src inside the project folder, and each part of the package name is translated into a
level in a folder hierarchy. Therefore in this example, the source files are in a folder
src/uk/ac/gcu/adventure. This means your code can end up deep inside nested folders,
but it does mean it is clearly organised, and different packages are kept separate.
Usually the compiled class files are placed in a matching folder hierarchy, separate from
the source files. Note that NetBeans displays the packages by name, and not the actual
folder structure, in Project view as shown in the screenshot above. The following figure

 M1I322909: PROGRAMMING 1

 3

shows the contents of a NetBeans project folder for adventure project in the NetBeans
screenshot above.

If you don’t specify a package name in your classes, they will be considered to be in the
default package and are placed in the main project folder. This is what we have done up
to now in our BlueJ projects. BlueJ can in fact work with packages if you want it to.

When creating larger programs you often need to use classes which are not part of the
Java API but come in the form of third-party libraries. NetBeans will include the libraries
which are typically needed for the type of project which is being created, and will help
you to add other libraries which you may need for your specific project. Note that the
adventure application only includes the JDK 1.8 and JUnit libraries.

User interfaces
Most computer programs are designed to be used by people. Such programs need to
provide a way for those users to interact with the program. Users need to give
instructions and input to the program and to receive output. While some programs,
particularly those used by expert users, require the user to interact by entering text
commands at a command prompt, it is more common to have a graphical user interface,
or GUI. A GUI gives the user a visual indication of the actions which can be carried out,
for example as buttons or menu options; it can display elements which can be used to
provide input, such as forms; and it can display output visually.

There are many different types of GUI, running on a variety of devices, for example
“traditional” desktop applications (for example office applications) on a PC, apps on a
phone or tablet, games on any of these or on specific consoles, and specialised
applications on a variety of custom-made devices such as kiosks, ATMs, medical
instruments, etc. Some applications run on remote server computers and send a GUI to
the user in the form of web pages that are viewed in a browser on the user’s device.

source files for package
uk.ac.gcu.adventure are in
the adventure folder which is
nested inside other folders

 M1I322909: PROGRAMMING 1

 4

There are also many different toolkits available for building GUIs. If you want to build a
GUI for a program that is written in a particular programming language, to run on a
particular type of device, then you need to choose from the available toolkits for that
combination of language and device and learn to use the one you have chosen. For
another project, you may need to select and learn another toolkit altogether. For
example, even if you always program in Java, the toolkit you use for a desktop
application will be different than for an Android phone app.

In this lecture you will learn about some of the typical features that GUI toolkits offer, and
how to create a simple GUI for a PC desktop application written in Java.

GUI toolkits
A program with a GUI needs to be able to detect and respond to user actions. For
example, if the user of a desktop application is to give a command by clicking a button on
the screen, the program needs to:

• Draw a visual representation of a button at an appropriate position on the display
• Detect the user’s mouse click and its position on the display
• Decide whether the click position is within to the area of the display occupied by

the button
• Invoke the program action which carries out the command that the user intended

to give

You could write code at a low level, from scratch in other words, to draw shapes to
represent the button, detect clicks/taps and check their position, and so on. However, it is
much more efficient to use a toolkit which allows developers to create GUI applications
using pre-defined components, known as widgets or controls. A button control, for
example, is a component (in Java it’s an object) which knows how to draw itself, knows
when it has been clicked and can tell the program that this has happened so that the
program can take the appropriate action.

 M1I322909: PROGRAMMING 1

 5

A toolkit can provide many different kinds of control, each of which behaves in an
appropriate way – for example a button can be clicked, while a text box can have text
typed into it and stores that text.

To add a control in your GUI you simply create an instance of that control, and the
control and its toolkit take care of the low level detail

Most modern GUI toolkits offer a broadly similar set of features. They:

• provide controls with specific appearance and capabilities
o e.g. a button control looks something like this and can be clicked
o clicking is an event associated with the button – its something that the

button is capable of detecting
o other controls have different events relevant to the way they work, for

example for a text box, changing the contents is an event
• provide a way of responding to user actions

o you can write code which runs when a button is clicked (i.e. when the
button click event is fired)

o the code is attached to the button as an event handler
• render controls and fire events in response to user actions

Java GUI toolkits
There are several toolkits available in Java specifically for creating desktop applications.
One nice feature of Java is that applications are cross-platform - because the compiled
code for a program runs on a virtual machine, the same application can run on different
desktop operating systems, and a Java GUI application will run on, and look much the
same on, Windows, MacOS and Linux. Java GUI toolkits are all able to create cross-
platform user interfaces, although they achieve this in different ways.

