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1. Introduction

A differential equation is an equation that contains an unknown function, which we need to
solve for, and its derivatives. For example,

ﬂzxz—l

dx

dy

= _ =0

dx y

2
ad§+b%+cx:0
dt d

are all differential equations. Technically they are ordinary differential equations (ODES) since
they contain ordinary derivatives as opposed to partial derivatives. An equation that contains
partial derivativesiscalled apartial differential equation (PDE). The equation

isan example of apartial differential equation. In this module we shall only consider

ordinary differential equations. Differential equations are extremely important in science and
engineering as they can mathematically describe physical processes such as current flow in
electrical systems, motion of mechanical systems, fluid flow, chemical reactions, population
dynamics, the spread of infectious diseases, and many other natural phenomena.

2. Ordinary Differential Equations— The Basics

Given an ODE in terms of % , Where y iscalled the dependent variable and x isthe
X

independent variable, our aim isto solve the ODE and determine the function, or functions,
that satisfy the equation.
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Consider the simple ODE

ﬂzxz—l.

dx 4]
The solution we desire will be of the form

y = f(x).
In this case the task is straightforward as we seek the function, y, whose derivativeis,

x> - 1.

Hence,

y = j(xz — 1) dx and so

y:%xs—x+C. [2]

Note that an arbitrary constant ( C) has been generated. This means that expression [2] does not
represent just a single solution of ODE [1], but infinitely many ( one for each possible value of C).
Expression [2] is called the general solution (GS) of [1] sinceit covers all possible solutions of the
given ODE.

The order of an ODE is given by the highest derivative appearing in it. For example,

;ﬂ =x? -1 1% order ODE
X
2
ad;( + b% +cx =0 2" order ODE
dt dt
d?y dy)’
y—5 = (—j 2nd order ODE.
dx dx
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The order of an ODE determines the number of arbitrary constants appearing in its general solution:

1st order - 1 arbitrary constant
2nd order - 2 arbitrary constants.

We shall not be considering ODEs of order higher that 2.
Once the general solution of an ODE has been found, a particular solution may be determined by

applying boundary or initial conditions. For the simple first order ODE [1] above we might be
asked to solve

;ﬂ = x* — 1,subjectto y(0) = 1 .
X

That is, from the infinity of solutions of the ODE we are looking for the one that will give
y=1when x=0. Thegenera solution was found earlier to be

3

x> — x + C .

Wl

To determine the particular solution that satisfies the given condition, we determine avalue for C

by substituting y =1 and x = 0 into the general solution and solving the resulting equation, i.e.

1=0-0+2C

S0 that

giving

X - x+1

Wl

which satisfies both the ODE and the condition.
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In general, we require one condition per arbitrary constant to determine a particular solution.
Hence, the number of conditions required equals the order of the ODE.

In the simple case above we were able to determine the general solution of ODE [1] by asingle,
direct integration. Other ODEs may require different solution methods. We shall now consider
some special types of ODEs and how to solve them.

3. First Order Separable ODEs
An ODE is separableif it can be written in the form

d
(¥ g = 909 .
X
Integrating both sides, with respect to x, we obtain
JronSYdx = [ g dx
dx

or

[ fndy = [g(x)dx .

Provided we can perform the two integrations we can obtain a solution to the ODE.

Examples/ Over the page. ..
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Examples
In the following examples, Examples (1) — (5) illustrate the basic processes involved when

solving separable ODEs. Example (6) illustrates how an initial condition can be applied as soon
as the constant of integration appears. Example (7) shows that some solutions cannot be
manipulated into the explicit form y = f (x) , and so we have to be content with an implicit

form of solution.

El. ODE: Y4
dx
Separate: dy = (x* + 1) dx

Form integrals: jldy = J‘(x2 + 1) dx

Integrate: y = :—]3-X3 +x+ C. ( General solution)

[ Note that we only need one constant of integration |

E2. ODE: & _ X
dx y
Separate: ydy = xdx

Form integrals: j ydy = j X dx

Integrate: 1y
2
Tidy up: y?> = x> + K , (K = 2C)

General soln:  y = +x* + K .
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y(d - 3x%)

E3. ODE: ﬂ
dx

Separate: & (1 — 3x%) dx

Form integrals: J‘ﬂ = j(l — 3x%) dx

y

Integrate: In|y| - x - X2 + C
Tidy up: y = XX +C

y = e~ €°
General soln: ;ﬂ , (K

E4. ODE: dy _ oy

dx
Re-arrange: % = 2_;
Separate: e’ dy = e*dx

Form integrals: J‘ e’ dy = J‘ e* dx
Integrate: el =e" + C

General soln:  y = In‘ e* + C‘.
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E5. ODE: dy _ (y? + 1)(3x* + 4)

dx
1 dy 2
Rearrange: —— = (3x° + 4
J (y? + 1) dx ( )
Separate: _ 9 _ (3¢ 4 4)dx
(y* + 1)
Form integrals: IL = J' (3x* + 4) dx
(y* + 1)
Integrate: tan'(y) = x® + 4x + C

Genera soln: y = tan(x® + 4x + C).

