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1. Functions of several variables

Functions of a single variable, i.e. y = f(x), are useful in representing a variety of physical

phenomena. However, in many real-world situations quantities depend on more than one

variable giving rise to functions of several variables. The following examples illustrate some

functions of two variables:

@i).

(ii).

(iii).

The volume ¥ of a cylinder of radius » and height % is given by ¥V = zr*h. The

volume V therefore depends on two quantities » and /4 and if either one or both vary, V'
varies. The variable V' (the dependent variable) is a function of the two variables » and /

(the independent variables). We write V' = f(r,h).

The formula for the rate of flow of gas flowing turbulently in a pipe is O = kDT

where £ is a constant, D is the pipe diameter and 7 is the gas temperature. The flow

rate, 0, is a function of the two variables Dand 7, i.e. Q = f(D,T).

The ideal gas law states that pV’ = kT where p is the pressure, V' is the volume and 7’

is the absolute temperature of the gas and £ is a constant. The equation can be

. T . . .
rearranged to give p = k7 so that the pressure p, is a function of the two variables V/

and 7,i.e. p = f(V.,T).

The graph of a function of two variables z = f(x,y) defines a surface in 3 dimensional

space. The x and y axes define a plane, with the z axis recording the height above

(or below) the plane. For example, the function z = cos(x)cos(y) is shown below :

Here z is the dependent variable and is a function of the two independent variables x and y.



2. Partial derivatives

Consider a function of a single variable, y = y(x), representing a curve in 2 dimensional

space.

d
Calculating the derivative, d—y, of y with respect to x enables us to determine the gradient of
X

the tangent line to the function at a given point and hence the slope of the curve at that point.
By varying the x coordinate we can obtain information on how the slope of the function

changes as we move in the x direction.

Example

Determine the gradient of the tangent line to the function y = x> — 4x + 3 at the points

x=0,x=2and x = 3.

Solution

Calculating the derivative: T =2x — 4.
X

—4

, At x = 2 the gradient is, Z’_y = 0.

At x = 0 the gradient is, a
dx x|, _

At x = 3 the gradient is, o = 2.
dx

As we move in the direction of increasing x the slope of the curve changes from negative

(decreasing), to zero (constant), to positive (increasing).

For a function of two variables however we can vary both the x and y coordinates and the
manner in which the function changes will depend on which variable we alter. For example,
imagine standing at the point P in the above figure and walking directly up the hill parallel
with the x-axis while keeping y constant. Clearly the gradient will be steeper than if you were
to walk to the right in a direction parallel with the y-axis while keeping x constant. This
scenario lead us to the concept of a partial derivative of a function of two variables where we

calculate the derivative of the function with respect to one variable with the other held constant.
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Consider the function (surface) z = f(x,y) in the figure on the left below. Suppose we keep x
fixed at the value x = x, and move across the surface in the direction of increasing y, tracing out
the yellow curve as we travel. The slope of f(x,y) changes as we move from left to right along

the curve. Taking a cross-section through the surface at x = x,, see the figure on the right,
- . c . . oz .
shows this more clearly. The partial derivative of z with respect to y, written F gives the
y

slope along the curve in the y direction with x held constant. Note the use of ‘curly d’s’ in the

notation for the partial derivative. Similarly, the partial derivative of z with respect to x,

.0z . . o :
written F gives the slope along the curve in the x direction with y held constant.
X

Z A
o
0 Yo >y
x Flane, &= Cross-section through surface z = f(x,y)
atx = xo showing curve f(xo,y). 9% is
oy

Vary y while keeping x constant at x = xo
slope of curve f(xo, ).

Summary
Given z = f(x,y) :

. 0z . . . .
e to obtain r differentiate z with respect to x, treating y as a constant;
X

Notation: o =z =——=f,
Ox Ox

oy

Notation: oz =z, =>=f.
dy dy



3. Calculating partial derivatives

We now illustrate, through examples, how to calculate partial derivatives of a function of two
variables. An important point to note here is that no new rules of differentiation are needed so
that, for example, the product, quotient and chain rules all apply as they do for functions of a

single variable.

