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1.  Introduction  

A differential equation is an equation that contains an unknown function, which we need to  

solve for, and its derivatives.  For example,  

 

   12 −= x
dx
dy

  

 

   0=− y
dx
dy

 

 

   0
2

2

=++ xc
dt
dxb

dt
xda   

 

are all differential equations.  Technically they are ordinary differential equations (ODEs) since  

they contain ordinary derivatives as opposed to partial derivatives.  An equation that contains  

partial derivatives is called a partial differential equation (PDE).  The equation  
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∂
∂

  

 

is an example of a partial differential equation.  In this module we shall only consider  

ordinary differential equations.  Differential equations are extremely important in science and  

engineering as they can mathematically describe physical processes such as current flow in  

electrical systems, motion of mechanical systems, fluid flow, chemical reactions, population  

dynamics, the spread of infectious diseases, and many other natural phenomena.  

 

 

 

2.  Ordinary Differential Equations – The Basics 

Given an ODE in terms of  
dx
dy

 , where  y  is called the dependent variable and  x  is the  

independent variable, our aim is to solve the ODE and determine the function, or functions,  

that satisfy the equation.  
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Consider the simple ODE  

 

   12 −= x
dx
dy

 .  [1]  

 

The solution we desire will be of the form  

 

   )( xfy =  . 

 

In this case the task is straightforward as we seek the function, y, whose derivative is,  

 

   12 −x   . 

 

Hence,  

 

    −= dxxy )1( 2  and so  

 

   Cxxy +−= 3

3

1
 .  [2] 

 

Note that an arbitrary constant ( C ) has been generated.  This means that expression [2] does not  

represent just a single solution of ODE [1], but infinitely many ( one for each possible value of  C ).   

Expression [2] is called the general solution (GS) of [1] since it covers all possible solutions of the  

given ODE.   

 

The order of an ODE is given by the highest derivative appearing in it.  For example,  

 

  12 −= x
dx
dy

     1st order ODE  

 

  0
2

2

=++ xc
dt
dxb

dt
xda     2nd order ODE 

 

  
3

2

2









=

xd
yd

xd
ydy     2nd order ODE.   
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The order of an ODE determines the number of arbitrary constants appearing in its general solution: 

 

  1st order - 1 arbitrary constant 

  2nd order - 2 arbitrary constants. 

 

We shall not be considering ODEs of order higher that 2. 

 

Once the general solution of an ODE has been found, a particular solution may be determined by  

applying boundary or initial conditions.  For the simple first order ODE [1] above we might be  

asked to solve  

 

   12 −= x
dx
dy

, subject to 1)0( =y   . 

 

That is, from the infinity of solutions of the ODE we are looking for the one that will give  

1=y  when  0=x .  The general solution was found earlier to be  

 

   Cxxy +−= 3

3

1
  . 

 

To determine the particular solution that satisfies the given condition, we determine a value for  C   

by substituting  1=y   and  0=x  into the general solution and solving the resulting equation, i.e.  

 

  C+−= 001  

 

so that  

 

  1=C   , 

 

giving 

 

  1
3

1 3 +−= xxy   

 

which satisfies both the ODE and the condition. 
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In general, we require one condition per arbitrary constant to determine a particular solution.   

Hence, the number of conditions required equals the order of the ODE. 

 

In the simple case above we were able to determine the general solution of ODE [1] by a single,  

direct integration.  Other ODEs may require different solution methods.  We shall now consider  

some special types of ODEs and how to solve them.  

 

 

 

 

 

3.  First Order Separable ODEs  

An ODE is separable if it can be written in the form  

 

  )()( xg
xd
ydyf =  . 

 

Integrating both sides, with respect to x, we obtain  

 

   = xdxgxd
xd
ydyf )()(  

 

or  

 

   = xdxgydyf )()(   . 

 

 

Provided we can perform the two integrations we can obtain a solution to the ODE.  

 

 

 

Examples / Over the page . . . 
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Examples  

In the following examples, Examples (1) – (5) illustrate the basic processes involved when  

solving separable ODEs.  Example (6) illustrates how an initial condition can be applied as soon  

as the constant of integration appears.  Example (7) shows that some solutions cannot be  

manipulated into the explicit form )( xfy =  , and so we have to be content with an implicit  

form of solution.  