E6. ODE + condition: % = y(1 - 3x%) : y(2) =1
X
From Example 3: Injy| = x = x* + C
Apply condition: y =1 when x = 2

Inj1] = 2 - 2° + C

0 = -6 + C

C =26
Substitute value: Inly| = x = x* + 6.
Particular Soln: y = e X+,
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E7. ODE+condition. & = 2X+ €& , y(2) = 0
dx 1+ €

Separate: 1+ €e)dy = (2x + &) dx
Form integrals: j(l + e)dy = I(Zx + €) dx

Integrate: y +e =x"+¢e +C

Apply condition: y = 0 when x = 2

0+e =2+ +C
1 =4 +¢€& +C
C =-(3+¢€)

Particular Soln: 'y + e = x* + € — (3 + €°).

[ Note that as we cannot solve explicitly for y the solutionisleft inimplicit form]

Now watch the following:
https.//www.youtube.com/watch?v=nlvr3UyMiQ4
https.//www.youtube.com/watch?v=TojFOAAOdWO0
https.//www.youtube.com/watch?v=M54Y mxf7ATc
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4. Linear ODEs

An ODE islinear if itislinear in the dependent variable and its derivatives. No multiplications

involving the dependent variable and its derivatives are dlowed. In alinear ODE all coefficients

must therefore be constants or functions of the independent variable. An equation that is not

linear is nonlinear. Some examples of linear and nonlinear ODEs are :

XZ% + y® = cos(x)
% _ y — X2e3x

X
d’y dy
Ix? + y& + vy =0
39y | 109y g -
d x? dx y =
e?’X% + sin(y) = 5x?

1% order nonlinear ~ ( y* isthe nonlinear term)

1% order linear

dy

2" order nonlinear yd— Is the nonlinear term)
X

2" order linear

1% order nonlinear

Before we look at the next method for solving first order ODEs it will be helpful to recall

some useful results:

L aws of L ogarithms
e NIn(M) = In(M")
e IN(MN) =In(M) + In(N)

. In(%j = In(M) - In(N)

In(A)

e € = A

Integration by Parts

j f (x)g’(x) dx

CMD —2019/20
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5. First Order Linear ODEs- The Integrating Factor M ethod
Consider an ODE that can be written in the standard form

Pt by = a (3
X

where p(x) and q(x) arenon-zero and not equal. Thistype of equation isknown asafirst

order linear ODE and can be solved using the integr ating factor method. The solution
procedure involves the following steps:

1. Writethe ODE in standard form.

I p(x) dx

N

Identify p(x) and determine the integrating factor (IF), r (x) = e

w

Multiply the standard form ODE [3] by r (X):

00X+ ) P Y = T(x) a0,

4. Rewrite as, di[r(x) y] = r(x)q(x).
X
5.  Integrate both sides, with respect to x, to obtain the general solution:

0y = [r0amac =y = o [0 aeo ax

Note that we can actually omit Steps 3 and 4 and, after calculating the integrating factor at Step 2,
1

write the general solution (Step5) as, y = m r(x) q(x) dx.

Solving ODEs of the form [3] using integrating factors means performing two integrations, one to
determine the | F and one to eliminate the derivative. It might appear that we end up with two
constants of integration when we only want one. However, it is easily demonstrated that any
constant arising from calculating r (x) eventually cancels out. In practice, we simply set it to zero
assoon asit arises leaving just one arbitrary constant from the final integration. Asbefore, if an
initial condition is given then the constant of integration can be evaluated once it appears.

10
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Examples

E8. Determine the general solution of the ODE, % + Yy = X.
X

S1. The ODE is aready in standard form.
S2. ldentify p(x) and determine the integrating factor:

p(x) = 1, r(x) = el s _ gfre o
S3. Write down the general solution noting that q(x) = x:

1
m r(x) q(x) dx

y
y = e—lx.[ e’ xdx .
Use integration by partsto calculate, j xe” dx.
The formulafor integration by parts gives:
[ FO0g)de = f(x)g(x) = [ F/(x)g(x) dx
where
f(x)=x g'(x)=¢e*
f'(x)=1 g(x)=e".
Hence,

jxexdx = xe" - Il.exdx

xe* — Iex dx

xe* — e + C.
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Using (*) we can now write down the general solution of the ODE:

y =ixj‘exxdx = ix[xeX - e + C]
e e

x—1+£x.
e

<
Il

E9. Determine the general solution of the ODE, ZX% +y = X
X
S1. Write the ODE in standard form by dividing through by the coefficient of
dy , 1,1,
dx 2X 2

S2. ldentify p(x) = Zi and determine the integrating factor:
X

[ P00 dx

r(x) = e

1/2‘ 12

In‘x
= e = X

S3. Write down the general solution, noting that q(x) = %x:

1 1
V= e [0 o

_1—1/2 3/2
y_Ex Ix dx .

y = lx‘l’z(gxm . Cj Sy = X+ Ly (K=cr2).

