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Matrices for Engineering 2: Eigenvalues, Eigenvectors & Systems of ODEs  

1. Introduction 

In this unit we look at calculating eigenvalues and eigenvectors of 2 × 2 and 3 × 3 matrices  

before investigating their role in the diagonalisation of square matrices.  The diagonalisation 

process is then applied to demonstrate how algebraic techniques are used to solve linear systems  

of ordinary differential equations.  

 

2. Eigenvalues and eigenvectors of a 2 × 2 matrix  

Eigenvalues and eigenvectors have many important applications in science and engineering  

including solving systems of differential equations, stability analysis, vibration analysis and  

modelling population dynamics.   

 

Let A be a nn   matrix.  An eigenvalue of A is a scalar λ (real or complex) such that  

 

A x = λ x      (I)  

 

for some non-zero vector x.  In this case, we call the vector x an eigenvector of  A corresponding  

to λ.  Geometrically Eq. (I) means that the vectors Ax and x are parallel.  The value of λ  

determines what happens to x when it is multiplied by A, i.e. whether it is shrunk or stretched or  

if its direction is unchanged or reversed.   

 

 

Example 1  

If 









24

31
A   and  x = 








4

3
,  then  

 

A x = 







20

15
   = 








4

3
5  = 5 x.  

 

Here we have that A x = 5 x and so we say that x = 







4

3
 is an eigenvector of A corresponding to  

the eigenvalue 5 .  The geometric effect in this example is that the vector x has been  

stretched by a factor of 5 but its direction remains unchanged as 0 .   



2 
CMD – 2019/20  

Note that any scalar multiple of the vector x = 







4

3
 is an eigenvector corresponding to the  

eigenvalue 5 .  

 

What are eigenvalues and eigenvectors? 

http://math.gallery.video/detail/video/nddzsJAT21g/15---what-are-eigenvalues-and-eigenvectors-learn-how-
to-find-eigenvalues. 

https://www.youtube.com/watch?v=G4N8vJpf7hM 

 

 

2.1. Calculation of eigenvalues 

If A is a 22   matrix it is relatively straightforward to calculate its eigenvalues and eigenvectors  

by hand.  So, how do we calculate them?   

 

We know that x = I x, where I is the identity matrix, so we can rewrite Eq. (I) as  

 

A x  =  λ I x 

 

 A x I x  =  0 

 

 )( IA  x  =  0.  

 

If the matrix )( IA   is invertible, i.e. 0)det(  IA , then the only solution to the above  

equation is the zero vector, i.e. x = 0.  We are not interested in this case as an eigenvector must  

be non-zero.  

 

The equation )( IA  x = 0 can only hold for a non-zero vector x if the matrix )( IA   is  

singular (does not have an inverse).  Hence, the eigenvalues of A are the numbers λ for which  

the matrix )( IA   does not have an inverse.  In other words, the numbers λ satisfy the equation  

 

0)(det  IA        (II) 

and they can be real or complex.   
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2.1.1. Real distinct eigenvalues 

We firstly look at the case where an nn   matrix has n distinct eigenvalues.  

 

Example 2  

Find the eigenvalues of the following matrices :  

 

(i).  











47

25
A    (ii).  













74

413
B    (iii).  










02

20
C .  

 

Solutions  

(i). 





































47

25

10

01

47

25
IA . 

 

Hence, 6)7()2()4()5(
47

25
)(det 2 




 



 IA .   

 

We call 62    the characteristic polynomial of the matrix A. 

 

The eigenvalues of A are the roots of the characteristic equation 0)(det  IA  , i.e.  

 

20)2()3(062    and 3 .   

 

Hence, 21   and 32   are the eigenvalues of the matrix A.   

 

 

(ii). 




































74

413

10

01

74

413
IB . 

 

Hence, 7520)4()4()7()13(
74

413
)(det 2 




 



 IB .   
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Now solve 0)(det  IB   to find the eigenvalues of B, i.e.   

50)15()5(075202    and 15 .   

 

Hence, 51   and 152   are the eigenvalues of the matrix B.   

 

 

(iii). 


































2

2

10

01

02

20
IC .  

 

Hence, 4)2()2()()(
2

2
)(det 2 




 



 IC .   

 

The eigenvalues of C satisfy 0)(det  IC  , i.e. 2042   .   

 

Hence, 21   and 22   are the eigenvalues of the matrix C.   

 

 

The following example demonstrates a short-cut approach that can be adopted when calculating  

the eigenvalues of specific types of matrices.   

 

 

Example 3  

Find the eigenvalues of the following matrices:  

 

(i).  









80

05
A     (ii).  











40

73
B    (iii).  










23

01
C .  
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In this example we note that:  

 

 matrix A is a diagonal matrix (see Section 4.4) and has the property that all of its entries  

not on the main diagonal are 0.   

 

 matrix B is an upper-triangular matrix (see Section 4.5) and has the property that all of  

its entries below the main diagonal are 0  

 

 matrix C is a lower-triangular matrix (see Section 4.5) and has the property that all of  

its entries above the main diagonal are 0.   

 

Note that, in each case, some of the entries on the main diagonal can be zero.   

 

 

Solution  

In all three cases – diagonal, upper-triangular and lower triangular - the eigenvalues are  

simply the entries on the main diagonal and so we can just read them off without the need  

for any calculations.  Hence,  

 

 The eigenvalues of matrix A are: 8,5 21  .  

 The eigenvalues of matrix B are: 4,3 21  .  

 The eigenvalues of matrix C are: 2,1 21  .  

 

We verify our answers using the method described earlier.  

 

(i). Solving 0)det(  IA  gives 0
80

05





 0)8)(5(    8,5 21   .    

 

(ii). Solving 0)det(  IB   gives 0
40

73





 0)4)(3(    4,3 21   .  

 

(iii). Solving 0)det(  IC  gives 0
23

01





 0)2)(1(   2,1 21   .   
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2.1.2. Repeated eigenvalues 

In the examples presented up to now the eigenvalues have been distinct but it is possible for  

a matrix to have repeated eigenvalues.   

 

 

Example 4  

Find the eigenvalues of the matrix , 






 


91

93
A .  

 

Solution 

To find the eigenvalues we solve  

 

0
91

93
)(det 








 IA   

 

09)9()3(     

 

036122     

 

0)6()6(    

 

6   (repeated)  

 

The eigenvalue 6  is said to have algebraic multiplicity 2, i.e. the number of times it is a  

root of the characteristic equation.   
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2.1.3. Zero eigenvalues 

We have previously noted that an eigenvector cannot be the zero vector, 0, but it is possible  

to have an eigenvalue 0 .  

 

Example 5  

Find the eigenvalues and eigenvectors of the matrix:  

 














42

63
A .  

 

Solution 

To find the eigenvalues we need to solve  

 

0
42

63
)(det 




 IA   

 

012)4()3(     

 

072     

 

0)7(     

 

7,0 21   .  

 

This example shows that it is possible for 0 to be an eigenvalue of a matrix.   

 

Note that if 0 is an eigenvalue of a matrix then the matrix is not invertible.  Hence, the matrix 

A in this example cannot be inverted.   



8 
CMD – 2019/20  

2.1.4. Complex eigenvalues of real matrices  

It is possible for a real-valued matrix to have complex eigenvalues (and eigenvectors) as  

illustrated by the following example. 

 

Example 6  

Find the eigenvalues of the matrices:  

 

(i).  






 


01

10
A      (ii).  












26

34
B .  

 

 

Solution 

(i).  0
1

1
)(det 








 IA  

 

012   .  

 

jj  21 ,  .  

 

 

(ii).  0102
26

34
)(det 2 




 



 IB .  

 

Solve using the quadratic formula, or by completing the square, to obtain,  

 

jj 31,31 21   .  

 

 

Note: For a matrix with real entries its complex eigenvalues always occur in complex  

conjugate pairs.   
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2.1.5.  Verification of eigenvalues for a 2 × 2 matrix  

For a 2 × 2 matrix, A, we can verify the eigenvalues of A using either of the following approaches: 

 

(1).  For each eigenvalue, i , show that 0)(det  IA i .  

 

(2).  Check that both the following conditions hold: 

   (i).  )(tr21 A  .  

The sum of the eigenvalues of A must equal the trace of A.  

The trace of matrix A, i.e. tr(A), is the sum of the elements on the  

main diagonal of A.   

 

(ii).  )(det21 A .  

The product of the eigenvalues of A must equal the determinant of A.   

 

 

Exercise:  Check the eigenvalues calculated for the matrices in Examples 2 - 6 using both  

the approaches described above.  

 

 

2.2. Calculation of eigenvectors  

Once we have calculated the eigenvalues we can find the eigenvectors by solving the matrix  

equation  

A x  =  λ x       (III) 

 

or equivalently, as we saw above,  

)( IA  x = 0  

for each eigenvalue in turn.  

