Tutorial 2

- 1) List the variables that can be used to model a renewable power plant in "power flow" (or load flow) analysis.
- 2) List the key assumptions in power flow analysis:
- 3) Why iterative numerical methods are being used in power flow program?
- 4) What are the general steps to carry out power flow analysis with the aid of power flow software.
- 5) How can DG affect distribution losses when the capacity is still limited.
- 6) Which one is more of a concern in a distribution network with significant DGs, overvoltage or undervoltage?
- 7) Use an example to explain why the biggest reduction in losses is obtained when the DG is located at the same premises as the consumption?
- 8) A radial distribution feeder is shown in Figure 1. Assume the impact of reactive power is negligible. The consumption data for the loads is provided in Table 1.
- (a) Determine the "first hosting capacity" of all the feeders.
- (b) Using the data provided in Table 2 to determine the "second hosting capacity" (when the actual overload starts to occur) for all feeder sections.
- (c) Based on the results obtained in part (b), determine the threshold at which circuit breaker at location A will trip.

Fig. 1

Table 1- Consumption data

	В	C	D
Maximum Active Power	2.5 MW	3 MW	2MW
Minimum Active Power	600 kW	800 kW	500 kW

Table 2- Conductor data

Feeder Section	AB	BC	CD
Maximum permissible Power	10 MVA	6MVA	4 MVA

- 9) In determining the hosting capacity of a distribution network (the maximum amount of DG that can be connected), why losses are less of a concern than overloading?
- 10) List different techniques to improve the hosting capacity when overloading is the main concern by introducing DG.