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Matrices for Engineering 2: Eigenvalues, Eigenvectors & Systems of ODEs

1. Introduction

In this unit we look at calculating eigenvalues and eigenvectors of 2 % 2 and 3 x 3 matrices
before investigating their role in the diagonalisation of square matrices. The diagonalisation
process is then applied to demonstrate how algebraic techniques are used to solve linear systems

of ordinary differential equations.

2. Eigenvalues and eigenvectors of a 2 x 2 matrix

Eigenvalues and eigenvectors have many important applications in science and engineering
including solving systems of differential equations, stability analysis, vibration analysis and

modelling population dynamics.
Let A be a n x n matrix. An eigenvalue of 4 is a scalar 4 (real or complex) such that
Ax=)x ey
for some non-zero vector x. In this case, we call the vector x an eigenvector of 4 corresponding
to A. Geometrically Eq. (I) means that the vectors Ax and x are parallel. The value of 4

determines what happens to x when it is multiplied by 4, i.e. whether it is shrunk or stretched or

if its direction is unchanged or reversed.

3
Here we have that 4 x = 5 x and so we say that x = ( 4} is an eigenvector of 4 corresponding to

the eigenvalue 4 = 5. The geometric effect in this example is that the vector x has been

stretched by a factor of 5 but its direction remains unchanged as A > 0.
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3. . :
Note that any scalar multiple of the vector x = ( 4} is an eigenvector corresponding to the

eigenvalue 4 = 5.

What are eigenvalues and eigenvectors?

http://math.gallery.video/detail/video/nddzsJAT21g/1 5---what-are-eigenvalues-and-eigenvectors-learn-how-
to-find-eigenvalues.

https://www.youtube.com/watch?v=G4N8vIpf7ThM

2.1. Calculation of eigenvalues

If4isa 2 x 2 matrix it is relatively straightforward to calculate its eigenvalues and eigenvectors

by hand. So, how do we calculate them?

We know that x = I x, where / is the identity matrix, so we can rewrite Eq. (I) as

Ax = Alx

>5Ax - Alx =0

> (4 - A)x = 0.

If the matrix (4—A[) is invertible, i.e. det(4 —A 1) # 0, then the only solution to the above

equation is the zero vector, i.e. x = 0. We are not interested in this case as an eigenvector must

be non-zero.

The equation (4 — A71)x =0 can only hold for a non-zero vector x if the matrix (4—-A17) is

singular (does not have an inverse). Hence, the eigenvalues of 4 are the numbers 4 for which

the matrix (4 — A7) does not have an inverse. In other words, the numbers 4 satisfy the equation

det(4 — A1) = 0 (1)

and they can be real or complex.
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2.1.1. Real distinct eigenvalues

We firstly look at the case where an n x n matrix has » distinct eigenvalues.

Example 2
Find the eigenvalues of the following matrices :
i y 5 =2 (i) B 13 -4 i), C 0 2

i). = ii). = iii). = .

7 -4 -4 7 2 0

Solutions

) 5 =2 1 0 5-4 =2
.4 - 11 = -1 = _

7 -4 0 1 7 —-4-A
5-4 =2 X

Hence, det(4 — Al) = ; a_al = SE-AD)(HA-4) - (2)(7) =41 — 41 - 6.

Wecall > — 1 — 6 the characteristic polynomial of the matrix 4.
The eigenvalues of A are the roots of the characteristic equation det(4 — A7) = 0, i.e.
A=-21-6=0=>(A1-3)(A1+2)=0=>1=-2and 1 = 3.

Hence, A4, =-2 and A, =3 are the eigenvalues of the matrix A.

. (13 —4} (1 oj (13—/1 —4}
(ii). B — A1 = - A = .
-4 7 0 1 -4 7-2

13-4 -4

Hence, det(B — Al) =
-4 T7-4

‘ = (3-2)(7-2) = (D4 = 2" - 202 + 5.
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Now solve det(B — A7) = 0 to find the eigenvalues of B, i.e.
AT =20 +75=0=>UA-5UA-15=0= A1=5and 1 = 15.

Hence, 4, = 5 and A, = 15 are the eigenvalues of the matrix B.

(0 2} (1 oj (—/1 2}
(iii). C - Al = - A = )
2 0 0 1 2 -2

Hence, det(C — A1) = ‘ 2‘ = ()(=2) - 2)Q2) = A* - 4.

-1
The eigenvalues of C satisfy det(C — A1) = 0,ie. 1> — 4 =0 = 1 = +2.

Hence, 4, = —2 and 4, = 2 are the eigenvalues of the matrix C.

The following example demonstrates a short-cut approach that can be adopted when calculating

the eigenvalues of specific types of matrices.

Example 3
Find the eigenvalues of the following matrices:
i y 50 (i) B 3 7 i), C 1 0
i). = ii). = iii). = .
0 8 0 -4 3 2
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In this example we note that:

e matrix 4 is a diagonal matrix (see Section 4.4) and has the property that all of its entries

not on the main diagonal are 0.

e matrix B is an upper-triangular matrix (see Section 4.5) and has the property that all of

its entries below the main diagonal are 0

e matrix C is a lower-triangular matrix (see Section 4.5) and has the property that all of

its entries above the main diagonal are 0.

Note that, in each case, some of the entries on the main diagonal can be zero.

Solution
In all three cases — diagonal, upper-triangular and lower triangular - the eigenvalues are
simply the entries on the main diagonal and so we can just read them off without the need

for any calculations. Hence,

e The eigenvalues of matrix 4 are: A, =5, A, =8.
e The eigenvalues of matrix B are: A, =3, A, =—4.

o The eigenvalues of matrix Care: A, =1, A, =2.

We verify our answers using the method described earlier.

5-A
(i). Solving det(4—-A1)=0 gives Y ‘:O =>06-1)8-4)=0 =1,=5, 4,=8.
. . 3-A
(ii). Solving det(B—A1)=0 gives 0 Y =0=>08-A)(4-41)=0 =21,=3, 1,=-4.
(iii). Solving det(C —A7)=0 gives - 5_a ‘ =0 =>010-M)2-1)=0=4,=1, 4,=2.
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2.1.2. Repeated eigenvalues

In the examples presented up to now the eigenvalues have been distinct but it is possible for

a matrix to have repeated eigenvalues.

Example 4

3 -9
Find the eigenvalues of the matrix , 4 = (1 9} .

Solution

To find the eigenvalues we solve

3-4 -9
det(A-21) =7 " " | =

= B3-1DO-4)+9=0
= A - 124 + 36 =0

= 1A - 64 -6 +0
= A = 6 (repeated)

The eigenvalue 4 = 6 is said to have algebraic multiplicity 2, i.e. the number of times it is a

root of the characteristic equation.

CMD —2019/20



2.1.3. Zero eigenvalues

We have previously noted that an eigenvector cannot be the zero vector, 0, but it is possible

to have an eigenvalue 4 =0.

Example 5
Find the eigenvalues and eigenvectors of the matrix:

Solution

To find the eigenvalues we need to solve

3-A -6

det(A-A1)=
2 4-)

‘ ) O

= B3 - )@ - )-12=0
= A -71=0

= A(A-T)=0

This example shows that it is possible for 0 to be an eigenvalue of a matrix.

Note that if 0 is an eigenvalue of a matrix then the matrix is not invertible. Hence, the matrix

A in this example cannot be inverted.

CMD —2019/20



2.1.4. Complex eigenvalues of real matrices

It is possible for a real-valued matrix to have complex eigenvalues (and eigenvectors) as

illustrated by the following example.

Example 6
Find the eigenvalues of the matrices:

i. A4 :(0 _lj (). B :(4 _3)
1 0 6 -2

Solution

, -1 -1
(). det(d — Al) = ‘ 1 —z‘

4-1 -3

(). det(B — AI) = ‘ o g

‘=12—2/1+10=0.

Solve using the quadratic formula, or by completing the square, to obtain,

A=1+3j, A,=1-3j.

Note: For a matrix with real entries its complex eigenvalues always occur in complex

conjugate pairs.
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2.1.5. Verification of eigenvalues for a 2 x 2 matrix

For a 2 x 2 matrix, 4, we can verify the eigenvalues of 4 using either of the following approaches:

(1).  For each eigenvalue, A,, show that det(4 — 4,1) = 0.

(2).  Check that both the following conditions hold:
>i). A+ A, = tr(4).
The sum of the eigenvalues of 4 must equal the trace of 4.