2 5

Now watch the following:
https://www.youtube.com/watch?v=GhGn21sKong
https://www.youtube.com/watch?v=cdrhTsSOkcU

CMD —2019/20
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6. Second Order, Linear ODEswith Constant Coefficients

In this section we look at special types of second order ODEs. The following definitions will

prove useful for the understanding of parts of this section.

Definition (1):  Giventwo functions y,(x) and y,(x) alinear combination of these

functions takes the form

y(x) = ay(x) + a,y,(x)

where a, and a, are constants.

Definition (2): Two functions, y,(x) and y,(x) aresaid to belinearly independent if one

function is not a constant multiple of the other, i.e.

Yi(X) # Ky, (x) .

Definition (3):  If two functions, y,(x) and y,(x) are both solutions of alinear homogeneous

ODE then

y(x) = Ay(X) + By,(X),

where A and B are constants, is also a solution of the ODE.

Linear ODEs with constant coefficients come in two forms:

2
a% + b% +cy=20 (Homogeneous)
2
a((jszl + b% + cy = f(x) (Non-homogeneous)

where a, b and c areconstants.

CMD —2019/20
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Equations of the above form are extremely useful for modelling certain types of physical systems.
Consider a simple suspension system linking a mass to some fixture via a spring and dashpot:

Equilibrium state Disturbed state

In this system:

m = mass
k = springstiffness
¢ = damping coefficient

x = displacement of mass

o = velocity of mass
dt

2

X .
= acceleration of mass

dt?
Forceon massduetospring = —k x

dx
Forceon massduetodashpot = —c el
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Newton's 2nd law of motion statesthat Mass x Acceleration = Force, so

d?x dx
m—- = -kx - ¢c—
dt dt
or
m °X + c% + kx =0 (c.f. Equation [4] )
dt® dt ' -

If there are other forces acting on the mass (such as aforced vibration) then we obtain

d?x dx .
m + ¢c— + kx = f(t c.f. Equation [5
e pm (t) ( q [5])

where f (t) iscalled the forcing term.

Similar ODEs can be derived that model the behaviour of current or voltage in electronic circuits.

These type of equations are applicable to many areas where oscillations or vibrations are present.

CMD —2019/20

15



6.1. Homogeneous Equations

Consider the second order, linear, homogeneous ODE with constant coefficients

2
ay L pd L ey -0 [6]

a
dx? dx

To obtain asolution (y) of thistype of ODE we first note that in order to satisfy [6] some linear
combination of the function y and its derivatives must equal zero. One class of function for which
this property holds is the exponential function as differentiation corresponds to multiplication of the
previous derivative by some constant.

We shall therefore consider asolution y of the form

y =e

where A isaconstant. If we differentiate this function twice we obtain

Y gen
dx
and
2
gxi’ = A%e™* .

Notethat y and its derivatives are constant multiples of each other and have a common factor of

e’*. If we substitute these expressions into ODE [6] we obtain

(al? + bA +c)e” =0
or
al + bl +c=0, [7]

since e™ =0 . If wechoose A to satisfy this quadratic equation then, automatically, the

function y = e** will be aparticular solution of the ODE.

16
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Equation [7] is called the auxiliary equation ( AE ), or characteristic equation, of the ODE.
Solving it allows us to construct particular solutions and, hence, the general solution of the ODE.
Since we have to solve a quadratic equation we have to deal separately with the different types of
solution that can occur. Recall that the quadratic formula gives the solution of the AE as

-b + b® - 4
A = ac

2a

and so we must consider different cases depending on the value of the discriminant, b*> — 4ac.

Case(i) b*> - 4ac > 0

If b> — 4ac > 0 weobtaintworeal and distinct roots of the AE, i.e.
A=A4, and A =41, .

Hence,

y _exllx
1 =

will be one solution of the ODE and

y, = elzx
, =

will be another. These solutions are linearly independent and by Definition (3) above any linear
combination of them will also be a solution of the ODE, i.e.