• AWT (Abstract Windowing Toolkit)
o Introduced early on in the development of Java
o Cross-platform
o Each control is a “wrapper” round a native operating system widget (an

OS such as Windows, MacOS has its own GUI widgets which can be
used by many different programming languages)

• Swing
o Introduced as a more advanced toolkit to replace AWT
o Renders its own widgets
o Can emulate the “look and feel” of various operating system widgets

• SWT
o Maintained by Eclipse Foundation, separate from main Java releases
o Uses native widgets, like AWT

• JavaFX
o Introduced in 2007 to support modern rich GUIs on desktop and in

browser
o Optimised for animation/effects
o Used its own scripting language (JavaFX Script)

• JavaFX 2 / JavaFX 8
o Programmed in Java, not JavaFX Script
o Included in J2SE, Oracle’s preferred GUI toolkit for desktop, web and

embedded
o Provides a rich widget set
o Updated and renamed to JavaFX 8 with release of Java 8

 M1I322909: PROGRAMMING 1

 6

Swing GUI emulating different OSs “look and feel”

Creating a JavaFX application
We will now look in a bit more detail at one toolkit, JavaFX 8 (we’ll just refer to it as
JavaFX from now on), and learn how to use it to create a simple desktop UI. Note that
JavaFX application can potentially also run within a web browser to provide a rich web
interface, but we will look only at the desktop here.

JavaFX borrows some terminology from the theatre. You put everything you want to
show in the user interface in a Scene. A Scene is an object that has a property called
root which is a container for controls which will be shown. These controls, which are the
child elements of the scene, are called Nodes. A Scene is placed on a Stage, which
defines the application window, or display area if running in a web browser.

The controls in the scene can include the following categories:

• Layout controls
o containers for other controls to position them in the interface, for example

grid pane, stack pane
• Interactive controls

o buttons, combo boxes, check boxes, etc.
• Display controls

o displaying or entering text
o drawing directly on a surface
o displaying data

• Application controls
o menus, toolbars

All Java applications need to have an entry point. A JavaFX application is defined in a
class which extends Application and has a method called start. As with other Java
applications, there needs to be a main method which is the actual entry point, and which
contains only the code needed to launch the application.

Creating a NetBeans project
Let’s look at a simple example application that demonstrates this. Building a JavaFX GUI
is easier if you use an IDE which has good support for JavaFX. NetBeans has JavaFX
support as standard (you can use other IDEs but they may need plug-ins to be installed
for JavaFX). When you create a new project in NetBeans you are given many different
options for the project type, including the option to create a JavaFX application:

 M1I322909: PROGRAMMING 1

 7

If you accept this option, you are then given the options to name the project and to
include a main class that will be the entry point:

This will create a project that is shown in the Projects window like this:

Modifying the generated code
The generated source code file will contain a class that extends Application, with a
basic start method. It will also contain import statements for some JavaFX classes.
The following listing shows this class with some code added, and some notes to explain
what the added code does:

public class HelloWorld extends Application {
 @Override
 public void start(Stage primaryStage) {
 Button btn = new Button();
 btn.setText("Say 'Hello World'");

 btn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 System.out.println("Hello World!");
 }
 });

 StackPane root = new StackPane();

Creates a button control
and sets its text

Defines an event
handler for the button
– see below

Creates the root container,
which in this case is a
StackPane control, and
adds the button to it

 M1I322909: PROGRAMMING 1

 8

 root.getChildren().add(btn);

 Scene scene = new Scene(root, 300, 250);
 primaryStage.setTitle("Hello World!");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }
}
Since a Button control is used, an import statement is needed for the class
javafx.scene.control.Button.

Handling events
This basic application simply displays a button. The application is interactive, though -
when the button is clicked a message is printed to the console window. This interactivity
needs an event to be fired and handled. The JavaFX Button control can detect when it
has been clicked, and automatically fires a click event.

The setOnAction method of the Button class connects an event handler to the
button. The event handler contains a method handle, which is where you put the code
to define what happens when the event is fired – here it simply prints something. The
code which is wrapped around this method is actually a class with no name specified,
known as an anonymous class. Whenever you write an event handler, that part will
always be pretty much the same, but the handle method will be different depending on
what you want to happen.