The trace of matrix 4, i.e. tr(4), is the sum of the elements on the

main diagonal of 4.

(). A, 4, = det(A4).

The product of the eigenvalues of 4 must equal the determinant of A.

Exercise: Check the eigenvalues calculated for the matrices in Examples 2 - 6 using both

the approaches described above.

2.2. Calculation of eigenvectors

Once we have calculated the eigenvalues we can find the eigenvectors by solving the matrix

equation
Ax = Ax (1ID)

or equivalently, as we saw above,
(4 - A)x=0

for each eigenvalue in turn.

Calculating eigenvalues and eigenvectors :
https://www.youtube.com/watch?v=tXIMbAxbUI4&list=PLgQUIweMg9eJP1QeCotlspOmwGUd8}ibS
https://www.youtube.com/watch?v=kHH1tj WtDAU
https://www.youtube.com/watch?v=mC2xQnI9SCI

https://www.youtube.com/watch?v=SGJHiuRb4 s
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2.2.1. Eigenvectors for distinct eigenvalues

We shall first of all look at calculating eigenvectors for matrices with real distinct eigenvalues.

Example 7

2 7
Find the eigenvalues and eigenvectors of the matrix, 4 = ( j .

Solution

First we find the eigenvalues by solving:

2-4 7
det(4 — AT) = =

1 —6-1
= Q2-A)(6-4)+7=0
= 2 +41-5=0

= A+5A-1)=0

We now calculate the eigenvectors corresponding to the eigenvalues by solving Eq. (III).

Case 1: To find an eigenvector x, corresponding to eigenvalue 4, =—5 we solve,

Ax =1, x,.

CMD —2019/20
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Tx, + 7x, = 0 e (1)
=
-x;, — x, = 0. ... (2)

These are simultaneous equations and we note here that one equation will always be a multiple of
the other - if not then you have made a mistake! Here Eq. (1) is —7 times Eq. (2).

Both equations give x, =-x,. Ifwelet x, =« , say, for some non-zero real number o, then

x, = —a and we find the first eigenvector to be of the form

Note that there are infinitely many non-zero eigenvectors depending on the value chosen for c.

-1
Setting & =1 gives an eigenvector corresponding to the eigenvalue A4, =-5 as x, = ( . j .

We can check our answer by showing that 4 x, = =5 x,.

w(F I e

Hence, 4 x, = 4, x, as required.

Case 2: To find an eigenvector x, corresponding to eigenvalue 4, = 1 we solve,

—
[\
'_R
+
~J
=
N
Il
'_R

CMD —2019/20
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x, +7x, =0
=
-x, — Tx, = 0.

Both these equations give x, = —7x,. Let x, = «, say, for some non-zero real number «,

then x, = —7a and so

Setting o = 1 gives x, = ( J . It is straightforward to check that 4x, =1x,.

In summary, we therefore have the eigenvalue/eigenvector pairs,

Example 8

13 -4
Find the eigenvalues and eigenvectors of the matrix, B = ( 1 7) .

Solution

In Example 2 part (ii) we found the eigenvalues of Btobe 4, = 5 and 4, = 15.

We now calculate the eigenvectors corresponding to these eigenvalues by solving the

eigenvector equation, 4 x = A X.

CMD —2019/20
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Case 1: To find an eigenvector x, corresponding to eigenvalue 4, = 5 we solve,

Ax = 1, x,

Both these equations give x, = 2x,.

Note that for a 2 X 2 system we do not actually need to introduce the parameter a as we did in
the previous example. We can simply choose a convenient numerical value for either of the

components x, or x, of the eigenvector. So here we canlet x, = 1, say, giving x, = 2.

1
Thus an eigenvector corresponding to the eigenvalue 4, = 5 is x;, = ( 5 ]

Case 2: To find an eigenvector x, corresponding to eigenvalue 4, = 15 we solve

Ax, =1, x,

13 -4} x X,
=15
-4 7)) x, X,
13x, — 4x, = 15x,
=

—-4x, + 7x, = 15x,

13
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-2x, —4x, = 0
=
-4x, - 8, = 0.

Both these equations give x;, = —2x,. Let x, = 1,say, giving x, = —2.

-2
Then an eigenvector corresponding to the eigenvalue 4, = 15is x, = ( ]

In summary, we therefore have the eigenvalue/eigenvector pairs,
1
A, =5, x= ) ; 4,

Example 9

Find the eigenvalues and eigenvectors of the matrix

Solution

To find the eigenvalues we need to solve

3 -2 -6
det(4 — A1) =

-2 4-2

15 (_2]
= ) x2: .
1

= B-D@A-4)-12=0

CMD —2019/20
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We now find the eigenvectors:

Case 1: To find an eigenvector x, corresponding to eigenvalue 4, = 0 we solve, 4 x, =0 x;,.

-0

3, —6x, =0
=
-2x, + 4x, = 0.

Both these equations give x, = 2x,. Let x, = 1, say, giving x, = 2.

Hence, an eigenvector corresponding to the eigenvalue 4, = 0 is x; = ( | j

Case 2: To find an eigenvector x, corresponding to eigenvalue 4, = 7,solve 4x, =7x,.

SN NEEN

3x, — 6x, = Tx,
=
-2x,

4x,

—-4x, — 6x, 0
f—
-2x, - 3x, 0.
. ) 3 ..
Both these equations give x, = —Exz. Let x, = 2,say, giving x, = —3.

. . : : -3
Hence, an eigenvector corresponding to the eigenvalue 4, = 7 is x, = ( J

CMD —2019/20
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To summarise we have:

2.2.2. Eigenvectors for repeated eigenvalues

Before we consider the case of repeated eigenvalues we need to introduce the concept of linear
independence of vectors. If the eigenvalues of a matrix A4 are distinct then the corresponding
eigenvectors are guaranteed to be linearly independent. Roughly speaking a set of vectors is
linearly independent if none of them can be written as a linear combination of the others. Linear

independence will be an important concept later when we discuss diagonalisation of matrices.

The examples presented in this section so far have all involved matrices with distinct eigenvalues
and so it has been possible to find a full set of linearly independent eigenvectors in each case, i.e.
eigenvectors that are not multiples of each other. However, as we demonstrate below when we have
repeated eigenvalues it will not always be possible to find a full set of linearly independent

eigenvectors. First of all we look at a case where we can find linearly independent eigenvectors.

Example 10

30
Find the eigenvalues and eigenvectors of the matrix, 4 = (0 3} .

Solution
The matrix A4 is a diagonal matrix so that its eigenvalues are the entries on the main diagonal.

Hence, A4 has one repeated eigenvalue, i.e. A = 3. We now try to find two linearly independent

eigenvectors for this eigenvalue. Solve 4 x =3 x, i.e.
3 0} x _ 3 X,
0 3\ x X,

16
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3x, + Ox, = 3x,
=
Ox, + 3x, = 3x,

Ox, + Ox, = 0
=
Ox, + Ox, = 0.

Neither of these equations place any restrictions on x, or x, and so they can take any values we

choose, say x, = o and x, = f. An eigenvector corresponding to the repeated eigenvalue

a
A = 3 will therefore have the form, x = ( j We can now obtain two linearly independent

eigenvectors through suitable choices for ¢ and . The most obvious choices are:

1
and
O j

0
e o =0, p =1 givingthe eigenvector, x, = (lj .

e o =1, p = 0 givingthe eigenvector, x, = (

We have therefore been able to find two linearly independent eigenvectors for the repeated

eigenvalue 4 = 3.

Example 11

3 -9
Find the eigenvalues and eigenvectors of the matrix, 4 = (1 9} .

Solution

In Example 4 we found that the matrix has one repeated eigenvalue, i.e. 4 = 6. We now try to

find two linearly independent eigenvectors for this eigenvalue. Solve 4 x =6x, i.e.
3 -9} x _ 6 X,
1 9) x X,

17
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3x, — 9x, = 6x,
=
x, + 9x, = 6x,

-3x, = 9%, =0
=
x, +3x, =0

Both these equations give x;, = —3x,. Let x, = a,(a # 0)giving x, = -3«.
. . : . -3
Hence, an eigenvector corresponding to the eigenvalue 4 = 6 will be of the form x = a.

No matter what choice is made for « the resulting eigenvectors will be scalar multiples
of each other. We have therefore been unable to find two linearly independent eigenvectors

for the eigenvalue 4 = 6.