 

Calculating eigenvalues and eigenvectors :  

https://www.youtube.com/watch?v=tXlMbAxbUI4&list=PLgQUIweMg9eJP1QeCotIspOmwGUd8jibS  

https://www.youtube.com/watch?v=kHH1tjWtDAU  

https://www.youtube.com/watch?v=mC2xQnI9SCI  

https://www.youtube.com/watch?v=SGJHiuRb4_s  
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2.2.1. Eigenvectors for distinct eigenvalues  

We shall first of all look at calculating eigenvectors for matrices with real distinct eigenvalues.  

 

Example 7  

Find the eigenvalues and eigenvectors of the matrix, 










61

72
A .  

 

Solution 

First we find the eigenvalues by solving:  

0
61

72
)(det 








 IA   

 

07)6()2(     

 

0542     

 

0)1)(5(     

 

1,5 21   .  

 

We now calculate the eigenvectors corresponding to the eigenvalues by solving Eq. (III).   

 

 

Case 1: To find an eigenvector 1x  corresponding to eigenvalue 51   we solve,  

 

A 1x  = 1 1x .  

 


























 2

1

2

1
5

61

72

x

x

x

x
 

 












221

121

56 

572

xxx

xxx
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










)2(..........  .0 

)1(..............077
 

21

21

xx

xx
 

 

These are simultaneous equations and we note here that one equation will always be a multiple of  

the other - if not then you have made a mistake!  Here Eq. (1) is 7  times Eq. (2).   

Both equations give 21 xx  .  If we let 2 x , say, for some non-zero real number  , then  

1 x  and we find the first eigenvector to be of the form  

 

1x  






















1

1
. 

 

Note that there are infinitely many non-zero eigenvectors depending on the value chosen for .   

Setting 1  gives an eigenvector corresponding to the eigenvalue 51   as 1x 









1

1
.   

 

We can check our answer by showing that  A 1x  = 5 1x .   

 

A 1x  = 

























 5

5

1

1

61

72
   and   1 1x  = 




















5

5

1

1
5 .   

 

Hence, A 1x  = 1 1x  as required.  

 

 

Case 2: To find an eigenvector 2x  corresponding to eigenvalue 12   we solve,  

 

A 2x  = 2 2x .  

 


























 2

1

2

1

61

72

x

x

x

x
 

 












221

121

6 

72

xxx

xxx
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










.07

07

21

21

xx

xx
  

 

Both these equations give 21 7 xx  .  Let 2 x , say, for some non-zero real number  ,  

then 7 1 x  and so  

 

2x  






















1

77
.   

 

Setting 1  gives 2x 









1

7
.  It is straightforward to check that  A 2x  = 1 2x .   

 

 

In summary, we therefore have the eigenvalue/eigenvector pairs,  

 

51  ,  1x 









1

1
;    12  ,  2x 










1

7
. 

 

 

 

Example 8  

Find the eigenvalues and eigenvectors of the matrix, 












74

413
B .  

 

Solution 

In Example 2 part (ii) we found the eigenvalues of B to be 51   and 152  .   

 

We now calculate the eigenvectors corresponding to these eigenvalues by solving the  

eigenvector equation, A x = λ x.   
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Case 1: To find an eigenvector 1x  corresponding to eigenvalue 51   we solve,  

 

A 1x  = 1 1x  

 






























2

1

2

1 5
74

413

x

x

x

x
  

 












221

121

574

5413

xxx

xxx
  

 












.024

048

21

21

xx

xx
  

 

Both these equations give 12 2 xx  .   

 

Note that for a 2  2 system we do not actually need to introduce the parameter  as we did in  

the previous example.  We can simply choose a convenient numerical value for either of the  

components 1x  or 2 x  of the eigenvector.  So here we can let 1 1 x , say, giving 2 2 x . 

Thus an eigenvector corresponding to the eigenvalue 51   is 1x  .
2

1








   

 

 

Case 2: To find an eigenvector 2x  corresponding to eigenvalue 152   we solve  

 

A 2x  = 2 2x   

 






























2

1

2

1 15
74

413

x

x

x

x
  

 

 











221

121

1574

15413

xxx

xxx
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










.084

042

21

21

xx

xx
 

 

Both these equations give 21 2 xx  .  Let 1 2 x , say, giving 2 1 x .  

 

Then an eigenvector corresponding to the eigenvalue 152  is 2x  .
1

2







 
   

 

In summary, we therefore have the eigenvalue/eigenvector pairs,  

 

51  ,  1x 









2

1
;    152  ,  2x .

1

2







 
   

 

 

Example 9  

Find the eigenvalues and eigenvectors of the matrix   

 














42

63
A .  

 

Solution 

To find the eigenvalues we need to solve  

 

0
42

63
)(det 








 IA   

 

012)4()3(     

 

072     

 

0)7(     

 

7,0 21   .  
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We now find the eigenvectors: 

 

Case 1: To find an eigenvector 1x  corresponding to eigenvalue 01   we solve, A 1x  = 0 1x .  

 





























0

0

42

63

2

1

x

x
  

 

  











.042

063  

21

21

xx

xx 
  

 

Both these equations give 21 2xx  .  Let 12 x , say, giving 2 1 x . 

Hence, an eigenvector corresponding to the eigenvalue 01   is 1x  .
1

2








   

 

 

Case 2: To find an eigenvector 2x  corresponding to eigenvalue 72  , solve  A 2x  = 7 2x .   

 






























2

1

2

1 7
42

63

x

x

x

x
  

 












221

121

742

763

xxx

xxx
  

 












.032

064

21

21

xx

xx
 

 

Both these equations give 21 2

3
xx  .  Let 22 x , say, giving 3 1 x . 

Hence, an eigenvector corresponding to the eigenvalue 72   is 2x  .
2

3







 
   
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To summarise we have:  

 

01  , 1x  .
1

2








 ;    72  , 2x  .

2

3







 
 . 

 

 

2.2.2. Eigenvectors for repeated eigenvalues  

Before we consider the case of repeated eigenvalues we need to introduce the concept of linear  

independence of vectors.  If the eigenvalues of a matrix A are distinct then the corresponding  

eigenvectors are guaranteed to be linearly independent.  Roughly speaking a set of vectors is  

linearly independent if none of them can be written as a linear combination of the others.  Linear  

independence will be an important concept later when we discuss diagonalisation of matrices.  

 

The examples presented in this section so far have all involved matrices with distinct eigenvalues  

and so it has been possible to find a full set of linearly independent eigenvectors in each case, i.e.  

eigenvectors that are not multiples of each other.  However, as we demonstrate below when we have  

repeated eigenvalues it will not always be possible to find a full set of linearly independent  

eigenvectors.  First of all we look at a case where we can find linearly independent eigenvectors.   

 

 

Example 10  

Find the eigenvalues and eigenvectors of the matrix, 









30

03
A .  

 

Solution 

The matrix A is a diagonal matrix so that its eigenvalues are the entries on the main diagonal.   

Hence, A has one repeated eigenvalue, i.e. 3 .  We now try to find two linearly independent  

eigenvectors for this eigenvalue.  Solve  A x  = 3 x , i.e.    

 



























2

1

2

1 3
30

03

x

x

x

x
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










221

121

330

303

xxx

xxx
  

 












.000

000

21

21

xx

xx
  

 

Neither of these equations place any restrictions on 1x  or 2x  and so they can take any values we  

choose, say 1x  and 2x .  An eigenvector corresponding to the repeated eigenvalue  

3  will therefore have the form, x  .












  We can now obtain two linearly independent  

eigenvectors through suitable choices for   and  .  The most obvious choices are:  

 

 0,1    giving the eigenvector, 1x  









0

1
 and  

 1,0    giving the eigenvector, 2x  









1

0
.   

 

We have therefore been able to find two linearly independent eigenvectors for the repeated  

eigenvalue 3 .  

 

 

Example 11 

Find the eigenvalues and eigenvectors of the matrix, 






 


91

93
A .  

 

Solution 

In Example 4 we found that the matrix has one repeated eigenvalue, i.e. 6 .  We now try to  

find two linearly independent eigenvectors for this eigenvalue.  Solve  A x  = 6 x , i.e.    

 

























 

2

1

2

1 6
91

93

x

x

x

x
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










221

121

69

693

xxx

xxx
  

 












.03

093

21

21

xx

xx
  

 

Both these equations give 21 3xx  .  Let 2x , ( 0 ) giving 3 1 x . 

Hence, an eigenvector corresponding to the eigenvalue 6  will be of the form x  .
1

3







 
    

No matter what choice is made for   the resulting eigenvectors will be scalar multiples  

of each other.  We have therefore been unable to find two linearly independent eigenvectors  

for the eigenvalue 6 .  

 

 

2.2.3. Eigenvectors for complex eigenvalues  

In Section 2.1.4 we saw that if a matrix A with real entries has a complex eigenvalue   then we  

know that its complex conjugate   is also an eigenvalue of A.  Furthermore, it can be shown that  

if x  is an eigenvector corresponding to   then its complex conjugate x , formed by taking the  

complex conjugates of the entries of x , is an eigenvector corresponding to  .   

 

 

Example 12  

Find the eigenvectors of the matrix:   

 








 


01

10
A .  

 

Solution 

In Example 6(i) we found that A had complex eigenvalues, j 1  and j 2 .  