A1 X

y = Ae™* + Be** [8]

will be asolution. In fact, expression [8] covers all possible solutions of the ODE (when
b®> — 4ac > 0)andisthereforethe general solution ( GS) of the ODE. Note the two

arbitrary constants. We have constructed the general solution without the need to integrate.
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Case(ii) b®*> — 4ac < O

In this case we obtain two complex conjugate roots of the auxiliary equation, i.e.

A, =a+ jp ad A, =a - jp .

Just asin case (i) the general solution can be written down as

y = Ae™* + Be'
or

y = Ael@+ifx 4 B el@-ihx
or

y = Ae“ elf* 4 Be™ e IF*
or

y = e |Aelf* + Be |,

Using Euler’ s formula we can write

e’ = cos(Bx) + jsin(Bx)
and
e 7% = cos(Bx) — jsn(Bx) .

Hence, the general solution of the ODE can be rewritten as

y = e[ Al[cos(x) + jsin(Bx)] + B [cos(fx) - jsin(5x)] |

or

y = e[ Acos(fx) + Bsin(Sx) | [9]
where A = (A+B) aad B = j (A-B).

Equation [9] provides us with a template solution when the auxiliary equation yields complex
conjugate roots.

CMD —2019/20



Case(iii) b? — 4ac = 0

In this case the roots of the auxiliary equation arereal and equal, i.e.
A=2,.

Both roots give the same solution
y =¢

However, we need to find two linearly independent solutions to the ODE in order to determine
the genera solution.

In this specia case it can be shown that

y = e [10]
and
[11]

are both linearly independent solutions of the ODE and so taking alinear combination of [10]
and [11] gives usthe general solution

X4 B xeh*

y = Ae

or

(A + Bx)e™* .

<
Il

Now watch the following: https.//www.youtube.com/watch?v=cszjWPRgP_Q

19
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Summary

2
dy+bﬂ+cy:0:

To solve the ODE: a—;
dx dx

(1). formtheauxiliary equation aA* + b1 + ¢ = 0 ;

(I1). solvethe auxiliary equation;

(I'1). write down the general solution of the ODE, depending on the nature of the solution of the
auxiliary eguation:

AL X

Two real distinct roots: y = Ae™ + B e

Two complex roots: y = e[ Acos(Bx) + Bsin(f8x) |

Two real equal roots; y = (A + Bx)e™* .
Examples
E10. Determine the general solution of the ODE, 3—)2(2/ — % -2y =0
Auxiliary equation:
A2 - 21-2=0
(1-2)(4+1) =0
A=2 , 1=-1
Two real and distinct roots so the general solution is: y = Ae*™ + Be™*.

Now watch the following: https.//www.youtube.com/watchv=4PGYVPUpCFc ( Real distinct roots)

20
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d’y  dy

E11. Determine the genera solution of the ODE,

dx® dx
Auxiliary equation:
A2+ 1+1=0
P -1+ -3
- 2
2 2 2 2

Complex roots, so the general solution is:

- e )« nae )|

Now watch the following: https.//www.youtube.com/watch?v=2ig5M G5lacY (Complex roots)

d?y dy
+ 2— + = 0.
dx? dx y

E12. Determine the general solution of the ODE,
Auxiliary equation:
A2 + 24 +1=0
(A +1)(A+1)=0

A = =1 (twice).

Equal ( repeated ) roots, so the general solutionis:. 'y = (A + Bx)e ™.

Now watch the following: https.//www.youtube.com/watch?v=L OZcexdamUY (Repeated roots)

21
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6.1.1. Homogeneous ODEs with | nitial Conditions

Since the general solution of a2nd order ODE has two arbitrary constants we require two initial
conditions to obtain a particular solution. These conditions may be given in the form

- 4Y a =
y(a) = ¢ G

where the second condition is applied to the derivative of the general solution. In general, we will
obtain two simultaneous equations which are solved for A and B to completely solve the ODE.
Thistype of problem, when all the constraints are specified at the same value of the independent
variable (x), isknown as an initial value problem (IVP).

E13. Consider the spring-mass-dashpot system at the start of the section. Set m=1, c=1 and

k =1. Determine the motion of the massif it isinitially displaced by an amount h and then

released from rest.
2

ODE: d—;( + % + x=0
dt dt

Initial displacement: x(0) = h

Initial velocity: %(0) =0

The ODE isjust that from Example 11 with y and x replaced by x and t respectively.

Hence, the GSis

X = e_%t[Acos(gt) - Bsin(@t)].

Apply first condition, x(0) = h:

h=e 2XO[Acos(g.o) + Bsin(@.o)]

22
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Substitute for A in the GS

X = e_%t[h cos(@t) + Bsin(@t)].

Before we can apply the second condition, we must determine the derivative of x. Applying
the Product Rule gives

% - _%e_%t[hcos(gt) + Bsin(@t)]

+ e_%t[—hg sin(@t) + B cos(@t)].