2.2.3. Eigenvectors for complex eigenvalues

In Section 2.1.4 we saw that if a matrix 4 with real entries has a complex eigenvalue A then we

know that its complex conjugate A is also an eigenvalue of 4. Furthermore, it can be shown that

if x is an eigenvector corresponding to A then its complex conjugate x, formed by taking the

complex conjugates of the entries of x, is an eigenvector corresponding to A .

Example 12
Find the eigenvectors of the matrix:

Solution

In Example 6(1) we found that 4 had complex eigenvalues, A, = jand A, = — ;.

Now find the eigenvectors of the matrix 4.

CMD —2019/20



Case 1: To find an eigenvector x, corresponding to eigenvalue A, = j we solve

A x, =1, x,

X = Jjx,.
If, for example, we multiply the first equation by j both equations give x, = jx,.

Let x, = 1,say, then x, = ;.

An eigenvector corresponding to the eigenvalue A, = j will then be x, = ( / j .

Case 2: To find an eigenvector x, corresponding to eigenvalue A, = —j simply take the

complex conjugates of the entries of x, giving, x, = (_{ j .

To summarise we have:

19
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3. Eigenvalues and eigenvectors of a 3 x 3 matrix

We now extend the methods presented in the previous section to calculation of eigenvalues and
eigenvectors of 3 x 3 matrices. We shall only consider the case of real distinct eigenvalues but

note that, as for 2 X 2 matrices, we can have eigenvalues that are repeated or complex.

Example 13

Determine the eigenvalues and eigenvectors of the matrix, 4 = | -7 2

Solution

To calculate the eigenvalues we need to solve

1-24 0 2
det(A-AI)=|-7 2-4 4 |=0.
8 0 1-2

Here we expand down Column 2 as it is the row/column with most zeroes.

o 1)1—1 2 |
s 1 - A|

= 2-D[10-D1-21)-16]1=0
= 2- D[ -21-151=0
= Q2-A)A-5A+3) =0

Hence, 4, = 2, 1, = 5 and 4, = -3 are the eigenvalues of the matrix 4.

20
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We now calculate the eigenvectors corresponding to the eigenvalues.

Case 1: For an eigenvector x,, corresponding to eigenvalue 4, = 2, wesolve 4 x, =2x,, i.e.

—_
=
=

- x| =2|x

8 X, X,
X, + 2x, = 2x,
= < -=Tx;, + 2x, + 4x, = 2x,
8x, + x; = 2x,

-x, + 2x;=0

= -7x;, +4x;=0
8, — x; = 0.
From the three equations the only possibility is that x, = x; = 0. We can choose x, to have

any value,  # 0. Hence, an eigenvector corresponding to the eigenvalue A, = 2 is of the

form x, = (0, a, 0)". For example, letting & = 1 gives x, = (0, 1, 0)".

Case 2: For an eigenvector x,, corresponding to eigenvalue 4, = 5, wesolve 4 x, =5x,, i.e.

I 0 2)(x X,
-7 2 4| x,|=75|x
8 0 1 )(x X,
X, + 2x; = 5x,
= 3 -7x, + 2x, + 4x;= 5x,
8x, + x; = 5x,

CMD —2019/20
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—4x, + 2x;=0 . @
= <—=7x;, = 3x, + 4x;=0 ... (2).
8x, —4x, =0 . 3)

Equations (1) and (3) both say that x, = 2x,. Set x, = ¢ (a # 0)toobtain x;, = 2.
Substituting these values in Eq. (2) gives, = 7a — 3x, + 8a =0 = 3x, = o = x, = a/3.

Hence, an eigenvector corresponding to the eigenvalue 4, = 5 is of the form

x,=(a, a/3, 2a)". Choosing a = 3 gives x, = (3, 1, 6)".

Case 3: For an eigenvector x;, corresponding to eigenvalue A, = —3,solve 4 x;, = -3 x;, 1.e.
1 0 2)(x X, Xy + 2x;= = 3x
-7 2 4||x,|=-3|x = < —=Tx;, + 2x, + 4x;= -3x,
8 X3 X3 8x, + x; = —3x,
4x, + 2x;=0 . ¢))
= 9=7x, + 5x, + 4x;=0 ........... 2) .
8x, + 4x;, = 0. 3)
Equations (1) and (3) both say that x, = —2x,. Set x, = ¢ (a #0)toobtain x; = -2«.

Substituting these values in Eq. (2) gives, —7a + 5x, — 8a = 0 = 5x, = 15a¢ = x, = 3a.

Hence, an eigenvector corresponding to the eigenvalue 4, = —3 is of the form

x, = (a, 3a, —2a)". Choosing a = 1 gives x, = (1, 3, =2)".

In summary, we therefore have,

0 3
A=2,x=|11[ A,y =5, x,=|11/; Ay = =3, x = 3
0 6 -2

CMD —2019/20
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4. Some properties of eigenvalues and eigenvectors

Let 4 be areal n x n matrix.

e A will have exactly n eigenvalues which may be repeated and will be real or occur in

complex conjugate pairs.
e An eigenvalue can be zero but an eigenvector cannot be the zero vector, 0.

e The sum of the eigenvalues of 4 equals the sum of the main diagonal entries of 4,

i.e. the trace of 4.
e The product of the eigenvalues of 4 equals the determinant of 4.
e If0is an eigenvalue of 4 then 4 is not invertible.

e Iflis an eigenvalue of an invertible matrix 4, with x as a corresponding eigenvector,

1. . _ L . )
then 7 is an eigenvalue of 4~', again with x as a corresponding eigenvector.

e If/ is an eigenvalue of 4, with x as a corresponding eigenvector, then A* is an eigenvalue

of A", again with x as a corresponding eigenvector, for any positive integer .

e The matrix 4 and its transpose, 4" , have the same eigenvalues but there is no simple

relationship between their eigenvectors.

Procedure for calculating eigenvalues & eigenvectors

To calculate the eigenvalues and eigenvectors of a n x n matrix 4 we proceed as follows:

1. Calculate the determinant of the matrix 4 — A/, it will be a polynomial in A4 of degree n.

2. Find the roots of the polynomial by solving det(4 — Al) = 0. The n roots of the
polynomial are the eigenvalues of the matrix 4.

3. For each eigenvalue, A, solve 4 x = A x to find an eigenvector x.

23
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5. Diagonalisation of matrices

Eigenvalues and eigenvectors play an important role in solving systems of ordinary differential
equations (ODEs). A system of coupled ODEs can be transformed into a set of independent,
uncoupled equations by diagonalising the system matrix using a similarity transformation.
We can then apply techniques such as the integrating factor method or Laplace transforms to
solve each of the resulting ODEs. The determination of eigenvalues and eigenvectors, through

matrix diagonalisation, also features prominently in the stability analysis of control systems.

5.1. Introduction

Consider a n x n matrix 4 having n, not necessarily distinct, eigenvalues 4, 4,, ...... , A

n

with n corresponding eigenvectors x,, X,, ...... , x, that are linearly independent (see item (1)

below). We say that 4 is diagonalisable if there exists a n x n invertible matrix Pand an X n

diagonal matrix D such that

P'AP=D.

The columns of P are the eigenvectors of 4 and the diagonal entries of D are the corresponding
eigenvalues. Note that we can write the columns of P in any order provided the components of

D are written in the same order.

The diagonal matrix D will have the same eigenvalues, 4, 4,, ...... , A4, , as the matrix 4 and so

D and 4 are called similar matrices.

Notes
(i). A set of eigenvectors is linearly independent if no one eigenvector in the set can be written as a

linear combination of the other eigenvectors in the set.

(ii). A n x n matrix 4 is guaranteed to be diagonalisable if:

e all its eigenvalues are real and distinct so that the corresponding eigenvectors (columns
of P) are linearly independent or,

e A is a symmetric matrix (even if it has repeated eigenvalues).

(iii). A matrix 4 can have repeated eigenvalues but still be diagonalisable.

24
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5.2. Matrices with distinct eigenvalues

In this section we illustrate diagonalisation of matrices with distinct eigenvalues by means of

examples.

Example 14
(i). Calculate the eigenvalues and eigenvectors of the matrix

(1)

ii). Determine an invertible matrix P and a diagonal matrix D such that such that P A P=D..
(i) g

Solution

(i). First we find the eigenvalues by solving,

—4-1 -6
det(A- A1) = =

3 5-2

= (4-AS5-A)+18=0
= P -1-2=0

= A-2A+1)=0

= A4 =2, 4, = -1

As the eigenvalues of the matrix A4 are real and distinct 4 is diagonalisable.