Running the program
To run the program in NetBeans you select the project in the Projects window and click
the Run button in the toolbar . The application window is shown:

When you click the button, a message is shown in the Output window. This is just to
demonstrate easily that the button handler is working - normally in a GUI application the
results of user actions appear in the application window.

Creates the scene, using
the root container, sets the
scene for the stage and
shows it

 M1I322909: PROGRAMMING 1

 9

Models and GUIs
In the Hello World example, all of the code for the program was contained within a single
class. This is not the way we normally write programs! It was possible because this was
a very simple example demonstrating how to create a GUI. In reality, however, a Java
program with a GUI will be providing a way for users to interact with and control the
functionality provided by collaborating objects, just like any other object oriented
program. A useful Java desktop application will consist of, at the very least:

• A class or classes which implement the functionality of the program – we can call
these the model classes

• A class or classes which implement the GUI

The GUI code will create and use instances of model classes to perform the important
logic of the program. For example, in lecture 6 you saw a class called
TemperatureConverter, which contained methods to convert between temperatures
in Centigrade and Fahrenheit. This class contained the following method, and a similar
method to do the reverse conversion:

public double centigradeToFahrenheit(double centigrade)
{
 double fahrenheit = (centigrade * 9 / 5) + 32;
 return fahrenheit;
}

In BlueJ you can create an instance of TemperatureConverter and call its methods.
This is not much use for an end user who does not want to have to open BlueJ to run a
program. In the next section we will take this class, which provides the functionality for
temperature conversion (the formulae in this case), and build a GUI that makes use of a
TemperatureConverter object to create a graphical temperature conversion
application.

Creating a GUI with FXML
The first JavaFX example used Java code to create controls and place them in a Scene.
JavaFX provides an alternative approach, which is also becoming common in other
toolkits for other languages. The GUI code is split into two parts:

• FXML file – a file which contains code written in FXML, which is an XML-based
markup language used to define all the controls and their position, size and
appearance in the interface. This defines the user’s view of the interface

• Controller – a Java class which contains the event handler methods for the
controls defined in the FXML

XML is a language that defines elements using tags marked with <brackets>. Specific
variants of XML, like FXML, have their own set of allowed element names. Another
example of an XML-based language is XHTML, used to define the content of web pages
using tags like <header> and <p>, defining a heading and a paragraph respectively. In
FXML, the tags correspond to the names of controls, for example <Button>.

A JavaFX application will usually also contain a model class or classes which contain the
code which allow the objects to be created which perform the actual function of the
program. This separation of the model, the controller and the view is a common pattern

 M1I322909: PROGRAMMING 1

 10

in many programming platforms and is sometimes called the model-view-controller
(MVC) pattern.

Designing the GUI
Before we start coding, let’s draw a representation of the GUI we want to create. The
temperature converter application will:

• Allow the user to enter a temperature to convert
• Allow the user to specify conversion from Centigrade to Fahrenheit or vice versa
• Display the result of the conversion

Here’s a possible GUI design for this. The element with the text “To Centigrade” will ve a
drop-down box that allows a choice to be made between the option shown and “To
Fahrenheit”.

FXML controls
You can view the complete FXML code in the file ConversionFX.fxml in the NetBeans
project ConversionFX that you can download for this lecture. This project was created
using the JavaFX FXML Application option when creating the new project, which
generates basic FXML and controller classes, and modifying these as required. The
FXML code to define the main controls for this GUI is shown below:

<TextArea fx:id="input" maxHeight="1000" minHeight="-1.0"
 text="[Temperature to convert]" wrapText="true"
 GridPane.rowIndex="1" />
<ChoiceBox fx:id="choice" prefWidth="150.0"
 GridPane.halignment="CENTER" GridPane.rowIndex="2"
 value="To Centigrade">
 <items>
 <String fx:value="To Centigrade" />
 <String fx:value="To Fahrenheit" />
 </items>
</ChoiceBox>
<Button fx:id="button" onAction="#handleButtonAction"
 text="Convert" GridPane.halignment="CENTER"
 GridPane.rowIndex="3" />
<TextArea fx:id="output" maxHeight="1000" minHeight="-1.0"
 text="" wrapText="true" GridPane.rowIndex="4" />

Note the following:

99.5

37.5

Convert

To Centigrade

 M1I322909: PROGRAMMING 1

 11

• This code contains tags which create two TextArea elements, a ChoiceBox
and a Button

• Most tags start with < and end with />
• The ChoiceBox tag contains another tag <items> which contains the choice

items, and ends with a </ChoiceBox> closing tag
• Tags contain attributes in addition to the element name – these contain

information about positioning, sizing, and so on
• Each tag has an attribute fx:id which specifies a unique name for the element,

which you will see how to use shortly
• The button tag has an attribute onAction which specifies a name for an event

handler, which again you will see how to use shortly.