 

Now find the eigenvectors of the matrix A.  
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Case 1: To find an eigenvector 1x  corresponding to eigenvalue j 1  we solve  

 

A 1x  = 1 1x  

 

























 

2

1

2

1

01

10

x

x
j

x

x
  

 









.

 

21

12

xjx

xjx
  

 

If, for example, we multiply the first equation by j both equations give 21 xjx  .   

 

Let 12 x , say, then jx 1 .   

An eigenvector corresponding to the eigenvalue j 1  will then be 1x 









1

j
.   

 

 

Case 2: To find an eigenvector 2x  corresponding to eigenvalue j 2  simply take the  

complex conjugates of the entries of 1x  giving, 2x 






 


1

j
.   

 

To summarise we have:  

 

j 1 , 1x 









1

j
;   j 2 , 2x 







 


1

j
. 
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3.  Eigenvalues and eigenvectors of a 3 × 3 matrix  

We now extend the methods presented in the previous section to calculation of eigenvalues and  

eigenvectors of 3 × 3 matrices.  We shall only consider the case of real distinct eigenvalues but  

note that, as for 2 × 2 matrices, we can have eigenvalues that are repeated or complex.    

 

Example 13  

Determine the eigenvalues and eigenvectors of the matrix, 

















108

427

201

A .  

 

Solution 

To calculate the eigenvalues we need to solve  

 

0

108

427

201

)(det 











 IA .   

 

Here we expand down Column 2 as it is the row/column with most zeroes.   

 

0
18

21
)2( 








   

 

0]16)1()1([)2(     

 

0]152[)2( 2     

 

0)3()5()2(     

 

Hence, 21  , 52   and 33   are the eigenvalues of the matrix A.  
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We now calculate the eigenvectors corresponding to the eigenvalues.   

 

Case 1: For an eigenvector 1x , corresponding to eigenvalue 21  , we solve A 1x  = 2 1x , i.e.  

 



















































3

2

1

3

2

1

2

108

427

201

x

x

x

x

x

x

  

 

















331

2321

131

2           8    

2427 

22           

xxx

xxxx

xxx

  

 

















.08    

047 

02

31

31

31

xx

xx

xx

  

 

From the three equations the only possibility is that 031  xx .  We can choose 2x  to have  

any value, 0 .  Hence, an eigenvector corresponding to the eigenvalue 21   is of the  

form 1x  = T)0,,0(  .  For example, letting 1  gives 1x  = T)0,1,0( .  

 

 

Case 2: For an eigenvector 2x , corresponding to eigenvalue 52  , we solve A 2x  = 5 2x , i.e.  

 



















































3

2

1

3

2

1

5

108

427

201

x

x

x

x

x

x

 

 

















331

2321

131

5           8    

5427 

52           

xxx

xxxx

xxx
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















)3...(..........04           8    

)2...(..........0437 

)1....(..........02           4

31

321

31

xx

xxx

xx

.   

 

Equations (1) and (3) both say that 13 2xx  .  Set 1x  ( 0 ) to obtain 23 x .   

Substituting these values in Eq. (2) gives, .3/30837 222   xxx    

Hence, an eigenvector corresponding to the eigenvalue 52   is of the form  

2x  = T)2,3/,(  .  Choosing 3  gives 2x  = T)6,1,3( .   

 

 

Case 3: For an eigenvector 3x , corresponding to eigenvalue 33  , solve A 3x  = 3 3x , i.e.  

 



















































3

2

1

3

2

1

3

108

427

201

x

x

x

x

x

x

  
















331

2321

131

3           8    

3427 

32           

xxx

xxxx

xxx

  

 

















)3...(...........04           8    

)2...(..........0457 

)1...(..........02           4

31

321

31

xx

xxx

xx

.  

 

Equations (1) and (3) both say that 13 2xx  .  Set 1x  ( 0 ) to obtain 23 x .   

Substituting these values in Eq. (2) gives, .31550857 222   xxx  

Hence, an eigenvector corresponding to the eigenvalue 33   is of the form  

3x  = T)2,3,(   .  Choosing 1  gives 3x  = T)2,3,1(  .   

 

 

In summary, we therefore have,  

21  , 1x

















0

1

0

;   52  , 2x

















6

1

3

;   33  , 3x  



















2

3

1

. 
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4. Some properties of eigenvalues and eigenvectors  

Let A be a real nn   matrix.  

 

 A will have exactly n eigenvalues which may be repeated and will be real or occur in  

complex conjugate pairs.   

 

 An eigenvalue can be zero but an eigenvector cannot be the zero vector, 0.  

 

 The sum of the eigenvalues of A equals the sum of the main diagonal entries of A,  

i.e. the trace of A.  

 

 The product of the eigenvalues of A equals the determinant of A.  

 

 If 0 is an eigenvalue of A then A is not invertible.  

 

 If λ is an eigenvalue of an invertible matrix A, with x as a corresponding eigenvector,  

then 

1

 is an eigenvalue of 1A , again with x as a corresponding eigenvector.   

 

 If λ is an eigenvalue of A, with x as a corresponding eigenvector, then k  is an eigenvalue  

of kA , again with x as a corresponding eigenvector, for any positive integer k.   

 

 The matrix A and its transpose, TA , have the same eigenvalues but there is no simple  

relationship between their eigenvectors.   

 

 

Procedure for calculating eigenvalues & eigenvectors  

To calculate the eigenvalues and eigenvectors of a nn   matrix A we proceed as follows:  

 

1.  Calculate the determinant of the matrix IA  , it will be a polynomial in   of degree n.  

2.  Find the roots of the polynomial by solving 0)(det  IA  .  The n roots of the 
polynomial are the eigenvalues of the matrix A.  

3.  For each eigenvalue,  , solve  A x  =  λ x  to find an eigenvector x .   
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5. Diagonalisation of matrices  

Eigenvalues and eigenvectors play an important role in solving systems of ordinary differential  

equations (ODEs).  A system of coupled ODEs can be transformed into a set of independent,  

uncoupled equations by diagonalising the system matrix using a similarity transformation.   

We can then apply techniques such as the integrating factor method or Laplace transforms to  

solve each of the resulting ODEs.  The determination of eigenvalues and eigenvectors, through  

matrix diagonalisation, also features prominently in the stability analysis of control systems.   

 

5.1. Introduction  

Consider a n × n matrix A having n, not necessarily distinct, eigenvalues n ,,, 21    

with n corresponding eigenvectors nxxx ,,, 21   that are linearly independent (see item (i)  

below).  We say that A is diagonalisable if there exists a n × n invertible matrix P and a n × n  

diagonal matrix D such that  

DPAP 1 . 

 

The columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding  

eigenvalues.  Note that we can write the columns of P in any order provided the components of  

D are written in the same order.  

 

The diagonal matrix D will have the same eigenvalues, n ,,, 21  , as the matrix A and so  

D and A are called similar matrices.  

 

Notes  

(i).  A set of eigenvectors is linearly independent if no one eigenvector in the set can be written as a  

linear combination of the other eigenvectors in the set.  

 

(ii). A n × n matrix A is guaranteed to be diagonalisable if: 

 

 all its eigenvalues are real and distinct so that the corresponding eigenvectors (columns  

of P) are linearly independent or,  

 A is a symmetric matrix (even if it has repeated eigenvalues). 

 

(iii). A matrix A can have repeated eigenvalues but still be diagonalisable.  
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5.2. Matrices with distinct eigenvalues  

In this section we illustrate diagonalisation of matrices with distinct eigenvalues by means of  

examples. 

 

Example 14  

(i). Calculate the eigenvalues and eigenvectors of the matrix  

 








 


53

64
A .  

 

(ii). Determine an invertible matrix P and a diagonal matrix D such that such that DPAP 1 .   

 

 

Solution 

(i). First we find the eigenvalues by solving,  

 

0
53

64
)(det 








 IA   

 

018)5()4(     

 

022     

 

0)1)(2(     

 

1,2 21   .  

 

As the eigenvalues of the matrix A are real and distinct A is diagonalisable.   
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We now calculate the eigenvectors corresponding to each of the eigenvalues.   

 

 For 1 = 2 we have Ax1 = 1 x1 and so we need to solve,  

 

























 

2

1

2

1 .2
53

64

x

x

x

x
  

 









221

121

253  

264

xxx

xxx
  

 









.033  

066

21

21

xx

xx
 

 

Both these equations give 21 xx   and if we let 12 x  then 1 1 x .   

Hence, an eigenvector corresponding to the eigenvalue 21   is 1x 









1

1
.   

 

 

 For 2  =  ‒1 we have Ax2 = 2 x2 and so we need to solve,  

 

























 

2

1

2

1 .1
53

64

x

x

x

x
  

 









221

121

53  

64

xxx

xxx
  

 









.063  

063

21

21

xx

xx
  

 

Both these equations give 21 2 xx   and if we let 12 x  then 2 1 x .   