CMD —2019/20
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We now calculate the eigenvectors corresponding to each of the eigenvalues.

e For A; =2 we have Ax; = A1 x1 and so we need to solve,

S NEE

—4x, — 6x, = 2x,
=
3x, + 5x, = 2x,

—6x, — 6x, =0
=
3x, + 3x, =0

Both these equations give x;, = —x, andifwelet x, = 1 then x, = —1.

. : ) -1
Hence, an eigenvector corresponding to the eigenvalue 4, = 2 is x, = ( 1] .

e For A, = —1 we have Ax> = A2 x» and so we need to solve,

SR MR

—4x, — 6x, = —Xx
=
3x, + 5x, = —x,

-3x, —6x, =0
=
3x, + 6x, = 0.

Both these equations give x; = —2x, andifwelet x, = 1 then x, = -2.

-2
Hence, an eigenvector corresponding to the eigenvalue 4, = -1 is x, = ( lj .
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The eigenvalues and eigenvectors of 4 are therefore,

(ii). Using the above results we can define the invertible matrix,

-1 -2
P = :
1 1
Now form the diagonal matrix D by writing the eigenvalues on the main diagonal of D in the

same order the corresponding eigenvectors appear in P, i.e.
2 0
D = :
0 -1

We now check that P™' 4 P = D as required.

1 2
Since we have a 2 x 2 matrix we easily find that P ™' = ( - j and so

» I 2)Y-4 -6\-1 -2 2 4\-1 -2 2 0 )
P AP= = = = D as required.
-1 -1 3 5 1 1 I TA 1 1 0 -1
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Example 15

(i). Determine the eigenvalues and eigenvectors of the matrix,

-5 2 1
A=|-8 3 2
-16 2 6

(ii). Write down an invertible matrix P and a diagonal matrix D such that such that P' 4 P=D.

Solution

The eigenvalues are calculated using,

~5-1 2
det(A—Al) =| -8 3-4 2 |=0
16 2 6-4

3-4 2 ~8 2 ~8 3-1
= (-5-2" 7 +1 =0

/1‘ B 2‘—16 64 16 2

= (=5-A)[(3=A)(6-4) — 4] - 2[-8(6-4) + 32] + 1[-16 + 16(3-4)] = 0
= (=5-A)[A*—94+14]— 2[84-16] + [32 — 164] = 0

= (=5-A)(A-2)(A-7) - 2[8(A-2)] + 16(2-4) = 0

= (=5-A)(A-2)(A-T)- 16(A-2) — 16(2=2) = 0

= (A-2)(=5-2)(A-T)- 32(1-2) = 0

= (A-2)[(=5-2)(A-7)=32] = 0

= (A-D)[-A+21+3]=0
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= —(A-2)[A*=24-3]=0

= —(A=-2)(A1=-3)A+1) =0

= A,=2, A,=3, A,=-1.

We now calculate the eigenvectors corresponding to each of the eigenvalues.

Case 1: For an eigenvector x,, corresponding to eigenvalue 4, = 2, we solve 4 x,

-5 2 1)(x X,
-8 3 2| x,|=2|x,
-16 2 6)\ x, X,

=5x, + 2x, + x;= 2x,
= < -8x; + 3x, + 2x;= 2x,

—16x, + 2x, + 6x;= 2x,

=Tx, + 2x, + x3=0 ..o (1)
= -8, +x, +2x;=0 ............ (2) .
—16x, + 2x, + 4x,=0 ........ (3).

Now, (1) — (3) gives 9x;, — 3x,=0 = x; = 3x,.
Then (2) gives —=8x, + x, + 6x, =0 = -2x, +x, =0 = x, = 2x,.

Let x, =1 then x, =2 and x, = 3.

1
Hence, an eigenvector corresponding to the eigenvalue 4, = 2 is x, = | 2
3
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Case 2: For an eigenvector X, , corresponding to eigenvalue 4, = 3, wesolve 4 x, =3 x,, i.e.

-5 2 1)(x b
-8 3 2| x,|=3|x,
-16 2 6)(x X,

-5x, + 2x, + x;= 3x,
= §-8x; + 3x, + 2x;= 3x,

—16x, + 2x, + 6x,= 3x,

—8x; + 2x, + x;=0 .ccceeene (1)
= < —8x, + 2x;=0 .o (2) .
-16x, + 2x, + 3x;=0 ......... (3)

From Equation (2) we have that x; = 4x,.
Also, (3) — 2 x (1) gives, —=2x, + x; = 0 = x; = 2x,.

Let x, =1 then x, =4 and x, = 2.

1
Hence, an eigenvector corresponding to the eigenvalue 4, = 3 is x, = | 2
4
Case 3: For an eigenvector x,, corresponding to eigenvalue 4, = —1,solve 4 x, = -1 x;, i.e.
-5 2 1l)(x X,
-8 3 2| x,|=-1]|x
-16 2 6)\x, X,
=5x, + 2x, + x;= —Xx,
= 3-8, + 3x, + 2x;=—x,
—16x, + 2x, + 6x;= —x,
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—4x, + 2x, + x;=0 .o, (1)
—8x, + 4x, + 2x;=0 ........... (2) .
—16x, + 2x, + 7x;=0 ........ (3).

Now, (1) — (3) gives 12x, — 6x;, = 0 = x, = 2x,.
Substitute in (2) to give, —8x, + 4x, + 4x,=0 = —4x, +4x,=0 = x = x,.

Let x, =1 then x, =1 and x; = 2.

1
Hence, an eigenvector corresponding to the eigenvalue A, = —1is x; = | 1
2
In summary, the eigenvalue/eigenvectors pairs are
1 1 1
A,=2,x=|2; A,=3,x,=|2|; A, =-1, x; =|1].
3 4 2

(ii). As the eigenvalues of 4 are distinct 4 is diagonalisable and we can define

1 1 1 20 0
P=|2 2 1 and D=|0 3 0 sothat P'AP=D.
3 4 2 0 0 -1

As a check we could calculate P~ and form the matrix product P~ 4 P, but we would prefer

not to have to determine P~ for the 3 x 3 matrix. Alternatively, we note that P~ A P=D is

equivalent to writing AP = PD and we show this latter relationship holds.

Here
2 3 -1
AP = PD =4 6 -1
6 12 -2

thereby confirming that our calculations are correct.
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5.3. Matrices with repeated eigenvalues

A matrix with repeated eigenvalues may or may not be diagonalisable. If we are able to find a full
set of linearly independent eigenvectors then we can diagonalise the matrix but if we are unable to

the matrix cannot be diagonalised. We shall illustrate with examples.

Example 16

3
In Example 11 (Section 2.2.2) we saw that the matrix 4 = (1 9} has a repeated eigenvalue,

-3
A = 6 and that all possible eigenvectors are scalar multiples of x = ( . j . It is therefore

impossible to find two linearly independent eigenvectors. A consequence of this is that the matrix
P will have columns that are scalar multiples of each other meaning that the determinant

of P is zero so that the inverse does not exist. Hence, 4 cannot be diagonalised.

Example 17
1 -3 3
Forthe matrix 4 = | 0 —5 6 | we can show that the characteristic equation is
0 -3 4
A +2)A -1 =0.
Hence, the eigenvaluesare 4, = -2, A, = A4; = 1.

We now calculate the eigenvectors noting that the eigenvalue 4 = 1 is repeated.
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Case 1: For eigenvector x,, corresponding to eigenvalue 4, = —2, solve 4 x,

I =3 3 x, X,
0 =5 6| x,|=-2|x,
0 -3 4)( x, X,
x, — 3x, + 3x; = —2x,
= -5x, + 6x; = —2x,
=3x, + 4x; = —2x,
3x, —=3x, + 3x;, =0 ... (1)
= -3x, + 6x; =0 ... (2)
—3x, + 6x; =0. ... 3)
Equations (2) and (3) both give x, = 2x;.
Substitute in Eq. (1) giving,
3x, —6x; +3x; =0 = x, = x,.
Letx; =1 = x, =2, x, =1.
Hence, an eigenvector corresponding to the eigenvalue 4, = -2 is, x; =

Case 2: For the repeated eigenvalue A4, = 1 we try to find two linearly independent eigenvectors.

Solvedx =1.x,1.e.,

I -3 3} x, X,
0 =5 6|l x,|=1] x,
0 -3 4) x, X,
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x, — 3x, + 3x; = x,
= -5x, + 6x; = x,

=3x, + 4x; = x;

-3x, + 3x, =0 ... 1)
= <=6x, +6x; =0 ... (2).
-3x, +3x;, =0. ... )

All three equations give x, = x; andsowecanset x, = x; = a,(a # 0).