 

E1. ODE:   12 += x
dx
dy

  

 

 Separate:  dxxdy )1( 2 +=   

 

 Form integrals:  += dxxdy )1(1 2   

 

 Integrate:  Cxxy ++= 3

3

1
 .   ( General solution )  

 

 [ Note that we only need one constant of integration ] 

 

 

E2. ODE:   
y
x

dx
dy =  

 

 Separate:  dxxdyy =  

 

 Form integrals:  = dxxdyy  

 

 Integrate:  Cxy += 22

2

1

2

1
 

 

 Tidy up:  )2(,22 CKKxy =+=  

 

 General soln: Kxy +±= 2  . 
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E3. ODE:   )31( 2xy
dx
dy −=  

 

 Separate:  dxx
y

dy
)31( 2−=  

 

 Form integrals:  −= dxx
y

dy
)31( 2  

 

 Integrate:  Cxxy +−= 3ln  

 

 Tidy up:  Cxxey +−=
3

 

 

    Cxx eey
3−=  

 

 General soln: )(,
3 Cxx eKeKy == − .  

 

 

 

E4. ODE:   yxe
xd
yd −=  

 

 Re-arrange:  y

x

e
e

xd
yd =  

 

 Separate:  xdeyde xy =  

 

 Form integrals:  = xdeyde xy  

 

 Integrate:  Cee xy +=  

 

 General soln: Cey x += ln .  
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E5. ODE:   )43()1( 22 ++= xy
xd
yd

  

 

 Rearrange:  )43(
)1(

1 2
2

+=
+

x
xd
yd

y
 

 

 Separate:  xdx
y

yd
)43(

)1(
2

2
+=

+
 

 

 Form integrals:  +=
+

dxx
y

yd
)43(

)1(
2

2
 

 

 Integrate:  Cxxy ++=− 4)(tan 31   

 

 General soln:  )4(tan 3 Cxxy ++=  .  

 

 

E6. ODE + condition: 1)2(,)31( 2 =−= yxy
dx
dy

  

 

 From Example 3:  Cxxy +−= 3ln   

 

 Apply condition:   1=y     when  2=x   

 

     C+−= 3221ln   

 

     C+−= 60   

 

     6=C  . 

 

 Substitute value:   6ln 3 +−= xxy  . 

 

 Particular Soln:   63 +−= xxey . 
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E7. ODE + condition:  0)2(,
1

2 =
+
+= y

e
ex

dx
dy

y

x

 

 

 Separate:  dxexdye xy )2()1( +=+  

 

 Form integrals:  +=+ dxexdye xy )2()1(  

 

 Integrate:  Cexey xy ++=+ 2  

 

 Apply condition:  0=y     when    2=x  

 

    Cee ++=+ 220 20  

 

    Ce ++= 241  

 

    )3( 2eC +−=  

 

 Particular Soln: )3( 22 eexey xy +−+=+  .  

 

 [ Note that as we cannot solve explicitly for  y the solution is left in implicit form ]  

 

 

Now watch the following:  
https://www.youtube.com/watch?v=nlvr3UyMiQ4  
https://www.youtube.com/watch?v=TojF0AAOdW0  
https://www.youtube.com/watch?v=M54Ymxf7ATc  
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4.  Linear ODEs  

An ODE is linear if it is linear in the dependent variable and its derivatives.  No multiplications  

involving the dependent variable and its derivatives are allowed.  In a linear ODE all coefficients  

must therefore be constants or functions of the independent variable.  An equation that is not  

linear is nonlinear. Some examples of linear and nonlinear ODEs are : 

 

  )cos(32 xy
xd
ydx =+    1st order nonlinear  ( 3y  is the nonlinear term ) 

 

  xexy
xd
ydx 32=−     1st order linear  

 

  0
2

2

=++ y
xd
ydy

xd
yd

   2nd order nonlinear  ( 
xd
ydy  is the nonlinear term ) 

 

  )2sin(8103
2

2

xy
xd
yd

xd
yd =−+    2nd order linear   

 

  23 5)(sin xy
xd
yde x =+    1st order nonlinear  ( )(sin y is the nonlinear term ).  

 

 

Before we look at the next method for solving first order ODEs it will be helpful to recall  

some useful results:  

 

Laws of Logarithms  

• )(ln)(ln NMMN =  

• )(ln)(ln)(ln NMNM +=   

• )(ln)(lnln NM
N
M −=








  

• Ae A =)(ln  

 

Integration by Parts  

 

    ′−=′ dxxgxfxgxfdxxgxf )()()()()()( .  
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5.  First Order Linear ODEs - The Integrating Factor Method  

Consider an ODE that can be written in the standard form  

 

   )()( xqyxp
dx
dy =+   [3] 

 

where  )( xp   and  )( xq  are non-zero and not equal.  This type of equation is known as a first  

order linear ODE and can be solved using the integrating factor method.  The solution  

procedure involves the following steps: 

 

 1.  Write the ODE in standard form.  

 

 2.  Identify )( xp  and determine the integrating factor (IF), =
dxxp

exr
)(

)(  .  