Now apply the second condition, %(0) = 0:

or

23
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2

E14. Solveg Y + 4y = 0 subjectto, y(0) = 1 and %(0) - 4.
X

X2

Auxiliary equation:

General solution:

Apply thefirst condition:

A* +4=0
A? = -4
A =0+ 2] ( complex roots)

y = e[ Acos(fx) + Bsn(Sx) |

y = e™ [ Acos(2x) + Bsin(2x) |

y = Acos(2x) + Bsin(2x)

y(0) = 1: 1 = Acos(2x0) + Bsin(2x0)

A=1.

Before we can apply the second condition we must differentiate the general solution:

Apply the second condition:

CMD —2019/20

% = —2AsSn(2x) + 2Bcos(2x) .
X

dy

—(0) = 4.

OIX( )

4 = -2Asin(2x0) + 2B cos(2x0)
4 = 0 + 2B

B =2

24



6.2.

Substituting for A and B into the general solution gives the particular solution:

y = cos(2x) + 2sn(2x).

Non-Homogeneous Equations

In this section we look at how to solve second order, linear, non-homogeneous ODEs with
constant coefficients, i.e. equations of the form

d’y dy
+ b—= +cy = f(x 12
™ > y (x) [12]

a
where a, b and c areconstants

The general solution of a non-homogeneous ODE of the form [12] isfound as follows:

STEP1  Determine the general solution of the corresponding homogeneous ODE (i.e.
initially set the RHS, f(x), to zero). In thiscontext, we cal the solution the

complementary function (CF) and denoteit y (X).

STEP Il Determine aparticular integral (PS), which isany solution of the full
non-homogeneous ODE, by the method of undeter mined coefficients

(see below) and denoteit y,(x).
STEP 11l Thegeneral solution of the full, non-homogeneous equation is then given by

Y(X) = Y(X) + Y,(X) .

25
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6.2.1. The M ethod of Undeter mined Coefficients
The method enables the derivation of aparticular integral, y,(x), based on the form of the non-

homogeneous term, f(x), inthe ODE. While the method only works for alimited set of f (x)

terms ( polynomials, exponential's, sines and cosines and combinations of these functions) itis
relatively straightforward to use and only involves algebra and basic differentiation. The method
is best illustrated by an example. Consider the ODE:

d’y _ dy

-2 2y =x*+ 4. 13
dx® dx Y [13]
Step |: Calculate the complementary function:
AE: A -21-2=0

(1-2)(4+1) =0

Two real distinct roots, so the complementary functionis,

2x

V.(X) = Ae”™ + Be ™.

Step Il:  Theamisto determine a particular integral of the full, non-homogeneous equation.
Its format depends on the type of function, f(x), onthe RHS of the ODE. Looking at
the RHS above we see (in this case) aquadratic. It istherefore reasonable to assume
(make an ‘educated guess') that a particular integral will be of asimilar form, namely a
quadratic. We therefore write down the most general for m that a quadratic can take,

y, = ax’ + bx + ¢, [14]

where a, b and c arethe, asyet, undeter mined coefficients. Our task is now to
calculatethevaluesof a, b and ¢ that make [14] a solution of ODE [13]. To do this
substitute the general form [14], and itsfirst and second derivatives, into the LHS of
ODE [13] and force this new LHS to equal the given RHS.

26
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We have

d
Do _2ax+b [15]
dx
d?y,

- 2a . 16
o [16]

Substituting [14], [15] and [16] into the LHS of [13] we get

[2a] — [2ax + b] — 2[ax® + bx + ¢c] = xX* + 4 .

Collecting together the powers of x onthe LHS gives

(2a — b - 2c) — (2a + 2b)x — 2ax> = x> + 4 . [17]

If [14] isto be asolution of [13] then we must determine a, b and ¢ sothat the LHS

of [17] equalsthe RHS. Equating the coefficients of the powers of x on both sidesyields

three equationsina, b and c:

coefficients of X°: —2a =1
coefficientsof x: —-(2a + 2b) =0
constant term : 2a — b - 2c = 4 .

Solving these equations gives
a=-—, bzl, c=—1—1.
2

A particular integral istherefore

1, 1 11
X) = —=X + =X - = .
Yp(X) 2 2 4

CMD —2019/20
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Step I11:

For other types of RHS functions, f (x), welook for particular integrals which are similar in

We can now write down the general solution of ODE [13] by adding together the

complementary function, y,(x), and the particular integral, y,(x) i.e.

Y(x) = ¥e(X) + y,(X)

S0 that

[
>
o
N
x
+
w
o
x
|
I
x
+
I
x
|

y(X)

form and the table on the next page gives the trial function (*educated guess’) for y,(x)

corresponding to various RHS functions. The method can run into difficulty however if the non-

homogeneousterm, f(x), forms part of the complementary function. This situation is addressed in

Example 16.