Hence, an eigenvector corresponding to the eigenvalue 12   is 2x 









1

2
.   
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The eigenvalues and eigenvectors of A are therefore, 

 

21  ,   1x 









1

1
;   12  ,  2x 










1

2
. 

 

(ii). Using the above results we can define the invertible matrix,  

 








 


11

21
P .  

 

Now form the diagonal matrix D by writing the eigenvalues on the main diagonal of D in the  

same order the corresponding eigenvectors appear in P, i.e.   

 












10

02
D . 

 

 

We now check that DPAP 1  as required.   

Since we have a 2 × 2 matrix we easily find that 











11

211P  and so  

 

DPAP 
















 
















 







 












10

02

11

21

11

42

11

21

53

64

11

211  as required. 
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Example 15  

(i). Determine the eigenvalues and eigenvectors of the matrix,  

 






















6216

238

125

A  .  

 

(ii). Write down an invertible matrix P and a diagonal matrix D such that such that DPAP 1 . 

 

 

Solution  

The eigenvalues are calculated using, 

 

0

6216

238

125

)det( 











 IA  

 

0
216

38
1

616

28
2

62

23
)5( 



















   

 

 0])3(1616[1]32)6(8[2]4)6()3([)5(     

 

0]1632[]168[2]149[)5( 2     

 

0)2(16])2(8[2)7)(2()5(     

 

0)2(16)2(16)7)(2()5(     

 

0)2(32)7()5()2(     

 

0]32)7()5([)2(     

 

0]32[)2( 2     
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0]32[)2( 2     

 

0)1)(3()2(     

 

.1,3,2 321    

 

 

We now calculate the eigenvectors corresponding to each of the eigenvalues.   

 

Case 1: For an eigenvector 1x , corresponding to eigenvalue 21  , we solve A 1x  = 2 1x , i.e.  

 






















































3

2

1

3

2

1

2

6216

238

125

x

x

x

x

x

x

  

 

















3321

2321

1321

26216 

2238 

225

xxxx

xxxx

xxxx

  

 

















.)3(.........04216 

)2(............028 

)1(.............027

321

321

321

xxx

xxx

xxx

.   

 

Now, (1)  ‒  (3) gives .3039 1331 xxxx    

Then (2) gives 1221121 202068 xxxxxxx  .  

Let 3and2then1 321  xxx .  

Hence, an eigenvector corresponding to the eigenvalue 21   is 1x  

















3

2

1

.  
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Case 2: For an eigenvector 2x , corresponding to eigenvalue 32  , we solve A 2x  = 3 2x , i.e.  

 






















































3

2

1

3

2

1

3

6216

238

125

x

x

x

x

x

x

  

 

















3321

2321

1321

36216 

3238 

325

xxxx

xxxx

xxxx

  

 

















.)3(.........03216 

)2(...........028 

)1(.............028

321

31

321

xxx

xx

xxx

.   

 

From Equation (2) we have that 13 4 xx  .   

Also, )1(2)3(   gives, 2332 202 xxxx  .  

Let 2and4then1 231  xxx .  

Hence, an eigenvector corresponding to the eigenvalue 32   is 2x  

















4

2

1

.   

 

Case 3: For an eigenvector 3x , corresponding to eigenvalue 13  , solve A 3x  =  ‒1 3x , i.e.  

 






















































3

2

1

3

2

1

1

6216

238

125

x

x

x

x

x

x

  

 

















3321

2321

1321

6216 

238 

25

xxxx

xxxx

xxxx
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













.)3(.........07216 

)2(...........0248 

)1(.............024

321

321

321

xxx

xxx

xxx

.   

 

Now, (1)  ‒  (3) gives .20612 1331 xxxx    

Substitute in (2) to give, 2121121 0440448 xxxxxxx  .  

Let 2and1then1 321  xxx .  

Hence, an eigenvector corresponding to the eigenvalue 13   is 3x  

















2

1

1

.   

 

In summary, the eigenvalue/eigenvectors pairs are  

 

21  , 1x

















3

2

1

;   32  , 2x

















4

2

1

;   13  , 3x  

















2

1

1

.  

 

 

(ii). As the eigenvalues of A are distinct A is diagonalisable and we can define  

 


















243

122

111

P   and  



















100

030

002

D   so that DPAP 1 .   

 

As a check we could calculate 1P  and form the matrix product PAP 1 , but we would prefer  

not to have to determine 1P  for the 3 × 3 matrix.  Alternatively, we note that DPAP 1  is  

equivalent to writing PDAP   and we show this latter relationship holds.   

Here  






















2126

164

132

PDAP   

thereby confirming that our calculations are correct.  
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5.3. Matrices with repeated eigenvalues  

A matrix with repeated eigenvalues may or may not be diagonalisable.   If we are able to find a full  

set of linearly independent eigenvectors then we can diagonalise the matrix but if we are unable to  

the matrix cannot be diagonalised.  We shall illustrate with examples. 

 

Example 16  

In Example 11 (Section 2.2.2) we saw that the matrix 






 


91

93
A  has a repeated eigenvalue,  

6  and that all possible eigenvectors are scalar multiples of x  






 


1

3
.  It is therefore  

impossible to find two linearly independent eigenvectors.  A consequence of this is that the matrix 

P will have columns that are scalar multiples of each other meaning that the determinant  

of P is zero so that the inverse does not exist.  Hence, A cannot be diagonalised. 

 

 

 

Example 17  

For the matrix 





















430

650

331

A  we can show that the characteristic equation is  

 

0)1()2( 2   .   

 

Hence, the eigenvalues are 1,2 321   .    

 

We now calculate the eigenvectors noting that the eigenvalue 1  is repeated.  
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Case 1: For eigenvector 1x , corresponding to eigenvalue 21  , solve A 1x  = 2 1x , i.e.  

 






















































3

2

1

3

2

1

2

430

650

331

x

x

x

x

x

x

 

 

















332

232

1321

243       

265    

233

xxx

xxx  

xxxx

  

 














)3(.........    .063       

)2(..........  063    

)1(...........  0333

32

32

321

xx

xx  

xxx

 

 

Equations (2) and (3) both give 32 2xx  .   

 

Substitute in Eq. (1) giving,  

 

.0363 31331 xxxxx     

 

Let 1,21 123  xxx .  

Hence, an eigenvector corresponding to the eigenvalue 21   is, 1x

















1

2

1

.  

 

Case 2: For the repeated eigenvalue 11   we try to find two linearly independent eigenvectors.   

Solve A x  = 1. x, i.e.,  

 






















































3

2

1

3

2

1

1

430

650

331

x

x

x

x

x

x
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















332

232

1321

43       

65    

33

xxx

xxx  

xxxx

  

 














)3(.........    .033

)2(...........  066

)1(...........  033

32

32

32

xx

xx

xx

.   

 

All three equations give 32 xx   and so we can set  32 xx , ( 0 ).   

As the equations are all independent of 1x  it can take any value, say 1x . 

 

An eigenvector corresponding to the repeated eigenvalue 1  will therefore have the form,  

x  




















.  We can now obtain two linearly independent eigenvectors through suitable choices  

for   and  .  The most obvious choices are:  

 

 0,1    giving the eigenvector, 2x  

















1

1

0

 and  

 1,0    giving the eigenvector, 3x  

















0

0

1

.   

  

 

In summary, we have  

 

21  , 1x

















1

2

1

;  12  , 2x

















1

1

0

;   13  , 3x  

















0

0

1

.  
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We have therefore found three linearly independent eigenvectors and so A is diagonalisable with   

 


















011

012

101

P   and  

















100

010

002

D   so that DPAP 1 .   

 

 

 

Summary of Diagonalisation 

To diagonalise a n × n matrix A: 

 

• calculate the (n) eigenvalues of A.  

 

• calculate an eigenvector corresponding to each eigenvalue (note that a repeated 

eigenvalue will need more than one eigenvector).  

 

• define P to be the n × n matrix that has the eigenvectors as its columns.  If P is invertible 

then the matrix A is diagonalisable.  Otherwise it is not diagonalisable.  

 

• let D be the diagonal matrix which has the eigenvalues of A as its diagonal entries  

written in the same order as the corresponding eigenvectors appear in P.   
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6. Solving linear systems of ODEs by diagonalisation   

In this section we look at how matrix methods can be applied to solve linear, homogeneous,  

constant coefficient systems of ordinary differential equations (ODEs).  We shall consider  

the case where we are able to find a full set of linearly independent eigenvectors so that the  

coefficient matrix is guaranteed to be diagonalisable.  The process of diagonalisation enables us  

to convert the original coupled system to a diagonal system that can easily be solved using  

methods we already know. 

 

 

6.1.  First order linear systems  

The method is introduced by considering a system of two ODEs but can be extended to any  

number of equations.  

 

Suppose )(1 tx  and )(2 tx  are unknown functions of t and the rate of change of each function  

with respect to t is a linear combination of both functions.  That is  

 

212111
1 xaxa
td

xd
   

 

222121
2 xaxa
td

xd
   

 

where 11a , 12a , 21a  and 22a  are known constants.  The functions )(1 tx  and )(2 tx  cannot be  

found directly from these two differential equations since each equation contains the two  

dependent variables 1x  and 2x .  These differential equations are said to be coupled.  The  

process of diagonalisation will uncouple the differential equations to a system of equations  

which involves a single dependent variable in terms of t.   