Examples
El. Givenz = x* + 2x°y’ + 4y + 5, determine oz and oz .
ox oy

0
Calculate a—Z, treating y as a constant:
X

o0z o, , 0 ) 3 0 0
— = — + —(2 + —(4y) + —(5
o ax(x ) ax( x°y7) ax( y) ax( )
= 2x + 4x)° + 0 + 0
= 2x + 4y°x.

0
Calculate 6_2 , treating x as a constant:
y

P20y + Ty« Ty s L)
dy 0y oy dy dy

A

=0 + 6x°y° + 4 + 0



E2.

E3.

Given z = sin(x)sin(2 y), determine oz and oz .
ox oy

0 . .
Calculate 6_2 treating y, and hence sin(2y), as a constant:
X

0z

— = i[sin(x)sin(2y)] = cos(x)sin(2y)
ox O0x

Oz ) .
Calculate 7 treating x, and hence sin(x), as a constant:
y

oz
Jy

= ai[sin(x)sin@y)] = sin(x).2cos(2y) = 2sin(x)cos(2y).
y

) . 0 0
Given z = (2x° + xy + »*)*,determine = and <= .

ox oy

The function z is a composite function and so we use the chain rule.

Letu = 2x° + xy + y'sothatz = u’.

Note that z is a function of one variable, u, i.e. z = u® and so we calculate the

. ..d ) ) )
full derivative az . On the other hand, u is a function of two variables, x and y, and so

du
. . ou ou
we need to calculate the partial derivatives, — and — .
0x 0y
By the chain rule,
9z _dz Ou _ g7 (6x + ) = 8(2% + xy + ¥ ) (65 + v).
ox du Ox

Similarly, using the chain rule,

Oz _ dz Ou _ 8ul. (x +4)y°) =82x + xy + y) . (x + 4)*).
oy du 0y




E4. Givenz = (x° + 4y’ )e

2% obtain % and Z—Z )
X Yy

y

The function z is a product of the functions f(x,y) = x° + 4y* and g(x,y) = €.

Recall the product rule for functions of one variable : di( f.g)=fl.g+ f.g.
x

Following this rule for a two-variable function, z(x,y) = f(x,y).g(x,y) we have:

Oz 0 Oz 0
— = —(f.g) = + , — = —(f.g) = + :
x 8x(f g) = f.g+ fg. oy 8y(f g)= f,g+ fg,
Hence,
9z _ i(x3 + 4y*).e™ + (X0 + 4y2).i(ezw)
ox ox ox
0z 2 2x 3 2 2x
a—:3x.ey+(x + 4y ).2ye™
X
oz 2 3 2 2x
7 = (3x" +(x7 + 4y").2y).e™
x
aZ 2 3 3 2x
a—:(3x + 2x’y + 8y ).e” .
X
Similarly,
2 :i()f + 4y2)_62xy + (x3 + 4y2)'i(62xy)
dy oy oy
0z " 3 5 ).
3, 8y.e™ + (x° + 4y~ )2xe™™
Yy
oz 3 2 2x
™ =8y +(x” + 4y°).2x).e™"”
Yy
Oz

(8y + 2x* + 8xy*).e™ .
oy
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E5. Given z = %,obtain 2 and % .
(x~ + »9) ox oy

The function z is a quotient of the functions f(x,y) = x’yand g(x,y) = x° + y°.

Recall the quotient rule for functions of one variable : — >

d(iJ _S'e - fg

dx\ g g
Following this rule for a two-variable function, z(x,y) = M we have:
g(x,y)
9z _ 0 (/[ _ L& T8 oz _ o ([ _ [r&- T8,
ox  ox\g g’ ’ oy oyl g > '
Hence,

d d
—(xPp)(x? + ¥ = Py (x? + )
ox ox

oz _ 2xy (x> + p*) — x*y.2x
ax (x2 + y2)2 (x2 + y2)2
0z _ 2x°y 4 2xy’ - 2xy B 2xy°
ax (x2 + y2)2 (x2 + y2)2'
Similarly,
0 2 2 2 » O 2 2
—(x"y).(x" + - xy—(x" +
oz ay( »)( ) yay( ) 2 1) - 22y
0y (x* + »?)? (x> + »?)?
2 _ o4 xzyz B 2x2y2 _ o xzyz _ xz(xz _ yz)
0y (x* + »y*)’ (x> + ¥H)? 7+ )

Now watch the following:  https://www.youtube.com/watch?v=hI4r5SDEm10Og
https://www.youtube.com/watch?v=f-3xwu5lyPg
https://www.youtube.com/watch?v=rfX3AYNNBS5I



https://www.youtube.com/watch?v=rfX3AYNNB5I
https://www.youtube.com/watch?v=f-3xwu5lyPg
https://www.youtube.com/watch?v=hI4r5DEm1Og

4. Higher order partial derivatives

For a function of a single variable, y = y(x), we can differentiate the function more than

once to obtain the second and higher order derivatives.