Examples

See Examples (15) — (16) after the table of y,, starting forms.

CMD —2019/20
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Tableof Trial Functionsfor Particular Integrals

of Non-homogeneous ODES

RHS function f (x)

Tria function for y, (x)

Any constantterm (e.g. 4 ,-3)

a

Any linearterm (eg. 2x , 5x — 8)

ax + b

Any quadraticterm (e.g. 3X* + 2Xx — 6)

ax¥* + bx + ¢

k x

RHS contains an exponential of theform e** ae
(where k isnot aroot of the AE)
RHS contains an exponential of theform e** axe
(where k isone of two distinct roots of the AE)
RHS contains an exponential of theform e* a x? e*

(where k isarepeated root of the AE)

RHS contains cos(kx) or sin(kx) or both

a cos(kx) + bsin(kx)
or
X[a cos(kx) + bsin(kx)] *

* Thisonly occurs with ODESs of the form

d?y
dx?

CMD —2019/20

+ k®y = RHScontaining cos(k x) or sin(k x) or both .
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Examples

2
Ay, 2B 35y = 19e% .
dx dx

E15(a). Determine the general solution of the ODE,
Step |: Calculate the complementary function:

AE: # +21-3=0

(1 + 7)(4 - 5)

Il
o

A =-7 A =5,
Two real distinct roots, so the complementary functionis:

5x

y.(X) = Ae™ + Be

Stepll:  Determineaparticular integral:
Firstly, we note that when f(x) isan exponential function of the form ae** the nature

of the particular integral is determined by whether or not the coefficient ( k), appearing
in the exponent, is aroot of the auxiliary equation.

Inthiscase f(x) = 12e* sothat k = 3 and the roots of the AE were found at Step |

tobe —7 and 5. Hence, kisnot equal to either root and so the table gives that we try
y, = ae

Differentiate:
y, = 3a e¥

y, = 9a e

ote: In Example 16(a) we look at how to determine the particular integral when the
coefficient ( k), in the exponent, equals one of the roots of the auxiliary equation.

30
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Substitute y,, Yy, and y; into the ODE and solve for the coefficient, a:

3x

9ae* + 2(3ae*) - 35(ae®) =12e*

3x

9ae* + Bae’ — 3bae®™ =12e*

—-20ae® =12 = a=-—2==-°=

A particular integral is therefore

_3
5

3x

Yo =—¢€

Step I11:  Writedown the GS of the full, non-homogeneous ODE:

-7x §e3x ]

5

y = Ae™ + Be™ -

2
E15(b). Determine the genera solution of the ODE, % + SQ + 6y = X + 4.

NG dx

Step |: Calculate the complementary function:
AE: A +51+6=0
(A1+2)(4+3) =0

A=-2,1=-3

CF: y. = Ae™ + Be™¥>.
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Step Il:  Determineaparticular integral:
Since the RHS of the ODE is alinear function we select ( see the abovetable)

y, = ax + b.

Differentiate

/7

Yp = @

y, = 0.

Substitute y,, y;, and y; into the ODE:

0 + 5a + 6(ax + b) = x + 4.

Gather like terms:
6ax + (ba + 6b) = x + 4.
Equate coefficients:

X terms: 6a =1

constant terms: 5a + 6b = 4.

Solve for a and b and substitute into vy, :

1 19
a==-, = — .
6 36
P 6 36
Step I11:  Writedown the GS of the full, non-homogeneous ODE:
y = Ae™ + Be™ + e B
6 36

32
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E15(c).

Step |:

Step 11

2

d7y

Determine the genera solution of the ODE, + Yy = sn(2x).

2
Calculate the complementary function:
AE: A +1=0

A = -1

A=2j ==0==%]j. (=0, g=1)
CF: y. = Acosx + Bsinx.

Determine a particular integral:
From the table we select

y, = acos(2x) + bsin(2x).

Note: If the RHS of the ODE contains either sin or cos terms we must have that both

sinand cos appear in y,, a the same frequency, which in this caseis 2.

Differentiate;

Y, —2asin(2x) + 2bcos(2x)

Yy —4acos(2x) — 4bsin(2x)
Substitute y,, Yy, and y; into the ODE:
[-4acos(2x) — 4bsin(2x)] + [acos(2x) + bsin(2x)] = sin(2x) .

Collect like terms:

—3acos(2x) — 3bsin(2x) = sin(2x).

33
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Equate coefficients and solve for a and b:

cosineterms: -3a=0 = a=20

sineterms: -3b=1 = b =-=.
A particular integral istherefore

1.
Y, = —gsm(2x).

Step I11:  Writedown the GS of the full, non-homogeneous ODE:

y = Acosx + Bsinx - %sin(Zx).