 

 3.   Multiply the standard form ODE [3] by )( xr :  

   )()()()()( xqxryxpxr
dx
dyxr =+ .   

 

 4.  Rewrite as,  )()(])([ xqxryxr
dx
d = .  

 

 5.  Integrate both sides, with respect to x, to obtain the general solution:   

 

    == dxxqxr
xr

ydxxqxryxr )()(
)(

1
)()()( .  

 

Note that we can actually omit Steps 3 and 4 and, after calculating the integrating factor at Step 2,  

write the general solution ( Step 5 ) as, = dxxqxr
xr

y )()(
)(

1
.   

 

Solving ODEs of the form [3] using integrating factors means performing two integrations, one to  

determine the IF and one to eliminate the derivative.  It might appear that we end up with two  

constants of integration when we only want one.  However, it is easily demonstrated that any  

constant arising from calculating )( xr  eventually cancels out.  In practice, we simply set it to zero  

as soon as it arises leaving just one arbitrary constant from the final integration.  As before, if an  

initial condition is given then the constant of integration can be evaluated once it appears.  
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Examples 

E8. Determine the general solution of the ODE, xy
xd
yd =+ .   

 

 S1. The ODE is already in standard form. 

 

 S2. Identify )( xp  and determine the integrating factor: 

 

   1)( =xp ,  xdxdxxp
eeexr ===

1)(
)( .  

 

 S3. Write down the general solution noting that xxq =)( :  

   = dxxqxr
xr

y )()(
)(

1
  

   = dxxe
e

y x
x

1
 .    ( * )  

 

 Use integration by parts to calculate,  dxex x .  

 

 The formula for integration by parts gives:  

 

    ′−=′ dxxgxfxgxfdxxgxf )()()()()()(  

 

 where  

   xxf =)(   xexg =′ )(  

   1)( =′ xf   xexg =)( .  

 

 Hence,  

 

    −= dxeexdxex xxx .1   

 

    −= dxeex xx   

 

    Ceex xx +−= .  
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Using (*) we can now write down the general solution of the ODE: 

 

    ][
11 Ceex
e

dxxe
e

y xx
x

x
x +−==    

    xe
Cxy +−= 1 .  

 

 

E9. Determine the general solution of the ODE, 22 xy
xd
ydx =+ .   

 S1. Write the ODE in standard form by dividing through by the coefficient of 
xd
yd

:  

    xy
xxd

yd
2

1

2

1 =+  . 

 

 S2. Identify 
x

xp
2

1
)( =  and determine the integrating factor: 

    

2/1lnln

1

2

1

2

1

)(

2/1

2
1

)(

xee

e

e

exr

xx

dx
x

dx
x

dxxp

===

=

=

=

 

 

 S3. Write down the general solution, noting that xxq
2

1
)( = :  

    = dxxx
x

y
2

11 2/1
2/1

 

 

    −= dxxxy 2/32/1

2

1
 .   

 

    .)2/(,
5

1

5

2

2

1
2/1

22/52/1 CK
x
KxyCxxy =+=






 += −   

 

Now watch the following:  
https://www.youtube.com/watch?v=GhGn21sKong  
https://www.youtube.com/watch?v=cdrhTsSOkcU  
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6.  Second Order, Linear ODEs with Constant Coefficients  

In this section we look at special types of second order ODEs.  The following definitions will  

prove useful for the understanding of parts of this section. 

 

Definition (1): Given two functions )(1 xy  and )(2 xy  a linear combination of these  

   functions takes the form 

 

    )()()( 2211 xyaxyaxy +=  

 

   where 1a  and 2a  are constants.   

 

 

Definition (2): Two functions, )(1 xy  and )(2 xy  are said to be linearly independent if one  

   function is not a constant multiple of the other, i.e. 

 

    )()( 21 xykxy ≠   . 

 

 

Definition (3):  If two functions, )(1 xy  and )(2 xy  are both solutions of a linear homogeneous  

   ODE then  

 

    )()()( 21 xyBxyAxy += ,  

 

   where A and B are constants, is also a solution of the ODE. 

 

 

Linear ODEs with constant coefficients come in two forms:  

 

  0
2

2

=++ yc
dx
dyb

dx
yda  (Homogeneous)  [4] 

 

  )(
2

2

xfyc
dx
dyb

dx
yda =++  (Non-homogeneous)  [5] 

 

where  a ,  b  and  c  are constants. 
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Equations of the above form are extremely useful for modelling certain types of physical systems.   