FXML layout
The FXML code above is contained inside a GridPane element. GridPane is a JavaFX
layout control that will the root container for this GUI. GridPane is good for poistioning
controls using a grid structure. Even though the GUI design in this example will only
require a single column, as all the controls will be positioned one above the other, a
GridPane is still a good way (although not the only) way to achieve this layout.

<GridPane id="container" alignment="CENTER" hgap="10.0"
 prefHeight="280.0" prefWidth="280.0" vgap="10.0"
 xmlns="http://javafx.com/javafx/8"
 xmlns:fx="http://javafx.com/fxml/1"
 fx:controller="conversionfx.ConversionFXController">
 <children>
 …controls code from above…
 </children>
 <rowConstraints>
 <RowConstraints vgrow="NEVER" />
 <RowConstraints vgrow="ALWAYS" />
 <RowConstraints vgrow="NEVER" />
 <RowConstraints vgrow="NEVER" />
 <RowConstraints vgrow="ALWAYS" />
 </rowConstraints>
 <columnConstraints>
 <ColumnConstraints />
 </columnConstraints>
</GridPane>

Note the following:

• The rowConstraints and columnConstraints elements define the
dimensions of the layout grid (5 rows and only one column in this example) and
control the relative sizes of these and how these can grow to fill the available
space in the scene

• The GridPane.rowIndex attribute for each control determines what grid row the
control is placed in

• The fx:controller attribute of GridPane specifies the name for the
controller class for this GUI, which you will see how to use shortly

Editing FXML
You can edit the FXML code in NetBeans (select the file in the Project window, right-click
and select Edit). Alternatively, if you double-click on the file a graphical editor application
called Oracle SceneBuilder (if it is installed) will open and allow you to edit the FXML
graphically.

 M1I322909: PROGRAMMING 1

 12

Model and Controller classes
The ConversionFX project contains some more files. The model class is
TemperatureConverter.java, which is a straightforward Java class, described earlier, and
has no GUI code at all. The controller class, ConversionFXController.java, contains code
to handle events associated with the controls defined in the FXML file – remember that
the FXML code referred to the name of this class in order to make the connection
between controls and controller.

Now, remember the button element in the FXML, which had the following attribute:

onAction="#handleButtonAction"

This means that the controller class needs to have a method called
handleButtonAction, which will perform the action we want to happen when the
button is clicked. Here is the code for this method in the controller:

@FXML
 private void handleButtonAction(ActionEvent event) {
 if(choice.getValue().equals("To Fahrenheit"))
 {
 double centigrade =
 Double.parseDouble(input.getText());
 double fahrenheit =
 converter.centigradeToFahrenheit(centigrade);
 output.setText(String.format(
 "%2.1f \u00b0F",fahrenheit));
 }
 else
 {
 double fahrenheit =
 Double.parseDouble(input.getText());
 double centigrade =
 converter.fahrenheitToCentigrade(fahrenheit);
 output.setText(String.format(
 "%2.1f \u00b0C",centigrade)); /
 }
 } note that the code \u00bo simply generates

a degree symbol (°) in the formatted string

 M1I322909: PROGRAMMING 1

 13

This method reads the value selected in the ChoiceBox (which has the id choice) to
decide which conversion to do, then gets the text of the TextArea with the id input.
The text of the output TextArea is set to the result of the conversion, suitably
formatted. We need to have instance variables in the controller with names and types
which match those in the FXML, annotated with @FXML, in order to make the appropriate
connections.