We can also calculate higher order derivatives for a function, z = f(x, y), of two variables.
.. z z . . . .

The first order derivatives, r and 3y can be differentiated with respect to x and y, to obtain

X Y

four second order partial derivatives. The figure below summarises the procedure.

z = f(xy)
2 K
ox oy
o oz
ox oy
7 K 7 a
ox oy ox oy
0’z o’z 0%z 0’z

Oox’ oyox oxoy oy’



For a function, z =

order partial derivatives, i.e.

0’z 0’

2 = 2,y = ]2(‘ = fxx
0x 0x
0’z B B o f B
0x0y - 0x0y

We note here thatif z = f/(

9

f(x, y) there are a number of different ways to write the four second

0’ 0’
ayi = Zyy = ay{ = fyy
0’z 0’

fyx = Xy = f = fxy
Oy ox Oyox

x, y) is a function of two variables and the second order mixed
0%z

partial derivatives,  and , both exist and are continuous then they will be equal, i.e.
0x0y 0yox
0’z B 0’z
oxdy  Oyox’
2 2 2 2
E6. Given z = x> + e find 322,6622’ a@; and 8662
X y xoy y oX
%:2x+ye” 2=0+xe”:xe”
ox oy
0’z 00z 0
= —|—| = —(2x + ye) = 2 + y*e”
ox’ 6x(8xj ax( d ) 4
822 - i % _ i(xexy) — xzexy
oy* oy\oy) oy
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2
0z 0 (%j = 0 (xe”) = 1.7 + x.ye"” (usingthe Product rule)

Ox Oy ox oy ox
2

0z = e"y(l + xy)

oxdy —=—————

2
0’z _i% :i(2x+ ye”):0+l.e” + y.xe”
Oy Ox oy 0x oy

(using the Product rule on ye*”)

0’z o
= e (1 + X y).
oyox —m—
Note that, as expected, the mixed partial derivatives are equal i.e., z,, = z .

Now watch the following: https://www.youtube.com/watch?v=Xn6LjHKMrgA

Summary
This unit has extended the idea of differentiation of a function of one variable and introduced the

concept of a partial derivative of a function of two variables.

You should now be able to:

¢ understand the meaning of a partial derivative.
e determine partial derivatives, up to second order, of a function of two variables.

e apply standard rules of differentiation ( chain rule, product rule and quotient rule ) to calculate

the partial derivatives of a function of two variables.

In the next unit we introduce ordinary differential equations (ODEs) and consider different types

of ODEs and methods for their solution.

10


https://www.youtube.com/watch?v=Xn6LjHKMrqA
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Tutorial Exercises

Q1.

Q2.

Determine é and 2 for each of the following functions :
ox oy

. =z 3x7 + 4xy + 27

4

(). z = 2x° +3x°y - 5y

(ii). z = y* - 5xy’ + 2x

N

N
I

(@iv). X’y + 3x" — 8xy + 7y* + 5.

With the help of the chain rule, determine % and ? for each of the following
X y

functions :

(). =z = (2x+3y)8

(3)62 +xy —2y3)10

@i). z =
(iii). z = sin(xy)

(iv). z = sin(4x’y")

(V). z = cos(2xy® + 5x'y)
(Vi) z = ™

(vii). z = In(1 + 2xy?).

11
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Q3. Use the product rule to determine oz and oz for each of the following functions :

ox oy

(i). z = e’ sin(x)

(ii). z = e cos(2x’y’)

(iii). z = sin(x’y’)cos(x’y)

(v). z = x’y* (x> + y*)"

: .0 . .
Q4. Use the quotient rule to determine 2% and oz for each of the following functions :

ox oy

. z = 2

y+x
.e X
i), z = ——
@ ==
Yy
iii), z = ———
. = = s
. X+y
iv), z = ———
™ x?+3y* =2
) _ sin(xy)

cos(x + y)

12



Qs.