As the equations are all independent of x, it can take any value, say x, = f.

An eigenvector corresponding to the repeated eigenvalue A = 1 will therefore have the form,

B

x = | a |. We can now obtain two linearly independent eigenvectors through suitable choices
a

for « and B. The most obvious choices are:

0
e o =1, p = 0 giving the eigenvector, x, = | 1 | and
1
1
e o =0, p =1 givingtheeigenvector, x, = | 0
0
In summary, we have
1 0 1
A= =2,x=1|2]|; A,=1,x,=|1| Ay, =1,x;,=]0
1 1 0
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We have therefore found three linearly independent eigenvectors and so A4 is diagonalisable with

sothat P'AP=D.

~

Il
i \® B
—_— = O
[

[}

=

o

o)

Il
S O N
o = O
—_— o O

Summary of Diagonalisation

To diagonalise a n x n matrix A4:

calculate the (n) eigenvalues of A4.

» calculate an eigenvector corresponding to each eigenvalue (note that a repeated

eigenvalue will need more than one eigenvector).

» define P to be the n x n matrix that has the eigenvectors as its columns. If P is invertible

then the matrix A4 is diagonalisable. Otherwise it is not diagonalisable.

» let D be the diagonal matrix which has the eigenvalues of 4 as its diagonal entries

written in the same order as the corresponding eigenvectors appear in P.
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6. Solving linear systems of ODEs by diagonalisation

In this section we look at how matrix methods can be applied to solve linear, homogeneous,
constant coefficient systems of ordinary differential equations (ODEs). We shall consider

the case where we are able to find a full set of linearly independent eigenvectors so that the
coefficient matrix is guaranteed to be diagonalisable. The process of diagonalisation enables us
to convert the original coupled system to a diagonal system that can easily be solved using

methods we already know.

6.1. First order linear systems

The method is introduced by considering a system of two ODEs but can be extended to any

number of equations.

Suppose x,(¢) and x,(¢) are unknown functions of 7 and the rate of change of each function

with respect to ¢ is a linear combination of both functions. That is

dx, N

— = a,x a, x
1171 12 72

dt

dx, N

— = a,x Ay X
2171 22 72

dt

where a,,, a,,, a,, and a,, are known constants. The functions x,(#) and x,(¢) cannot be
found directly from these two differential equations since each equation contains the two
dependent variables x, and x,. These differential equations are said to be coupled. The

process of diagonalisation will uncouple the differential equations to a system of equations

which involves a single dependent variable in terms of 7.
Our system of differential equations can be written in matrix form as

x =Ax

X X a a

1 . 1 11 12
xz(j, x:(_j and Az( j

X, Xy a, a4y

where
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Assume that the matrix 4 can be diagonalised so that we can write P 'AP = D, or

equivalently 4 = PDP~'. The matrix P has the eigenvectors of 4 as its columns and the

diagonal matrix D consists of the eigenvalues of 4 along the main diagonal in the same order

the corresponding eigenvectors appear in P.

u, (¢
Now introduce the change of variables, u = P~'x so thatx = Pu where u = ( 1 )j.

u, (1)

The entries in the matrix P are just constants and so differentiating both sides of x = Pu with

respect to ¢ gives

d d
X 7 (Pu) 7 (u) u

We can now write our original system of ODEs, x = A4 x, in terms of # to produce

Pu = PDP'Pu.
or

Pu = PDu. (since P'P = 1)
Pre-multiply both sides of this equation by the inverse of P giving
P'Pu=P'PDu

which simplifies to give the system, # = Du .

. . u Ay 0w, .
This system can be written out fully as = and expanded to give

u, 0 A, u,

du,
— = Ay
dt
du,
. Ayu,
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The process of diagonalisation has decoupled the system of differential equations, i.e. each
differential equation now only contains one dependent variable and hence can be solved.

Once the solutions for u , i.e. u, and u,, are obtained the solution of the original system is

calculated from, x = Pu.

Note: At no point in the process do we need to calculate the inverse of matrix P.
Following the above steps gives the general solution of the system which will contain
arbitrary constants. If initial conditions are specified then these constants are evaluated in

the same way as for a single ordinary differential equation.

This method is readily extended to systems with three, or more, coupled ODEs. It can also be

applied to systems of second order ODEs.

Example 18
Determine the general solution of the coupled system of ordinary differential equations,

X, = =5x, + 2x, + x,
x, = =8x, + 3x, + 2x,
x; = —l6x, + 2x, + 6x, .

Solution

Step 1: Write the system as a matrix equation.

X, -5 21 X,
Letx = |x,|, 4 =|-8 3 2|and x = | x, | sothat the system may be written as
X, -16 2 6 X,
X -5 X,
the matrix equation, x = 4 x, 1.e. | = 1-8 3 2|x,]|.
X, -16 2 X,
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Step 2: Calculate the eigenvalues and eigenvectors of the coefficient matrix A.

The eigenvalues and eigenvectors of the matrix 4 were previously found in Example 15 to be,

ﬂ/l:z,xl: 2; /12:3,x2:

N S R

1
5 Ay=-1, x; =| 1].
2

Step 3: Diagonalise the matrix 4.

As the eigenvalues of 4 are real and distinct we know that 4 is diagonalisable with

1 1 1 20 0
P=12 21 and P'A4P=1]0 3 0|=D.
3 4 2 0 0 -1

Step 4: Determine the general solution of the system.

We saw above that by letting x = Pu the coupled system ( x = 4 x ) can be expressed in

uncoupled form as # = D u which in this case gives

i, 2 0 0\«
i,| =10 3 0 u,
iy 00 —1)u,

Expanding this expression gives the three uncoupled differential equations

du, du, du,
— = 2u,, = 3u, and = —u, .
dt dt dt

The solutions of these separable first order differential equations (refer to notes on ODEs) are

where C,, C, and C, are arbitrary constants.
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The solution, in terms of the original variables, x,(¢), x,(¢) and x,(¢#) can now be found.

x, 1 1 1)y
Since x = Pu we have, x| =12 2 1|u,
X, 3 4 2)\u,

Multiplying out the above gives
x,(t) = u, +u, + u, = Cie* + C,e’" + Cye”’

2u, + 2u, + u, = 2C,e*" + 2C,e’" + C,e”’

x, (1)

x,(t) = 3u, + 4u, + 2u, = 3C,e*" + 4C,e" + 2C, e .

A neater way of writing the general solution (GS) is

X, 1 1 1
x,| = C| 2] + C,|21e" + Cy| 11"
X, 4 2

Can you see how the general solution is connected to the eigenvalues and eigenvectors?

The eigenvalues and eigenvectors appear is the GS as follows

At Ayt Ast

x(t) = Cix,e" +C,x,e" +Cyx;5e

Note: Ifinitial conditions were specified we could determine the unknown constants C,, C,

and C, to obtain a particular solution.

Extending the above, the general solution of a linear system x = 4 x, where the n x n

coefficient matrix A4 is diagonalisable, is given by

3 A A A
x(t) = C,x, e +C,x,e +Cyx, e + ...+ C,x, e

where x; is the eigenvector associated with the real eigenvalue 4, .
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Example 19
A system of two coupled ordinary differential equations is given by

X, = —=2x, + 5x,

X, = x, + 2x,.

Determine the particular solutions for x, (¢) and x,(#) that satisfy the initial conditions,

x,(0) = -1, x,(0) = 5.

Solution

Step 1: Write the system in matrix form, x = 4 x, 1.e.
) (-2 5)\(x
o) L1 2)x)
Step 2: Determine the eigenvalues by solving,

-2-1 5
det(A-A1) =

= (2-A)2-A)-5=0
= 12 -9=0

- A-3NA+3)=0

As the eigenvalues of the matrix A are real and distinct 4 is diagonalisable.
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Step 3: Calculate the eigenvectors corresponding to each of the eigenvalues.

e For A, = 3 wehave4x, = 4,x, and so we need to solve,

S UEEN

-2x, + 5x, = 3x,
=
x, + 2x, = 3x,

{—le + 5x, =0
=
X - X, =

Both these equations give x; = x, andifwelet x, = 1 then x = 1.

Hence, an eigenvector corresponding to the eigenvalue 4, = 3 is x, = (lj .

e For A, = -3 wehave4x, = A,x, and so we need to solve,

el = =L

-2x, + 5x, = —3x
— { 1 2 1

x, + 2x, = =3x,

x +5x, =0
=
x +5x, =0

Both these equations give x, = —5x, andif welet x, = 1 then x, = -5.