Now watch the following:

https.//www.youtube.com/watch?v=st8sU-0cgGw ( Constant function on RHS of ODE )

https.//www.youtube.com/watch?v=iTxiBnbDWRE ( Linear function on RHS of ODE )

https.//www.youtube.com/watch?v=coC-msZupHE ( Quadratic function on RHS of ODE )

https.//www.youtube.com/watch?v=0L SaWZ80aK c& t=64s (Exp function on RHS of ODE)

https.//www.youtube.com/watch?v=sZaY XEAUPWY ( Trig function on RHS of ODE )
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If the non-homogeneous term f (Xx) appears in the complementary function the method described

above will fail. The following examples demonstrate how to overcome this problem.

E16(a). Determine the general solution of the ODE, 3)2(2/ - % + 10y = 6e>.
Step |: Calculate the complementary function:
AE: A* - 71 +10=0
(1 -2)(4A -5 =0
A=2,1=5
CF. y. = Ae*™ + Be™
Stepll:  Determineaparticular integral: ( c.f. Example 15(a) )

The RHS of the ODE contains e>* which hasa5 in the exponent and 5 is one
of the two distinct roots of the auxiliary equation. Hence, we choose

y, = ax e> (seethe‘Table of Trial Functions' )

( Alternatively, note that the RHS of the ODE contains e** which appearsin the CF)

Differentiate;

Yo

a[ Le™ + x(5™)] = a[e™ + 5xe™]

y’ = a[5e>™ + (5e™ + 25xe™)] = a[10e™ + 25xe”].
p
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Substitute y,, Yy, and y; into the ODE and solve for the coefficient, a:

a[10e™ + 25xe™] — 7a[e™ + 5xe™] + 10axe™ = 6e™
10ae™ + 25axe™ - 7ae™ - 35axe™ + 10axe™ = 6e°
3ae™ = 6e”

a =2

A particular integral istherefore

y, = 2xe>™ .
Step I11:  Writedown the GS of the full, non-homogeneous ODE:
y = Ae®™ + Be™ + 2xe°.

Now watch the following: https.//www.youtube.com/watch?v=PPRLSNQCw_w

2
Y _ 0¥ 4 25y = 6e>.

E16(b). Determine the genera solution of the ODE, O q
X X

Step |: Calculate the complementary function:
AE: 2* - 104 + 25 =10

(1 -5 -5 =0
A = 5 (twice)

CF y. = (A + Bx)e*™.

36
CMD —2019/20



Step Il:  Determinea particular integral: ( c.f. Examples 15(a) and 16(a) )
The RHS of the ODE contains e** which hasa5 in the exponent and equals

the repeated root of the auxiliary equation. Hence, we choose

y, = ax’e™ ( seethe‘ Table of Trial Functions' )

( Alternatively, the RHS of the ODE contains e** which appearstwicein the CF)

Exercise: Try to complete this example to show that the particular integral is

y, = 3x°e and that the general solution is

y = (A + Bx)e>™ + 3x*e> .

d?y

E16(c). Determinethe general solution of the ODE, —- + 9y = sin(3x).
X

Step |: Calculate the complementary function:
AE: A +9=0
A7 = -9
A=123]=0= 3j (=0, g =23)
CF: y. = Acos(3x) + Bsin(3x)
Stepll:  Determineaparticular integral:

Thetable gives that we should try

y, = x[acos(3x) + bsin(3x)] . (seenoteatend)
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Exercise: Try to complete this example to show that that the particular integral is

Y, = —% X coS(3x) and that the general solution is

y = Acos(3x) + Bsin(3x) — %xcos(?)x).

Note: In this case as the frequency ( 3) of the trig function on the RHS of the ODE matches
exactly the frequency ( 3) of the trig functions in the complementary function.
Hence, we must try a particular integral of the form selected above.

6.2.2. Non-Homogeneous ODE with Initial Conditions

Note that if we are given an ODE with initial conditions we can cal cul ate the values of A and B

and completely solve the ODE. Thistype of problem, when al the constraints are specified at

the same value of the independent variable (X), is known as an initial value problem (IVP). Inthis
case we must derive the full general solution before applying the initial conditionsto find A and B.

2
Ay 2% 35y~ 126, y(0) = 2, y(0) = 0.
X dx

El7. SolvethelVP,

We obtained the general solution in Example 15(a) as,

Y ou should check that applying the specified conditions gives A = % and B = g so that

the full solutioniis,

14e—7x + §e5x _ §e3x.