 

Our system of differential equations can be written in matrix form as  

 

x  A x   

where 

 x 









2

1

x

x
 ,   x 










2

1

x

x




   and   










2221

1211

aa

aa
A  . 
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Assume that the matrix A can be diagonalised so that we can write DPAP 1 , or  

equivalently 1 PDPA .  The matrix P has the eigenvectors of A as its columns and the  

diagonal matrix D consists of the eigenvalues of A along the main diagonal in the same order  

the corresponding eigenvectors appear in P.  

 

Now introduce the change of variables, u  = 1P x  so that x  =  Pu where  u 









)(

)(

2

1

tu

tu
.   

 

The entries in the matrix P are just constants and so differentiating both sides of x  =  Pu with  

respect to t gives  

 

   x   
td

d
(Pu)  

td

d
P (u)  =  P u  .  

 

We can now write our original system of ODEs,  x  A x , in terms of u to produce  

 

P u   =  1PDP Pu.  

or  

    P u   =  DP u.    ( since IPP 1  ) 

 

Pre-multiply both sides of this equation by the inverse of P giving  

 

     PP 1 u DPP 1 u  

 

which simplifies to give the system, u Du . 

 

This system can be written out fully as 

























2

1

2

1

2

1

0

0

u

u

u

u







 and expanded to give  

 

11
1 u
td

ud
   

 

22
2 u
td

ud
 .  
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The process of diagonalisation has decoupled the system of differential equations, i.e. each  

differential equation now only contains one dependent variable and hence can be solved.   

Once the solutions for u , i.e. 1u  and 2u , are obtained the solution of the original system is  

calculated from,  x  =  Pu.  

 

Note: At no point in the process do we need to calculate the inverse of matrix P. 

 

Following the above steps gives the general solution of the system which will contain  

arbitrary constants.  If initial conditions are specified then these constants are evaluated in  

the same way as for a single ordinary differential equation.  

 

This method is readily extended to systems with three, or more, coupled ODEs.  It can also be  

applied to systems of second order ODEs.  

 

 

Example 18  

Determine the general solution of the coupled system of ordinary differential equations,  

 

    3211 25 xxxx    

    3212 238 xxxx    

    3213 6216 xxxx   .  

 

 

Solution  

Step 1: Write the system as a matrix equation.  

 

Let x
















3

2

1

x

x

x







 ,  





















6216

238

125

A  and x
















3

2

1

x

x

x

 so that the system may be written as  

 

the matrix equation, x  A x , i.e.  





















































3

2

1

3

2

1

6216

238

125

x

x

x

x

x

x







.  
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Step 2: Calculate the eigenvalues and eigenvectors of the coefficient matrix A.  

The eigenvalues and eigenvectors of the matrix A were previously found in Example 15 to be,  

 

21  , 1x

















3

2

1

;   32  , 2x

















4

2

1

;   13  , 3x  

















2

1

1

.  

 

 

Step 3: Diagonalise the matrix A.  

As the eigenvalues of A are real and distinct we know that A is diagonalisable with  

 


















243

122

111

P   and  DPAP 



















100

030

002
1 .   

 

 

Step 4: Determine the general solution of the system.  

We saw above that by letting x Pu  the coupled system ( x  A x  ) can be expressed in  

uncoupled form as u  Du  which in this case gives   

 

    



















































3

2

1

3

2

1

100

030

002

u

u

u

u

u

u







.  

 

Expanding this expression gives the three uncoupled differential equations  

 

  1
1 2u

td

ud
  ,   2

2 3u
td

ud
   and  3

3 u
td

ud
  . 

 

The solutions of these separable first order differential equations (refer to notes on ODEs) are  

 

  teCu 2
11   ,  teCu 3

22     and  teCu  33   

 

where 1C , 2C  and 3C  are arbitrary constants. 
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The solution, in terms of the original variables, )(1 tx , )(2 tx  and )(3 tx  can now be found.  

 

Since x Pu  we have,  

















































3

2

1

3

2

1

243

122

111

u

u

u

x

x

x

 .  

 

Multiplying out the above gives  
 
  ttt eCeCeCuuutx  3

3
2

2
13211 )(   

  ttt eCeCeCuuutx  3
3

2
2

13212 2222)(   

  ttt eCeCeCuuutx  3
3

2
2

13213 243243)( .  

 

A neater way of writing the general solution (GS) is  

 

  ttt eCeCeC

x

x

x





































































2

1

1

4

2

1

3

2

1

3
3

2
2

1

3

2

1

 .  

 

Can you see how the general solution is connected to the eigenvalues and eigenvectors?  

The eigenvalues and eigenvectors appear is the GS as follows  

 

  x )(t 1C 1x 2
1 Ce

t 
2x 3

2 Ce
t 

3x
te 3 .  

 

Note:  If initial conditions were specified we could determine the unknown constants 21 , CC   

 and 3C  to obtain a particular solution. 

 

Extending the above, the general solution of a linear system x  A x , where the nn    

coefficient matrix A is diagonalisable, is given by  

 

 x )(t 1C 1x 2
1 Ce

t 
2x 3

2 Ce
t 

3x  ...3 te 
nC nx

tne    

 

where ix  is the eigenvector associated with the real eigenvalue i .  
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Example 19  

A system of two coupled ordinary differential equations is given by  

 

    211 52 xxx    

    212 2 xxx   .  

 

Determine the particular solutions for )(1 tx  and )(2 tx  that satisfy the initial conditions,  

5)0(,1)0( 21  xx . 

 

Solution  

Step 1: Write the system in matrix form, x  A x , i.e.   

 

    

























2

1

2

1

21

52

x

x

x

x




.  

 

 

Step 2: Determine the eigenvalues by solving,  

 

0
21

52
)(det 








 IA   

 

05)2()2(     

 

092     

 

0)3)(3(     

 

3,3 21   .  

 

As the eigenvalues of the matrix A are real and distinct A is diagonalisable.   
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Step 3: Calculate the eigenvectors corresponding to each of the eigenvalues.   

 

 For 31   we have A 111 xx   and so we need to solve,  

 



























2

1

2

1 .3
21

52

x

x

x

x
  

 









221

121

32  

352

xxx

xxx
  

 









0  

055

21

21

xx

xx
 

 

Both these equations give 21 xx   and if we let 12 x  then 1 1 x .   

Hence, an eigenvector corresponding to the eigenvalue 31   is 1x 









1

1
.   

 

 

 For 32   we have A 222 xx   and so we need to solve,  

 



























2

1

2

1 .3
21

52

x

x

x

x
  

 









221

121

32  

352

xxx

xxx
  

 









05 

05

21

21

xx

xx
  

 

Both these equations give 21 5 xx   and if we let 12 x  then 5 1 x .   

Hence, an eigenvector corresponding to the eigenvalue 32   is 2x 









1

5
.   
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The eigenvalues and eigenvectors of A are therefore,  

 

31  ,   1x 









1

1
;   32  ,  2x 










1

5
. 

 

 

Step 4: Diagonalise the matrix A.  

Using the above results we can define the invertible matrix,  

 








 


11

51
P .  

 

Now form the diagonal matrix D by writing the eigenvalues on the main diagonal of D in the  

same order the corresponding eigenvectors appear in P, i.e.   

 













30

031 DPAP . 

 

 

Step 5: Determine the general solution of the system.  

Let  x  =  Pu .  Differentiating both sides with respect to t, gives, x P u  (since P is a constant  

matrix).  The coupled system  x  A x  can then be written as  

 

P u   =  APu    u APP 1 u    u  D u . 

 

Hence,  

    


























2

1

2

1

30

03

u

u

u

u




.  

 

Expanding this expression gives the two uncoupled first order separable differential equations  

 

  1
1 3u

td

ud
    and  2

2 3u
td

ud
 . 
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The solutions of these differential equations (refer to notes on ODEs) are  

 

  teCu 3
11     and   teCu 3

22
    

 

where 1C  and 2C  are arbitrary constants.  

 

The solution, in terms of the original variables, )(1 tx  and )(2 tx  can now be found.  

 

Since x Pu  we have,  














 










2

1

2

1

11

51

u

u

x

x
 . 

 

 

Expanding this expression, gives  

 

    211 5uux    

    212 uux  .  

 

 

Now use teCu 3
11   and teCu 3

22
  to write down the general solution  

 

  tt eCeCtx 3
2

3
11 5)(    

  tt eCeCtx 3
2

3
12 )(  .  

 

 

Step 6: Determine the particular solution that satisfies, 5)0(,1)0( 21  xx . 

Substituting these values into the general solution gives,  

 

    151)0( 211  CCx   

    55)0( 212  CCx  .  

 

Solve as simultaneous equations to obtain, 41 C  and 12 C .   
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The particular solution (PS) is therefore,  

 

    tt eetx 33
1 54)(    

    tt eetx 33
2 4)(  .  