: : . . -5
Hence, an eigenvector corresponding to the eigenvalue 4, = -3 is x, = ( lj .
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The eigenvalues and eigenvectors of A are therefore,

Step 4: Diagonalise the matrix 4.

Using the above results we can define the invertible matrix,

()

Now form the diagonal matrix D by writing the eigenvalues on the main diagonal of D in the

same order the corresponding eigenvectors appear in P, i.e.

L 300
P'4P = D = .
0 -3

Step 5: Determine the general solution of the system.
Let x = Pu . Differentiating both sides with respect to ¢, gives, x = P u (since P is a constant

matrix). The coupled system x = 4 x can then be written as

Pu = APu = u=P'4P u = u=Du.

HEHN !

Expanding this expression gives the two uncoupled first order separable differential equations

Hence,

— = 3u, and = —3u,.
dt dt
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The solutions of these differential equations (refer to notes on ODEs) are
and

where C, and C, are arbitrary constants.

The solution, in terms of the original variables, x,(¢) and x,(¢) can now be found.

Since x = Pu we have, = .
X, I 1 )Mu,

Expanding this expression, gives

x, = u, — Su,

X, = u, + u,.

Nowuse #, = Cie* and u, = C,e > to write down the general solution

x,(t) = C,e — 5C,e™”

x,(t) = C,e”" + C,e™™ .

Step 6: Determine the particular solution that satisfies, x,(0) = -1,

x,(0) = 5.
Substituting these values into the general solution gives,

x,(0) =

-1 = C, -5C, = -1

5,0) = 5 = C +C, =5.

Solve as simultaneous equations to obtain, C, = 4 and C, = 1.
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The particular solution (PS) is therefore,

x,(t) = 4e¥ - 5e7

x,(t) = 4e” + e .

Step 7 (OPTIONAL): Check the answers for x,(#) and x, (7).

The PS gave that x,(t) = 4e* — 5e7’" and so differentiating gives,

X, (1)

12¢° + 15¢7" . (1)

The original coupled system gave that

X, = —2x, + 5x,.

Substituting the expressions for x,(¢) and x, (¢) from the PS we have,

% = —2(4e” — 5e7) + 5(4e + )

= % = 12¢¥ + 15¢7%. (2)

Expressions (1) and ( 2 ) are identical thereby verifying our answer for x, ().

Now verify the answer for x, (¢).

3t

The PS gave that x,(t) = 4e” + e

X, (1)

and so differentiating gives,

12¢° — 3e7" . (3)

The coupled system gave that
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Substituting the expressions for x,(¢) and x, (¢) from the PS we have,

%, = (4e’ — 5e7") + 2(4e’ + e7)

= x, = 12" - 3e7. (4)

Expressions ( 3 ) and (4 ) are identical thereby verifying our answer for x, (7).

Example 20
Determine the general solution of the coupled system

x =x — 3x, + 3x,
X, = -5x, + 6x,
X, = -3x, + 4x; .

Solution

In matrix form the system is given by x = 4 x, i.e.

%, 1 -3 3)(x
5| =10 =5 6x|
i, 0 -3 4 \x

In Example 17 we found that the matrix has the following eigenvalues and eigenvectors where

the eigenvalue A = 1 is repeated

1 0 1
Ay ==-2,x=|2|; A,=1,x,=1]11; A, =1,x, =10
1 1 0
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As we were able to find three linearly independent eigenvectors the matrix, 4, is diagonalisable

and the general solution of the system is given by
At

A A
x(t) = C,x, e +C,x,e" +C,x,e

Substituting the eigenvalues and eigenvectors gives

x(t) = C,

— [\ ) —
Q
o
+
Q

&)
—
Q
+
@)

w
e
Q

which expands to

x,(t) = Ce™ + Cye'
x,(t) = 2C, e + C,e'

x,(t) = C,e™™ + C,e'.
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6.2. Second order linear systems

The method is introduced by considering a system of two ODEs but can be extended to any

number of equations.

Example 21
Determine the general solution of the coupled system

X, = -2x;, + x,

X, = x, — 2x, .

Solution

Step 1: Write the system in matrix form, X = 4 x, 1i.e.

Since A4 has distinct eigenvalues it can be diagonalised.

Step 3: Diagonalise the matrix A.

11

Using the above results, P = ( -

j and P 'AP

Il
|
S W
|
—_ O
N—
Il
o)
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Step 4: Determine the general solution of the system.
Let x = Pu . Differentiating twice gives, X = P u (since P is a constant matrix).

The coupled system X = A x can then be written as

Pii = APu = ii= P 'AP u = i=Du.

)= (o )

Expanding this expression gives the two uncoupled second order differential equations

Hence,

d’u, d’u,
FrEal —3u, and Frealn —u,.

The solutions of the differential equations

d’u,
dt’

2
d-u,

dt?

+ 3u, =0 and + u, =0

are
u,(t) = Alsin(\/gt) + Blcos(\/gt) and

u,(t) A,sin(t) + B,cos(t)

where 4,, B,, 4, and B, are arbitrary constants.

Note: In each case the roots of the auxiliary equation are complex with real part zero so

solutions are in terms of the trig functions - refer to notes on ODEs.
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The solution in terms of the original variables, x,(#) and x,(#) can now be found.

i X I 1)y
Since x = Pu we have, = .
X, -1 1 \u,

Expanding this matrix equation gives

X, = u, + u,

X, = —u, + u,.

From earlier, u, = Alsin(\/gt) + Blcos(\/gt) and u, = A,sin(¢t) + B,cos(¢). Hence,

on substitution, the general solution is

x,(1) = A;sin(x3t) + B,cos(\/3t) + A,sin(¢) + B,cos(t)

x,(1) = —Alsin(\/gt) — Blcos(\/gt) + A,sin(t) + B,cos(t).

A neater way of writing out the general solution is

(xlj _ [Alsin(\/gt) + Blcos(\/gt)](_ij + [Azsin(t) + BZCOS(t)](ij.

Xy

Can you see how the general solution is connected to the eigenvalues and eigenvectors?

The general solution of a linear system X = 4 x where the n x n matrix 4 has n distinct
. . 2 2 2 2 . . .

negative eigenvalues -, , -, ,—®;, . . ., —o, , with associated real eigenvectors

X, X,,X;, ..., X, ,lIsgivenby

n >

x(t) = i[Aisin(a)l.t) + B[cos(a)it)]x,.

i=1
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Example 22
Determine the particular solution of the coupled system

X, = -2x;, + x,

X, = x, — 2x,

subject to the initial conditions x,(0) = 0, x,(0) = 0, x,(0) = 1, x,(0) = 3.

Solution

The general solution of the system was obtained in Example 21 to be

x,(t) = A,;sin(\[31) + B,cos(y/31) + A,sin(z) + B,cos(t)

x,(1) = —Alsin(ﬁt) — Blcos(ﬁt) + A,sin(t) + B,cos(t).

First apply the conditions, x,(0) = 0, x,(0) =0 :

x(0) = 0: A4,sin(0) + B,cos(0) + A4,sin(0) + B,cos(0) =0 = B, + B, =0

x,(0) = 0: -4,sin(0) — B,cos(0) + A4,sin(0) + B,cos(0) =0 = —-B, + B, =

Solving these simultaneous equations gives B, = B, = 0.

Hence, with B, = B, = 0 the general solution becomes,
x,(t) = A,;sin(y/31) + 4,sin(¢)

x,(t) = —A;sin(\[31) + 4,sin(1).

To apply the remaining conditions, x,(0) = 1 and X,(0) = 3, we must first differentiate

x,(t) and x,(7) :

x,(t) = \/EAlcos(\/gt) + A,cos(t) = \/EAI + 4, =1
x,(1) = —[34,cos(\/31) + A,cos(t) = —./34, + 4, = 3.
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Solving these simultaneous equations gives, 4, = and 4, = 2.

1
7

! , A, = 2, B, = 0 and B, = 0 which are substituted in the

7

general solution to obtain the particular solution:

We now have values 4, =

x,(1) = %sin(ﬁt) + 2sin(¢)

x,(t) = —%sin(\/gt) + 2sin(¢).

5

A neater way of writing out the particular solution is,

(:] - %sin(\/gt) (_1} + 2sin(t)(1j.

Example 23
A system of two coupled linear ordinary differential equations is given by,

X, = =Tx, + 12x,

X, = —4x, + Tx,.