@FXML private TextArea input;
@FXML private TextArea output;
@FXML private ChoiceBox choice;

So how is the actual function of the program, the temperature conversion done? This
is not the job of the controller, or any other code which is part of the UI – it is the job of
the model class, TemperatureConverter. The controller simply creates an instance
of TemperatureConverter, as an instance variable:

public class ConversionFXController implements Initializable {
 private final TemperatureConverter converter = new
 TemperatureConverter();

and calls its methods as appropriate in the event handler to do the conversion, for
example from the listing above

converter.centigradeToFahrenheit(centigrade);

Launching the application
There is one more class in the project that we need to know about. ConversionFX.java is
the application class that contains the start method, just as in the Hello World example.
Here, instead of containing code to create controls it simply loads the FXML file to create
them:

public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader.load(getClass().
 getResource("ConversionFX.fxml"));

The completed application looks like this when it runs:

 M1I322909: PROGRAMMING 1

 14

Styling
JavaFX also allows you to enhance the appearance of your GUI using the Cascading
Style Sheets (CSS) mechanism that is widely used for web pages. If you are familiar with
CSS then you can create a stylesheet and attach it to the UI with a reference in the
FXML file.

<stylesheets>
 <URL value="@converter.css" />
</stylesheets>

The stylesheet included in the ConversionFX project modifies the appearance of many
aspects of the controls in the UI, so that it looks like this:

The examples you have seen illustrate the basics of using JavaFX to create desktop
applications (and these will also run within a web browser). JavaFX can be used to build
much more complex applications with features such as complex layouts, menus and
toolbars, data binding and multiple windows. Oracle SceneBuilder is itself a JavaFX
application and illustrates what can be done.

The GCU Adventure game as a JavaFX application
Finally, let’s look at a GUI version of the adventure game. It may seem a bit strange to
have a GUI for a text-based adventure, but this is quite common – even if the main way
of interacting is through entering and reading text, the GUI can provide shortcuts for
common commands and some visual information. For example, the BBC website has a
graphical version of the Hitchhiker’s Guide game, which looks like this. Note that one
feature here is the visual display of the number of moves made – how do you think our
adventure game could be modified to support a similar feature?

 M1I322909: PROGRAMMING 1

 15

Here, we will take the classes that have been developed over the last few lectures into a
console application, and use these as the model classes for a JavaFX application.

The temperature converter application you saw in the last lecture shows most of the main
features of a JavaFX FXML application. The adventure game project, AdventureFX, is an
example a slightly more complicated GUI application with several interactive controls and
event handlers and a more complex model. The project structure is as follows:

This project has been split into two packages, one for the model classes (the same
Game, Player, Room, etc. classes you have seen before) and the other for the GUI. It is
good practice to organise your applications like this as they become more complex.

Note that model classes here are similar to, although not exactly the same as the ones
you have seen. The main difference is that no methods within the classes print to the
console – instead where appropriate they return their output as strings that can be
passed up to the GUI for display.

When you run the game it looks like this (the GO WEST button has just been clicked):

 M1I322909: PROGRAMMING 1

 16

The user can give “go” commands with the four buttons, and can enter any other
command in the text box. The result of each action is shown in the text area in the
middle. Unlike the previous example there are multiple buttons, and each needs an event
handler in the controller class, for example:

@FXML
 private void handleButtonAction(ActionEvent event) {
 System.out.println("Entered: " + commandfield.getText());
 String text = commandfield.getText();
 if (text.equals("quit"))
 {
 quit();
 }
 displayarea.setText(game.getPlayer().takeTurn(text));
 }
 @FXML
 private void handleWestButtonAction(ActionEvent event) {
 System.out.println("You clicked GO WEST!");
 String text = "go west";
 displayarea.setText(game.getPlayer().takeTurn(text));
 }

Note that the code in the event handlers simply passes the text for a command into the
takeTurn method of a Player object, and displays the result of that method call in a
text area. The actual logic of what happens when the Player takes a turn is contained in
the model classes, and works as you have seen before in the non-GUI version.

Wrap up
You’ve been introduced in this lecture to the following concepts:

NetBeans IDE, packages, user interfaces, GUI toolkits, Java GUI toolkits, JavaFX,
FXML, model-view-controller

That is the end of this introductory programming module. Depending on your course you
may go on to learn more advanced programming and software engineering techniques,
other programming languages and styles of programming, programming for specific
platforms such as web and cloud, and much more.

	12. Building Graphical User Interfaces
	Working with an advanced IDE
	User interfaces
	GUI toolkits
	Java GUI toolkits
	Creating a JavaFX application
	Models and GUIs
	Creating a GUI with FXML
	The GCU Adventure game as a JavaFX application
	Wrap up