 

 

Step 7 (OPTIONAL): Check the answers for )(1 tx  and )(2 tx .   

 

The PS gave that   tt eetx 33
1 54)(   and so differentiating gives,  

    tt eetx 33
1 1512)(  .      ( 1 ) 

 

The original coupled system gave that  

 

    211 52 xxx  .   

 

Substituting the expressions for )(1 tx  and )(2 tx  from the PS we have,  

 

    )4(5)54(2 3333
1

tttt eeeex     

   tt eex 33
1 1512   .     ( 2 )  

 

Expressions ( 1 ) and ( 2 ) are identical thereby verifying our answer for )(1 tx . 

 

 

Now verify the answer for )(2 tx .  

The PS gave that   tt eetx 33
2 4)(   and so differentiating gives,  

    tt eetx 33
2 312)(  .      ( 3 ) 

 

The coupled system gave that  

 

    212 2 xxx  .  
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Substituting the expressions for )(1 tx  and )(2 tx  from the PS we have,  

 

    )4(2)54( 3333
2

tttt eeeex     

   tt eex 33
2 312   .     ( 4 )  

 

Expressions ( 3 ) and ( 4 ) are identical thereby verifying our answer for )(2 tx .  

 

 

 

Example 20  

Determine the general solution of the coupled system  

 

    3211 33 xxxx    

    322 65 xxx    

    323 43 xxx   .  

 

 

Solution  

In matrix form the system is given by x  A x , i.e.  

 

    





















































3

2

1

3

2

1

430

650

331

x

x

x

x

x

x







.  

 

In Example 17 we found that the matrix has the following eigenvalues and eigenvectors where  

the eigenvalue 1  is repeated  

 

21  , 1x

















1

2

1

; 12  , 2x

















1

1

0

;   13  , 3x  

















0

0

1

.  
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As we were able to find three linearly independent eigenvectors the matrix, A, is diagonalisable  

and the general solution of the system is given by  

 

 x )(t 1C 1x 2
1 Ce

t 
2x 3

2 Ce
t 

3x
te 3   

 

Substituting the eigenvalues and eigenvectors gives  

 

 x )(t 1C
















1

2

1

2
2 Ce t 

















1

1

0

3Ce t 
















0

0

1
te   

 

which expands to  

 

  tt eCeCtx 3
2

11 )(     

  tt eCeCtx 2
2

12 2)(     

  tt eCeCtx 2
2

13 )(   .  
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6.2. Second order linear systems  

The method is introduced by considering a system of two ODEs but can be extended to any  

number of equations.  

 

Example 21  

Determine the general solution of the coupled system  

 

     211 2 xxx   

     212 2 xxx  . 

 

 

Solution  

Step 1: Write the system in matrix form, x  A x ,  i.e.  

 






























2

1

2

1

21

12

x

x

x

x




 . 

 

 

Step 2: The eigenvalues and eigenvectors of A are found to be,   

 

31  ,   1x  










1

1
;  12  ,  2x  










1

1
.  

 

Since A has distinct eigenvalues it can be diagonalised.  

 

 

Step 3: Diagonalise the matrix A.  

 

Using the above results, 










11

11
P   and  DPAP 













10

031 .  
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Step 4: Determine the general solution of the system.  

Let  x  =  Pu .  Differentiating twice gives, x P u  (since P is a constant matrix).   

The coupled system  x  A x  can then be written as  

 

P u   =  APu    u APP 1 u    u  D u . 

 

Hence,  

    




























2

1

2

1

10

03

u

u

u

u




.  

 

Expanding this expression gives the two uncoupled second order differential equations  

 

  12

1
2

3u
td

ud
    and  22

2
2

u
td

ud
 . 

 

The solutions of the differential equations  

 

  03 12
1

2

 u
dt

ud
   and   022

2
2

 u
dt

ud
  

are  

   )3(cos)3sin()( 111 tBtAtu   and   

   )(cos)(sin)( 222 tBtAtu    

 

where 1A , 1B , 2A  and 2B  are arbitrary constants. 

 

Note:  In each case the roots of the auxiliary equation are complex with real part zero so  

 solutions are in terms of the trig functions - refer to notes on ODEs.   
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The solution in terms of the original variables, )(1 tx  and )(2 tx  can now be found.  

 

Since x Pu  we have,  


























2

1

2

1

11

11

u

u

x

x
 . 

 

Expanding this matrix equation gives  

 

   211 uux    

   212 uux   . 

 

From earlier, )3(cos)3(sin 111 tBtAu   and )(cos)(sin 222 tBtAu  .  Hence,  

on substitution, the general solution is  

 

  )(cos)(sin)3(cos)3(sin)( 22111 tBtAtBtAtx    

  )(cos)(sin)3(cos)3(sin)( 22112 tBtAtBtAtx  .  

 

 

A neater way of writing out the general solution is  

 

     


























1

1
)(cos)(sin

1

1
)3(cos)3(sin 2211

2

1 tBtAtBtA
x

x
 . 

 

Can you see how the general solution is connected to the eigenvalues and eigenvectors? 

 

The general solution of a linear system x  A x   where the nn   matrix A has n distinct  

negative eigenvalues  22
3

2
2

2
1 ,...,,, n   , with associated real eigenvectors  

nxxxx ,...,,, 321 , is given by  

 

 x )(t  



n

i
iiii tBtA

1

)(cos)sin(  ix  
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Example 22  

Determine the particular solution of the coupled system  

 

     211 2 xxx    

     212 2 xxx    

 

subject to the initial conditions ,0)0(1 x  0)0(2 x , ,1)0(1 x  3)0(2 x . 

 

 

Solution  

The general solution of the system was obtained in Example 21 to be  

 

  )(cos)(sin)3(cos)3(sin)( 22111 tBtAtBtAtx    

  )(cos)(sin)3(cos)3(sin)( 22112 tBtAtBtAtx  .  

 

First apply the conditions, ,0)0(1 x  0)0(2 x  :  

 

0)0(1 x  :  0)0(cos)0(sin)0(cos)0(sin 2211  BABA  021  BB   

0)0(2 x  : 0)0(cos)0(sin)0(cos)0(sin 2211  BABA  021  BB .  

Solving these simultaneous equations gives 021  BB .   

 

Hence, with 021  BB  the general solution becomes,  

  )(sin)3(sin)( 211 tAtAtx    

  )(sin)3(sin)( 212 tAtAtx  .  

 

To apply the remaining conditions, 1)0(1 x  and 3)0(2 x , we must first differentiate  

)(1 tx  and )(2 tx  :  

 

  )(cos)3(cos3)( 211 tAtAtx    13 21  AA  

  )(cos)3(cos3)( 212 tAtAtx    33 21  AA .  
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Solving these simultaneous equations gives, 
3

1
1 A   and  22 A .   

We now have values 
3

1
1 A  , 22 A , 01 B  and 02 B  which are substituted in the  

general solution to obtain the particular solution:   

 

  )(sin2)3(sin
3

1
)(1 tttx    

  )(sin2)3(sin
3

1
)(2 tttx  .  

 

 

A neater way of writing out the particular solution is,   

 

  


























1

1
)(sin2

1

1
)3(sin

3

1

2

1 tt
x

x
 . 

 

 

 

Example 23  

A system of two coupled linear ordinary differential equations is given by,  

 

   211 127 xxx   

   .74 212 xxx   

 

(i).  express the system in matrix form, x  A x .  

(ii).  determine the eigenvalues and eigenvectors of the coefficient matrix, A.  

(iii).  write down an invertible matrix P such that DPAP 1  where D is a diagonal  

matrix.  Write down the matrix D.   

(iv).  determine the general solution of the system.  
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Solution  

(i). In matrix form the system is,  

 





























2

1

2

1

74

127

x

x

x

x




.  

 

 

(ii).  Exercise: Show that the matrix A has the following eigenvalues and eigenvectors,  

 

  11  , 1x 









1

2
;    12  , 2x 










2

3
 . 

 

 

(iii).  









21

32
P ,   










10

011 DPAP . 

 

 

(iv).  Determine the general solution of the system.  

 Let  x  =  Pu .  Differentiating twice gives, x P u  (since P is a constant matrix).   

 The coupled system  x  A x  can then be written as  

 

P u   =  APu    u APP 1 u    u  D u . 

 

 Hence,  

    

























2

1

2

1

10

01

u

u

u

u




.  

 

 Expanding this expression gives the two uncoupled second order differential equations,  

 

  011  uu    and  022  uu . 
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Solving these equations gives,  

 

   )(cos)sin()( 111 tBtAtu   and   

   tt eBeAtu  222 )(   

 

where 1A , 1B , 2A  and 2B  are arbitrary constants. 

 

The solution in terms of the original variables, )(1 tx  and )(2 tx  can now be found.  

 

Since x Pu  we have,  

























2

1

2

1

21

32

u

u

x

x
 . 

 

Expanding this matrix equation gives  

 

   211 32 uux    

   212 2uux   . 