(i). express the system in matrix form, x = 4 x.
(ii).  determine the eigenvalues and eigenvectors of the coefficient matrix, A.
(iii).  write down an invertible matrix P such that P '4P = D where D is a diagonal

matrix. Write down the matrix D.

(iv). determine the general solution of the system.
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Solution

(>i). In matrix form the system is,
X, (=7 12 X
i) -4 7 )\ x)

(ii).  Exercise: Show that the matrix A4 has the following eigenvalues and eigenvectors,

2 3 » -1 0
(iii). P = , P AP = D = .
1 2 0 1

(iv). Determine the general solution of the system.
Let x = Pu . Differentiating twice gives, X = P u (since P is a constant matrix).

The coupled system X = A x can then be written as

Pii = APu = ii= P 'AP u = i=Du.

)= (o )

Expanding this expression gives the two uncoupled second order differential equations,

Hence,

i, +u, =0 and i, —u, =0.
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Solving these equations gives,

A;sin(t) + B, cos(t) and

u, (1)

u,(t) = A,e' + B, e’

where 4,, B,, A, and B, are arbitrary constants.

The solution in terms of the original variables, x,(#) and x,(#) can now be found.

i X 2 3)\(y
Since x = Pu we have, = .
X, I 2 \u,

Expanding this matrix equation gives

X, = 2u, + 3u,

X, = u, + 2u, .

From earlier, u,(t) = A,sin(¢) + B,cos(¢) and u,(t) = A,e' + B, e . Hence, on

substitution, the general solution is

x,(t) = 24,sin(t) + 2B,cos(t) + 34,e¢" + 3B, e’

x,(t) = A;sin(¢) + B,cos(t) + 24,¢' + 2B, e".
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In this section we firstly considered linear systems of differential equations where the coefficient
matrix has distinct eigenvalues and is therefore diagonalisable. The method was then extended
to look at the special case where the eigenvalues are repeated and we have been able to find a set
of linearly independent eigenvectors and diagonalise the coefficient matrix. The diagonalisation
process uncouples the differential equations so that a solution to the system can be obtained in a
relatively straightforward manner. However, as we saw in Section 5.3 a matrix with repeated
eigenvalues may or may not be diagonalisable and we might not be able to find a set of linearly
independent eigenvectors. When this situation arises we are unable to apply the methods
described above to solve the system of ODEs and we need to use generalised eigenvectors.

The topic is not considered here.

Summary
On completion of this unit you should be able to:

e calculate eigenvalues and eigenvectors for 2 x 2 and 3 x 3 matrices.

e where appropriate diagonalise 2 x 2 and 3 x 3 matrices.

e solve linear, homogeneous, constant coefficient systems of first and second order

ordinary differential equations by diagonalisation.
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Tutorial Exercises

Q1. Determine the eigenvalues of each of the following matrices:

. 1 4 . -1 =2 -2 2
@). { 1 (ii). 4 s (iii). s 1

) 2 -4 3 -2 . -1 2
@iv). 1 1 ). 4 (vi). 0o -1/

Q2. Determine the eigenvalues and eigenvectors of each of the following matrices:

. 2 2 . -1 =2 1 2 . 2 1
@). 5 _1 (ii). 4 s (iii). 4 3 (iv). 6 1
23 . 5 -10 i) 5 -7 (viii) -6
v). 46 (vi). 5 _a (vii). 0 5 viii). 0 —7

Q3. Determine the eigenvalues and eigenvectors of each of the following matrices:

2 0 0 323 1 -1 0
@i). -1 3 3 G) |0 4 5| i), 4=|-1 2 -1
4 -4 -4 00 2 0 -1 1
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Q4.

Qs.

Q6.

Consider the matrix

32 0 4

0 2 -1 0
M =

0 0 3 3

0 4 0 7

Three of the eigenvalues of matrix M are 4, =1, 4, =3 and 4; = 6.

Determine the fourth eigenvalue ( 4, ) of M and hence calculate the determinant of M.

Find the eigenvalues and eigenvectors of each of the following matrices,

. - -4 -6 . - -3 4
@). =1 3 i (ii). =1 4 3

4 = 5 -3 ) 4= 0 1
(iii). =l_¢ - >iv). =10 of

Where possible, find an invertible matrix P and a diagonal matrix D such that

P'4AP=D.

Find the eigenvalues and eigenvectors of each of the following matrices,

2 2 -2 1 01
@ A4=|13 1 G). A4=]0 -1 3
1 2 2 0 0 2

2 0 1 0 0

i), 4=|-1 4 -1 (iv). A = 0 1
-1 2 0 1 0

Where possible, find an invertible matrix P and a diagonal matrix D such that

P'4AP=D.

CMD 2019/20
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Q7.  Consider the following coupled systems of ordinary differential equations,

(). X, = x + 2x, ). x, = -7x, + 12x,
X, = 4x, + 3x, X, = —4x, + Tx,
(). x, = —-x, + x, iv). x =3x — x, — x
X, = x; + 2x, + x, X, = —x, + 3x, — x;
X, = 3x, — x, X, = —x, — x, + 3x;.

In each case:
(a).  express the system in matrix form, x = 4 x.
(b). determine the eigenvalues and eigenvalues of the coefficient matrix, 4.

(c¢).  write down an invertible matrix P such that P"'4P = D where Disa

diagonal matrix. Write down the matrix D.

(d). determine the general solution of the system.

Q8. Determine the particular solution to each of the following coupled systems of differential

equations,

(i). X, = x + 2x,

X, = 4x, + 3x,

given that x,(0) = 5 and x,(0) = 1.

Note : The general solution was obtained in Q7 (1) (d).
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(). % = —-7x + 12x,

X, = —4x, + Tx,

given that x,(0) = 9 and x,(0) = 4.

Note : The general solution was obtained in Q7 (ii) (d).

(). x = -x + x,
X, = x, + 2x, + x4
X; = 3x, — x,

given that x,(0) = 1, x,(0) = —6 and x,(0) = 3.

Note : The general solution was obtained in Q7 (iii) (d).

iv). x =3x — x, — x5
X, = —x, + 3x, — x;
X, = —x, — x, + 3x;.

given that x,(0) = 6, x,(0) = 2 and x,(0) = 1.

Note : The general solution was obtained in Q7 (iv) (d).

Q9. Consider the following coupled systems of differential equations,

X, = —-12x, - 6bx,

X, = 8x, + Tx,.

(i). express the system in matrix form, x = 4 x.
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(ii).

(iii).

(iv).

determine the eigenvalues and eigenvalues of the coefficient matrix, 4.

write down an invertible matrix P such that P 'AP = D where Dis a

diagonal matrix. Write down the matrix D.

determine the general solution of the system.

Q10. A system of two coupled ordinary differential equations is given by

CMD 2019/20

@i).

(ii).

(iii).

(iv).

v).

X, = =5x, + 4x,

X, = 4x;, - Sx,.

express the system in matrix form, x = 4 x.

determine the eigenvalues and eigenvalues of the coefficient matrix, 4.

write down an invertible matrix P such that P 'AP = D where Dis a

diagonal matrix. Write down the matrix D.

determine the general solution of the system.

Determine the particular solution that satisfies the following conditions,

x(0) = -2, x(0) =2, x(0)=0, x(0) =0.
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Answers

Al. (@). A, =-1, A1, =3.
. 4, =1, A, =3.
1 31
R B C1
(). 4, SRR,
(iv). A, =3, A, = -2.
v. A, =1+2j,

(vi. A4 = —1 (repeated).

-2
A2. (). A, =-3, xlz( sj

-1
(ii). A, :3,x1=( );
-1
(i). 4, =-1, x,= ( j;
i A = -1 = .
(iv). , = -1, x= E
)
™. 4,=0,x= ;

2
vi). A4, =0, x= ( 1];
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(vii).

(viii).

(ix).

().

(xi).

(xii).

A3. ().

(ii).

(iii).

CMD 2019/20

1 7
A, =5, x= 0 ; A, =12, X, = 5 |
1 0
A = -6, x = 0 ; A, ==T7, x,= L)
1 -2
A, =4, x = . ; A, = =3, X, = 5
1 1
A =4, x = . ; A, =3, X, = .k
. . ) -1
A, = 2 (repeated); only 1 linearly independent eigenvector, x = ( J
2L 2L
A =27, x=|" 7, Ay = =2j,x,=| ° 7.
1 1
1 0 0
A=2,x=|11 A,==1,x,=|-3 |; A, =0, x;=| -1
0 4 1

The matrix is upper triangular and so the eigenvalues are the diagonal entries.