TS 3 5

Now watch the following: https.//www.youtube.com/watch?v=QvOk8CgUuXKk& t=54s
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Summary
This unit has introduced the concept of an ordinary differential equation (ODE). Y ou should

now be ableto:

classify differential equations according to their order and linearity.

solve differential equations by direct integration.

solve first order separable differential equations.

solve first order linear differential equations using the integrating factor method.

functions using the method of undetermined coefficients.

In the next unit we extend ideas from integration of afunction of asingle variable to
integrating functions of two variables. Welook at the interpretation of a double integral asa
volume, changing the order of integration and converting from Cartesian to polar coordinates.

CMD —2019/20

solve second-order linear constant coefficient differential equations with standard forcing.
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Tutorial Exercises

First Order ODEs— Separable

Q1. Determinethe general solution of each of the following ODEs:

(). & 2y = 0 (ii). & + 4y> =0
dx dx

(iii). & _ 2y = 4 (iv). xﬂ + vy =20
dx dx

(v). & +e*y? = 0 (vi). & _ 2xtyy-1.
dx dx

Q2. Determine the particular integral of each of the following ODEs:

M. x+)Y -2y , y(0) = 1
dx
H dy 2Xy,2
(ii). =2 4e*y?=0 : y(0) = -1
dx
dx _
(iii). ZtE = 3X , x(1) = 4.

First Order ODEs— Integrating Factors

Q3. Determine the general solution of each of the following ODEs:

(). & y = 3 (i). d + 2y = 6e”
dx dx

(iii). & + 2Xy = x e (iv). & + 2Xy = 2X
dx dx

(v). xy +y =x+x (vi). xy =y + (x+1)>%
dx d

40
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Q4. Determine the particular integral of each of the following ODEs:

0 Lry=-e , y(0) = 1
X

(ii). d _ gy = x°cos(X) , y(7) = 37°.
dx X

Second Order ODEs - Linear, Constant Coefficients (Homogeneous)

Q5. Determine the genera solution of each of the following ODEs:

) zif—%—ay:o (ii). 22;2/—5%+2y:0
(iii). 3;3’ - 6% + 9y = 0 (iv). 4‘;;2’ - 12% + 9y = 0
(V). (;;Z - 2% + 4y =0 (vi). 3)2(2/ + 2% + 2y =0

(vii). 3;2’ -9y =0 (viii) 22/ + 9y =0

Q6. Determine the particular integral of each of the following ODEs:

(). 3!—2ﬂ—8y=o . y(0) =0 y(0) =6
X dx

(ii). d:y s 6¥ L3y o0 y(0) = 2 y'(0) = 0.
dx dx
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Second Order ODEs- Linear, Constant Coefficients (Non-Homogeneous)

Q7. Determine the genera solution of each of the following ODEs:

. d?y dy . d% dy
. 10—= + 16y = 80 : - 5= 6y = 3 3
0] o + v + 16y (i) o v + 6y X +
.. d?y dy : d’y dy »
. 32 -4y = -8 - 6 . 3= 2y = 2e°”".
(iii) o + > y X (iv) o + ™ + 2y

Q8. Determine the particular integral of each of the following ODEs:

Q). d—zg’ _ oA 5y e , y(0) = 0 y(0) = 10
dx dx

i SY-y-=o2 , y(0) = 0 y(0) = O,
X

Tutorial Answers

H 2x .- _ 1
Al (). y = Ae (i). y = —(4x ey
(ii). y = Ae® — 2 V). y = ;A
(v). y = 1 (vi). y = [In|x] + C]* + 1.

CMD —2019/20
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A2. (i).

(iii).

A3. ().

(ii).

(iii).

(iv).

(V).

(vi).

A4 ().

A5. ().

e> -3

y = (x +1)° (ii). y =
x> = 16t°.
rexy = e™”* y = Ae* - 3
r(x) = e* y = 2€ + Ae ¥
r(x) = e y = (Ax* + C)e™
r(x) = e y =1+ Ae™
r(x) = x y = Ix + 1x°
r(x) = % y = x> + 2xIn|x| + Ax - 1.
rx) = ¢ y =(x+1)e™”
r(x) = x? y = x’sin(x) + 3x?
y = Ae® + Be (i). vy
y = (A + Bx)e¥ (iv). y
y = ex[Acos(\/?x) - Bsin(\/?x)]

CMD —2019/20
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(vi).

(viii).

A6. ().

A7. ().

(ii).

(iii).

(iv).

A8. (i).

(ii).

CMD —2019/20

e [ Acos(x) + Bsin(x)] (vi). 'y = Ae** + Be

A cos(3x) + Bsn(3x).

4x

-2X

(ii).

Ae®™ + Be®™ + 5

1

11

Ae®™ + Be* + =x + —=

2

12

Ae™ + Be* + 2x + 3

Ae ™ + Be™® +

1
—e
6

2x

y = e ™ [2cos(2x) + 3sn(2x)].