 

From earlier, )(cos)sin()( 111 tBtAtu   and tt eBeAtu  222 )( .  Hence, on  

substitution, the general solution is  

 

  tt eBeAtBtAtx  22111 33)(cos2)(sin2)(   

  tt eBeAtBtAtx  22112 22)(cos)(sin)( .  
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In this section we firstly considered linear systems of differential equations where the coefficient  

matrix has distinct eigenvalues and is therefore diagonalisable.  The method was then extended  

to look at the special case where the eigenvalues are repeated and we have been able to find a set  

of linearly independent eigenvectors and diagonalise the coefficient matrix.  The diagonalisation  

process uncouples the differential equations so that a solution to the system can be obtained in a  

relatively straightforward manner.  However, as we saw in Section 5.3 a matrix with repeated  

eigenvalues may or may not be diagonalisable and we might not be able to find a set of linearly  

independent eigenvectors.  When this situation arises we are unable to apply the methods  

described above to solve the system of ODEs and we need to use generalised eigenvectors.   

The topic is not considered here. 

 

 

 

Summary 

On completion of this unit you should be able to: 

 

 calculate eigenvalues and eigenvectors for 22   and 33  matrices.  

 

 where appropriate diagonalise 22   and 33  matrices.  

 
 solve linear, homogeneous, constant coefficient systems of first and second order  

ordinary differential equations by diagonalisation.  
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Tutorial Exercises  

Q1.  Determine the eigenvalues of each of the following matrices: 

 

(i).  







11

41
   (ii). 







 
54

21
  (iii). 











15

22
  

 

(iv).  










11

42
   (v). 











14

23
  (vi). 











10

21
.  

 

 

 

Q2.  Determine the eigenvalues and eigenvectors of each of the following matrices: 

 

(i).  







15

22
  (ii). 







 
54

21
  (iii). 








34

21
  (iv).  








16

12
  

 

 

(v).  







64

32
 (vi).  











42

105
  (vii). 







 
20

75
  (viii).  











70

06
  

 

 

(ix).  







15

22
 (x).  







 
22

15
  (xi).  







 
31

11
.    

 

 

 

Q3.  Determine the eigenvalues and eigenvectors of each of the following matrices: 

 

(i).  



















444

331

002

  (ii). 
















200

540

323

  (iii).  






















110

121

011

A .    
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Q4.  Consider the matrix 






















7040

3300

0120

4023

M  

 

Three of the eigenvalues of matrix M  are 3,1 21    and 63  . 

Determine the fourth eigenvalue ( 4  ) of M and hence calculate the determinant of M.   

 

 

Q5.  Find the eigenvalues and eigenvectors of each of the following matrices,  

 

(i).  






 


53

64
A     (ii).  










34

43
A   

 

(iii).  












26

35
A     (iv).  










00

10
A .   

 

Where possible, find an invertible matrix P and a diagonal matrix D  such that  

DPAP 1 .  

 

 

Q6.  Find the eigenvalues and eigenvectors of each of the following matrices, 

 

(i).  














 


221

131

222

A     (ii).  

















200

310

101

A   

 

(iii).  



















021

141

102

A    (iv).  

















010

100

001

A .  

 

Where possible, find an invertible matrix P and a diagonal matrix D  such that  

DPAP 1 .  
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Q7.  Consider the following coupled systems of ordinary differential equations,  

 

  (i).  211 2 xxx      (ii).  211 127 xxx    

   212 34 xxx       212 74 xxx    

 

  (iii).  211 xxx      (iv).  3211 3 xxxx    

   3212 2 xxxx      3212 3 xxxx    

   323 3 xxx      3213 3xxxx   .  

 

 In each case:  

 

(a).  express the system in matrix form, x  A x .  

 

(b).  determine the eigenvalues and eigenvalues of the coefficient matrix, A.  

 

(c).  write down an invertible matrix P such that DPAP 1  where D is a  

diagonal matrix.  Write down the matrix D.   

 

  (d).  determine the general solution of the system.  

 

 

 

Q8.  Determine the particular solution to each of the following coupled systems of differential  

 equations,  

 

  (i).  211 2 xxx    

   212 34 xxx    

 

   given that 5)0(1 x  and  1)0(2 x .   

 

   Note : The general solution was obtained in Q7 (i) (d).  
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 (ii).  211 127 xxx    

  212 74 xxx    

 

  given that 9)0(1 x  and  4)0(2 x .   

 

  Note : The general solution was obtained in Q7 (ii) (d).  

 
 
 (iii).  211 xxx    

  3212 2 xxxx    

  323 3 xxx   

 

  given that 1)0(1 x , 6)0(2 x  and  3)0(2 x .   

 

  Note : The general solution was obtained in Q7 (iii) (d).  

 

 

 (iv).  3211 3 xxxx    

  3212 3 xxxx    

  3213 3xxxx   .  

 

  given that 6)0(1 x , 2)0(2 x  and 1)0(2 x .  

 

  Note : The general solution was obtained in Q7 (iv) (d).  

 

 

Q9.  Consider the following coupled systems of differential equations,  

 

     211 612 xxx    

     212 78 xxx  .   

 

(i).  express the system in matrix form, x  A x .  
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(ii).  determine the eigenvalues and eigenvalues of the coefficient matrix, A.  

 

(iii).  write down an invertible matrix P such that DPAP 1  where D is a  

diagonal matrix.  Write down the matrix D.   

 

  (iv).  determine the general solution of the system.  

 

 

Q10.  A system of two coupled ordinary differential equations is given by  

 

  211 45 xxx    

  .54 212 xxx    

 

(i).  express the system in matrix form, x  A x .  

 

(ii).  determine the eigenvalues and eigenvalues of the coefficient matrix, A.  

 

(iii).  write down an invertible matrix P such that DPAP 1  where D is a  

diagonal matrix.  Write down the matrix D.   

 

  (iv).  determine the general solution of the system.  

 

(v). Determine the particular solution that satisfies the following conditions,  

  2)0(1 x ,       2)0(2 x ,      0)0(1 x ,      0)0(2 x .  
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Answers  

A1. (i).  11  ,  32  .  

 

(ii).  11  ,  32  .  

 

(iii).  j
2

31

2

1
1  ,  j

2

31

2

1
2  .  

 

(iv).  31  ,  22  .  

 

(v).  j211  ,  j212  .  

 

(vi).  1   ( repeated ).  

 

 

A2. (i).  31  , 1x 









5

2
   42  ,  2x 










1

1
.   

 

(ii).  31  , 1x 









2

1
;     12  ,  2x 










1

1
.   

 

(iii).  11  , 1x 









1

1
;    52  ,  2x 










2

1
   

 

(iv).  11  , 1x 










3

1
;    42  ,  2x 










2

1
.   

 

 (v).  01  , 1x 









2

3
;    82  ,  2x 










2

1
  

 

(vi).  01  , 1x 









1

2
;     12  ,  2x 










2

5
.   
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(vii).  51  , 1x 









0

1
;     22  ,  2x 










3

7
.   

 

(viii).  61  , 1x 









0

1
;    72  ,  2x 










1

0
.   

 

(ix).  41  , 1x 









1

1
;     32  ,  2x 










5

2
.  

 

(x).  41  , 1x 









1

1
;     32  ,  2x 










2

1
.   

 

(xi).  21   (repeated);  only 1 linearly independent eigenvector, x 









1

1
.  

 

(xii).  j21  , 1x 











1
5

1

5

2
j

;    j22  , 2x 











1
5

1

5

2
j

. 

 

 

A3.  (i).  21  , 1x

















0

1

1

;   12  , 2x

















4

3

0

; 03  , 3x

















1

1

0

.  

 

(ii).  The matrix is upper triangular and so the eigenvalues are the diagonal entries.  

 

31  , 1x

















0

0

1

;  42  , 2x

















0

1

2

;  23  , 3x

















2

5

4

.   

 

 

(iii).  01  , 1x

















1

1

1

;  12  , 2x



















1

0

1

;  33  , 3x

















1

2

1

. 
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A4.  The trace of the matrix M  is the sum of the entries on the main diagonal, i.e.  

157323)( Mtr .  The sum of the eigenvalues of M equals the trace.  

Since 15)( Mtr we must have that 154321   and so  

5)631(154  . 

The determinant of M is given by the product of the eigenvalues, i.e.  

906531)(det 4321  M .  

 

 

A5.  (i).  21  ,   1x 









1

1
;   12  ,  2x 










1

2
;  

 








 


11

21
P  and 











10

02
D  so that DPAP 1 .   

 

 

(ii).  51  ,   1x 









2

1
;   51  ,  2x 











1

2
;  

 












12

21
P  and 











50

05
D so that DPAP 1 .   

 

 

(iii).  11  ,   1x 









2

1
;   81  ,  2x 










1

1
;  

 








 


12

11
P  and 










80

01
D  so that DPAP 1 .  . 

 

 

(iv).  Not diagonalisable.  The eigenvalue 0  is repeated but all eigenvectors have  

the form x )0(,
0









 


 and so we cannot find two linearly independent  

eigenvectors to form the matrix P.   
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A6.  (i).  11  , 1x














 


0

1

2

;  22  , 2x














 


1

1

2

;  43  , 3x  

















1

1

0

. 