1 2 4
=3, x=101 A,=4,x,=|1]; A, =2, x,=| =5
0 0 2
1 1 1
A=0,x=|1|; 4,=1,x, 0 |; Ay =3, x,=|-2
1 -1 1
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A4. The trace of the matrix M is the sum of the entries on the main diagonal, i.e.

tr(M) =3 +2 + 3 + 7 =15. The sum of the eigenvalues of M equals the trace.

Since #(M) = 15we must have that A, +A, +A; +A, =15 and so

A, =15-(1+3+6)=S5.

The determinant of M is given by the product of the eigenvalues, i.e.

det(M ) = A, A, 4,4, =1 x3 x5 x6=090.

AS. (D).

(ii).

(iii).

(iv).

CMD 2019/20

-1 -2 2 0 o
P = { { and D = 0 { sothat P AP=D.

0 -5

1 -1 -1 0 4
P = and D = sothat P AP=D. .
2 1 0 8

Not diagonalisable. The eigenvalue A4 =0 is repeated but all eigenvectors have
a
the form x = ( 0 ], (¢ # 0) and so we cannot find two linearly independent

eigenvectors to form the matrix P.
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A =1, x

(i).

A6.

o o <
S a o
— o o
Il
Q
T

S O -
S — O
—_ O O
—,
Il
7~

S O -
S — O
‘I_. o O
—,
Il
7~
—_ O O
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A7. (D).

(ii).

CMD 2019/20

(a).

(b).

(¢).

(@).

(b).

(¢).

(@).

L)
x, (1) -

Alternatively,

L)
x, (1) -

Alternatively,

o

o

12

MBI

1
2

2
1

je”—i—

x, (1)
x,(1)

[:)

je’+

x, (1)
x,(1)

5 —
= Ce' - Cye’

= 2C, e + C,e".
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(iii). (a).

(b).

(¢).

(@).

(iv). (a).

(b).

(©).

CMD 2019/20

X, -1 1 0} x
X | = I 2 1]x
X, 0 3 -1 )\x

- 1 1
A =-1,x=| 0]; A, = =2, x,=|-1 |; A =3, x,=14
3 3
-1 1 1 -1 0 O
P=| 0 -1 4 and D=| 0 -2 0| sothat P"AP=D.
1 3 3 0 0 3
X, (1) . 1 I
x, (1) = C,/| 0| e" +C,|-1|e™ +C,|4]|e”.
(1) 1 3 3
Alternatively, x,(t) =-Ce" + C,e™ + Cye”
x,(t) = -C,e™ + 4C,e”

x,(t) = Cie" + 3C,e™ + 3C,e” .

X, 3 -1 -1)(x
x| = | -1 3 -1]x
X, -1 -1 3 ){x
1 -1 -1
A=l x=1|; 4, =4, x,=| 0 |; =4, x;=] 1
1 0
1 -1 -1 1 0 0
P={1 0 1 and D=[0 4 0 sothat P"AP=D.
1 1 0 0 0 4
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x, (1) 1 -1

-1
(d). x, (1) = C,| 1| e +C,| 0 |e" +C,| 1] e"
x, (1) I I 0
Alternatively, x,(t) = Ce' — C,e - Cje”

x,(t) =C,e + C,e”

x;(t) = Ce' + C,e™.

A8.  (i). From Q7 (i) (d) the general solutions is,

x,(t) = C e — Cye’

x,(t) = 2C,e”" + C,e™".

Applying the conditions, x,(0) = 5 and x,(0) = 1 gives the simultaneous

equations
c, -C, =5
2C, + C, =1
Solving these equations we have C, = 2 and C, = -3.

The particular solution is therefore,

x,(t) = 2> + 3e!

x,(t) = 4e” - 3e ™.
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(ii).  From Q7 (ii) (d) the general solution is,

x,(t) = 2Ce”" + 3C,e'

x,(t) = Cie”" + 2C,e".

Applying the conditions, x,(0) = 9 and x,(0) = 4 gives the simultaneous

equations,
2C, + 3C, =9
C, + 2C, = 4.
Solving these equations we have C, = 6 and C, = —1.

The particular solution is therefore,

x,(t) = 12¢™" - 3¢’

x,(t) = 6e’ — 2C,e".

(iii). From Q7 (iii) (d) the general solutions is,

x,(t) =-Ce" + C,e™ + Cye”
x,(t) = -C,e™ + 4C,e”

x,(t) = Cie" + 3C,e™ + 3C,e™ .

Applying the conditions, x,(0) = 1, x,(0) = —6 and x,(0) = 3 gives the

simultaneous equations,
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-C, +C, + (C, =1
-C, + 4C, = -6

C, +3C, +3C, =3.
Solving these equations we have C, = 0, C, = 2 and C; = —1.

The particular solution is therefore,

x,(t) =2e - e
x,(t) =-2e7 — 4e*

x,(t) = 6e™ ¥ — 3e.

(iv). From Q7 (iv) (d) the general solutions is,

x,(t) = Ce' — C,e* - Ce”
x,(t) = C,e' + C,e”

x;(t) = Ce' + C,e™.

Applying the conditions, x,(0) = 6, x,(0) = 2 and x,(0) = 1 gives the

simultaneous equations,

C, + C, =2
C, + C, =1
Solving these equations we have C, = 3, C, = -2 and C, = —1.
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The particular solution is therefore,

x,(¢) =3e" + 3e*
x,(t) =3e — e*

x,(t) = 3e' — 2e*.

. X, -12 -6 ) x,
A9.  (i). v | = s 7 lxl

-2 -3
. A4, =-9, x :( 1]; A, = 4, x, = ( 8).

(iii). P:(_2 _3], P'AP = D:(_9 0].
0 4

(iv). Let x = Pu . Differentiating twice gives, X = P u (since P is a constant

matrix). The coupled system X = 4 x can then be written as

Pii = APu = ii= P 'AP u = i=Du.

)= (o o)

Expanding gives the two uncoupled second order differential equations,

Hence,

ii, +9u, =0 and ii, — 4u, = 0.
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Solving these equations gives,

u, (1)

A;sin(3t) + B, cos(3t) and

u,(t) = A,e* + B, e

where 4,, B,, A, and B, are arbitrary constants.

The solution in terms of the original variables, x,(#) and x,(#) can now be found.

i X -2 =3)\(u
Since x = Pu we have, = .
X, 1 8 \u,

Expanding this matrix equation gives

x, = —2u, — 3u,

X, = u, + 8u, .

From earlier, u,(t) = A,sin(3t) + B,cos(3¢) and u,(¢t) = A,e” + B, e . Hence,
on substitution, the general solution is

x,(t) = —2A4,sin(3t) — 2B,cos(3t) — 34,e* — 3B, e””

x,(t) = A;sin(3t) + B,cos(3t) + 84,e”" + 8B, e ™.
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1 1
. 4, =-1, x = (1]; A,= -9, x, = ( J .

1 1 4 -1 0
(iii). P = , P AP = D = .
1 -1 0 -9

(iv). From Section 6.2 in the notes:

The general solution of the linear system X = 4 x where the n x n matrix 4 has
n distinct negative eigenvalues —o;, —@; —@;, ..., —o_ , with associated

real eigenvectors x,, x,,x,, ..., X, ,Is given by

x(t) = Z[Aisin(a)l.t) + B[cos(a)it)]x,.. Here the GS is therefore,

i=1

x . 1 . I
( 1] _ [Alsm(t) + Blcos(t)](lj + [Azsm(3t) + Bzcos(3t)](_lj.

Xy

x,(t) = A;sin(t) + B,cos(t) + A,sin(3¢t) + B,cos(3¢)

x,(t) = A;sin(¢) + B,cos(t) — A,sin(3t) — B,cos(3t)

where 4,, B,, A, and B, are arbitrary constants.

(v). Apply x,(0)=-2 , x,(0) =2 to the general solution,
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Apply x,(0)=0 , Xx,(0) =0 to the derivative of the general solution,

x,(t) = A,cos(t) — B;sin(t) + 34,cos(3¢t) — 3B,sin(3¢)
xX,(1)

A, cos(t) — B;sin(t) — 34,cos(3t) + 3B,sin(3¢)

.+ 34,

Particular solution:

x,(t) = —2cos(3¢)

x,(t) = +2cos(3¢).

CMD 2019/20

73