Q6.

Q7.

Q8.

13

Determine all 1st order and 2nd order derivatives when :

. z = 2xy* +3x’y*

(ii). z = sin(xy)
(iii). z = e
(iv). z = (x> + y’)*.
If z = x*y* show that, x% + y% = 8z.
X
If z = (x* — »*)" show that, x% + y% = 2z.
ox oy
Ifz =2 show that, x% + y% = z.
X + y ox oy

13
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Answers
Oz oz
ox ay
Al.(i) 6x +4y 4x +4y
Al.(ii) 6x> +6xy 3x* — 20y°
Al.(iii) —5y% +2 4 —15x )
Al.(iv) 3x>y +6x -8y ¥’ —8x+14y
Oz Oz
ox ay
A2.(i) 16(2x +3y)’ 24(2x +3y)’
A2.(ii) 10(3x> +xy—23°)" (6x + y) 103x> +xy —2y*)’ (x —6y%)
A2.(iii) ycos(xy) x cos(xy)
A2.(iv) 8xy’ cos(4x’y?) 12x% y* cos(4x”y?)
A2.(v) | =2y’ +20x° y)sin(2xy’ + 5x*y) —(6xy* +5x*) sin(2xy’ +5x* y)
AZ.(Vi) 4xy erzy 2x2 erzy
A2.(vii) 2y 4xy
1+2xy? 1+ 2xy’

14
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A3, (i). % = [ysin(x) + cos(x)] e’ j—; = xe’ sin(x)
. oz 2 .3 3 2.3 —x
(ii). . = —[ ycos(2x”y ) + 4xy sin(2x” y )]e 7
X
oz 2.3 2.2 2 .3 —x
> = —[xcos(Zx y') 4+ 6x  y sin(2x”y )]e 7
Y
oz 3 2.3 3 2 . 2 3N o 3
(iii). 2 = 2xy cos(x"y )cos(x y) — 3x  ysin(x”y )sin(x”y)
oz _ 2 2 2 3 3 3 . 2 3. . 3
2y 3x"y" cos(x“y )cos(x”y) — x” sin(x”y ) sin(x” y)
Y
. oz 2.2 2 2 2 243
(iv). . = x Yy (1lx" +3y" ) (x"+y7)
0z
ﬂ_y = 22Xy (x> +5y°) (x> +y*) .
2 2
Ad. (). é:y—2 ﬁ=x_2
ox (v + x) oy (y + x)
(ii). oz _ Yo x Jz _ _ 2xy
ox (x> + y*)? oy (x> + y*)?
i), 92 - 2w oz _ X -y
ox (x> + y*)? oy (x> + y?)°

15



(iv).

).

A5, ().

(ii).

16

oz 3y —x* = 2xy -2
Ox (x> +3y> =2)

_x2—3y2—6xy—2

(x* +3y* =2)°

dz  ycos(xy)cos(x+y) + sin(xy)sin(x+y)

Ox cos’ (x +y)
Jz _ xcos(xy)cos(x+y) + sin(xy) sin(x+y)
Oy cos’ (x +y) '
oz oz
L2 02 1 9x2 )t —~ = dxy+12x°y°
ox y Y Oy Y y
i o’
ZZ = 18xy* 22 = 4x +36x° )’
ox ay
2 2
0z = 0z =4y +36x°y° .
ox dy Oy odx
oz oz
— = ycos(x — = x cos(x
= 7 (xy) oy (xy)
0”22 2 . 0”22 2
= —y” sin(x = —x~ sin(x
e y~ sin(xy) o) (xy)
0%z 0%z

= = cos(xy) — xysin(xy).

Ox Oy - oy Ox

16
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i), 22 = —ye 9z _
Ox Ay
2 2
o 2Z — _|_y2 e Y o 2Z _ +x2 e
ox oy
2 2
CE T (g -ne
ox dy Oy dx
: oz Oz
) gy =407+ SR )
0”2 0'>2
~ = 4(3x° + ) = = 6y(2x* +5)7)
ox oy
2 2
072 _ 972 iy