 















 


110

111

022

P ,     

















400

020

001

D .  

 

 

(ii).  21  , 1x

















1

1

1

;   12  , 2x

















0

1

0

;  13  , 3x  

















0

0

1

. 

 


















001

011

101

P      

















100

010

002

D .  

 

 

(iii).  11  , 1x



















1

0

1

;   22  , 2x

















0

1

2

;   33  , 3x  

















1

2

1

. 

 




















101

210

121

P      

















100

010

001

D .  

 

(iv).  11  , 1x

















1

1

0

;  12  , 2x

















1

1

0

;   13  , 3x  

















0

0

1

. 

 


















011

011

100

P      

















100

010

001

D .  
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A7.  (i).  (a).  

























2

1

2

1

34

21

x

x

x

x




.  

 

(b).  51  ,   1x 









2

1
;   12  ,  2x 










1

1
. 

 

(c).  






 


12

11
P ,   












10

051 DPAP . 

 

  (d).  







)(

)(

2

1

tx

tx
1C 








2

1
2

5 Ce t  







1

1 te  .  

 

   Alternatively,   tt eCeCtx  2
5

11 )(   

      tt eCeCtx  2
5

12 2)( .  

 

 

(ii).  (a).  



























2

1

2

1

74

127

x

x

x

x




.  

 

(b).  11  ,   1x 









1

2
;  12  ,  2x 










2

3
.  

 

(c).  









21

32
P ,   







 


10

011 DPAP . 

 

  (d).  







)(

)(

2

1

tx

tx
1C 








1

2
2Ce t 









2

3 te .  

 

   Alternatively,   tt eCeCtx 211 32)(     

      tt eCeCtx 212 2)(   .  
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(iii).  (a). 





















































3

2

1

3

2

1

130

121

011

x

x

x

x

x

x







.  

 

(b).  11  , 1x

















1

0

1

; 22  ,  2x

















3

1

1

;  31  , 3x

















3

4

1

.  

 

(c).  




















331

410

111

P   and  




















300

020

001

D   so that DPAP 1 .   

 

 (d).  
















)(

)(

)(

3

2

1

tx

tx

tx

1C
















1

0

1

2Ce t 


















3

1

1
te 2

3C
















3

4

1
te 3 .  

 

  Alternatively,   ttt eCeCeCtx 3
3

2
211 )(     

     tt eCeCtx 3
3

2
22 4)(    

     ttt eCeCeCtx 3
3

2
213 33)(   .  

 

 

(iv).  (a). 





















































3

2

1

3

2

1

311

131

113

x

x

x

x

x

x







.  

 

(b).  11  , 1x

















1

1

1

; 42  ,  2x














 


1

0

1

;  41  , 3x














 


0

1

1

.  

 

(c).  














 


011

101

111

P   and  

















400

040

001

D   so that DPAP 1 .   
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(d).  
















)(

)(

)(

3

2

1

tx

tx

tx

1C
















1

1

1

2Ce t 














 

1

0

1
te 4

3C














 

0

1

1
te 4 .  

 

  Alternatively,   ttt eCeCeCtx 4
3

4
211 )(    

     tt eCeCtx 4
312 )(   

     tt eCeCtx 4
213 )(  .  

 

 

 

A8.  (i).  From Q7 (i) (d) the general solutions is,  

 

    tt eCeCtx  2
5

11 )(   

    tt eCeCtx  2
5

12 2)( .  

 

  Applying the conditions, 5)0(1 x  and  1)0(2 x  gives the simultaneous  

  equations   

 

521  CC   

12 21  CC .  

 

  Solving these equations we have 21 C  and 32 C .   

 

 

  The particular solution is therefore,   

 

    tt eetx  32)( 5
1   

    tt eetx  34)( 5
2 .  
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(ii).  From Q7 (ii) (d) the general solution is,  

 

    tt eCeCtx 211 32)(     

    tt eCeCtx 212 2)(   . 

 

  Applying the conditions, 9)0(1 x  and 4)0(2 x  gives the simultaneous  

  equations,   

 

932 21  CC   

42 21  CC .  

 

  Solving these equations we have 61 C  and 12 C .   

 

 

  The particular solution is therefore,   

 

    tt eetx 312)(1     

    tt eCetx 22 26)(   .  

 

 

 

(iii).  From Q7 (iii) (d) the general solutions is,  

 

   ttt eCeCeCtx 3
3

2
211 )(     

   tt eCeCtx 3
3

2
22 4)(    

   ttt eCeCeCtx 3
3

2
213 33)(   .  

 

  Applying the conditions, 1)0(1 x , 6)0(2 x  and 3)0(2 x  gives the  

  simultaneous equations,   
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   1321  CCC   

   64 32  CC  

   333 321  CCC .  

 

  Solving these equations we have 01 C , 22 C  and 13 C .   

 

  The particular solution is therefore,   

 

   tt eetx 32
1 2)(     

   tt eetx 32
2 42)(    

   tt eetx 32
3 36)(   .   

 

 

 

(iv).  From Q7 (iv) (d) the general solutions is,  

 

   ttt eCeCeCtx 4
3

4
211 )(    

   tt eCeCtx 4
312 )(   

   tt eCeCtx 4
213 )(  .  

 

  Applying the conditions, 6)0(1 x , 2)0(2 x  and 1)0(2 x  gives the  

  simultaneous equations,   

 

   6321  CCC   

   231  CC   

   121  CC .  

 

  Solving these equations we have 31 C , 22 C  and 13 C .   
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The particular solution is therefore,   

 

   tt eetx 4
1 33)(    

   tt eetx 4
2 3)(    

   tt eetx 4
3 23)(  .  

 

 

A9.  (i).  














 










2

1

2

1

78

612

x

x

x

x




.  

 

 

(ii).  91  , 1x 









1

2
;    42  , 2x 










8

3
 .  

 

 

(iii).  






 


81

32
P ,   










40

091 DPAP . 

 

 

 (iv).  Let  x  =  Pu .  Differentiating twice gives, x P u  (since P is a constant  

  matrix).  The coupled system  x  A x  can then be written as  

 

P u   =  APu    u APP 1 u    u  D u . 

 

  Hence,  

    

























2

1

2

1

40

09

u

u

u

u




.  

 

  Expanding gives the two uncoupled second order differential equations,  

 

  09 11  uu    and  04 22  uu . 
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Solving these equations gives,  

 

   )3(cos)3sin()( 111 tBtAtu   and   

   tt eBeAtu 2
2

2
22 )(    

 

where 1A , 1B , 2A  and 2B  are arbitrary constants. 

 

The solution in terms of the original variables, )(1 tx  and )(2 tx  can now be found.  

 

Since x Pu  we have,  














 










2

1

2

1

81

32

u

u

x

x
 . 

 

Expanding this matrix equation gives  

 

   211 32 uux    

   212 8uux   . 

 

From earlier, )3(cos)3(sin)( 111 tBtAtu   and tt eBeAtu 2
2

2
22 )(  .  Hence,  

on substitution, the general solution is  

 

  tt eBeAtBtAtx 2
2

2
2111 33)3(cos2)3(sin2)(    

  tt eBeAtBtAtx 2
2

2
2112 88)3(cos)3(sin)(  .  
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A10.  (i).  




























2

1

2

1

54

45

x

x

x

x




.  

 

 

(ii).  11  , 1x 









1

1
;    92  , 2x 











1

1
 .  

 

 

(iii).  










11

11
P ,   













90

011 DPAP . 

 

 

 (iv).  From Section 6.2 in the notes:  

  The general solution of the linear system x  A x   where the nn   matrix A has  

  n distinct negative eigenvalues  22
3

2
2

2
1 ,...,,, n   , with associated  

  real eigenvectors nxxxx ,...,,, 321 , is given by  

  x )(t  



n

i
iiii tBtA

1

)(cos)sin(  ix .  Here the GS is therefore,  

 

      


























1

1
)3(cos)3(sin

1

1
)(cos)(sin 2211

2

1 tBtAtBtA
x

x
.  

 

)3(cos)3(sin)(cos)(sin)( 22111 tBtAtBtAtx    

)3(cos)3(sin)(cos)(sin)( 22112 tBtAtBtAtx    

 

  where 1A , 1B , 2A  and 2B  are arbitrary constants. 

 

 

 (v).  Apply 2)0(,2)0( 21  xx  to the general solution,  

 

    2,0
2

2
21

21

21 







BB
BB

BB
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Apply 0)0(,0)0( 21  xx   to the derivative of the general solution,  

 

)3(sin3)3(cos3)(sin)(cos)( 22111 tBtAtBtAtx   

)3(sin3)3(cos3)(sin)(cos)( 22112 tBtAtBtAtx   

 

   0,0
30

30
21

21

21 







AA
AA

AA
 

 

 

  Particular solution: 

 

    )3(cos2)(1 ttx   

    )3(cos2)(2 ttx  .   