Consider a simple suspension system linking a mass to some fixture via a spring and dashpot: 

 

O

Equilibrium state Disturbed state

x

m

m

k
k

c
c

 
 
 
In this system: 
 
 
   mass=m  
 
   stiffness spring=k  
 
   tcoefficien damping=c  
 
   mass ofnt displaceme=x  
 
 
 

   mass ofvelocity =
dt
dx

 

 

   mass ofon accelerati
2

2

=
dt

xd
 

 
 
 
   xk−=spring  todue masson  Force  
 

   
dt
dxc−=dashpot  todue masson  Force   . 
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Newton's 2nd law of motion states that  Mass  ×  Acceleration  =  Force, so 

 

   
dt
dxcxk

dt
xdm −−=
2

2

 

 

or  

 

   0
2

2

=++ xk
dt
dxc

dt
xdm   .  ( c.f. Equation [4] ) 

 

 

If there are other forces acting on the mass (such as a forced vibration) then we obtain 

 

   )(
2

2

tfxk
dt
dxc

dt
xdm =++   ( c.f. Equation [5] ) 

 

where )( tf  is called the forcing term. 

 

 

Similar ODEs can be derived that model the behaviour of current or voltage in electronic circuits.   

These type of equations are applicable to many areas where oscillations or vibrations are present.   
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6.1.  Homogeneous Equations 

Consider the second order, linear, homogeneous ODE with constant coefficients  

 

   0
2

2

=++ yc
xd
ydb

xd
yda .   [6] 

 

To obtain a solution ( y ) of this type of ODE we first note that in order to satisfy [6] some linear  

combination of the function y and its derivatives must equal zero.  One class of function for which  

this property holds is the exponential function as differentiation corresponds to multiplication of the  

previous derivative by some constant.   

 

We shall therefore consider a solution  y  of the form  

 

   xey λ=   

 

where  λ  is a constant.  If we differentiate this function twice we obtain  

 

   xe
dx
dy λλ=  

 

and 

 

   xe
xd

yd λλ 2
2

2

=   . 

 

Note that  y  and its derivatives are constant multiples of each other and have a common factor of  
xe λ .  If we substitute these expressions into ODE [6] we obtain 

 

   0)( 2 =++ xecba λλλ  

or 

   02 =++ cba λλ   ,   [7] 

 

since  0≠xe λ  .  If we choose  λ  to satisfy this quadratic equation then, automatically, the  

function xey λ=  will be a particular solution of the ODE. 
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Equation [7] is called the auxiliary equation ( AE ), or characteristic equation, of the ODE.   

Solving it allows us to construct particular solutions and, hence, the general solution of the ODE.   

Since we have to solve a quadratic equation we have to deal separately with the different types of  

solution that can occur.  Recall that the quadratic formula gives the solution of the AE as  

 

   
a

cabb
2

42 −±−
=λ   . 

 

and so we must consider different cases depending on the value of the discriminant, cab 42 − .  

 

 

Case (i) 042 >− cab  

If  042 >− cab   we obtain two real and distinct roots of the AE, i.e.  

 

   1λλ =     and    2λλ =   . 

 

Hence,  

 

   
xey 1

1
λ=  

 

will be one solution of the ODE and  

 

   
xey 2

2
λ=   

 

will be another. These solutions are linearly independent and by Definition (3) above any linear  

combination of them will also be a solution of the ODE, i.e. 

 

   
xx eBeAy 21 λλ +=    [8] 

 

will be a solution.  In fact, expression [8] covers all possible solutions of the ODE (when  

042 >− cab ) and is therefore the general solution ( GS ) of the ODE.  Note the two  

arbitrary constants.  We have constructed the general solution without the need to integrate. 
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Case (ii) 042 <− cab  

In this case we obtain two complex conjugate roots of the auxiliary equation, i.e.  

 

  βαλ j+=1      and     βαλ j−=2   . 

 

Just as in case (i) the general solution can be written down as 

 

   
xx eBeAy 21 ~~ λλ +=  

or 

   xjxj eBeAy )()( ~~ βαβα −+ +=  

or 

   xjxxjx eeBeeAy βαβα −+= ~~
  

or 

   [ ]xjxjx eBeAey ββα −+= ~~
  . 

 

 

Using Euler’s formula we can write  

 

  )(sin)(cos xjxe xj βββ +=  

and 

  )(sin)(cos xjxe xj βββ −=−   . 

 

 

Hence, the general solution of the ODE can be rewritten as  

 

   [ ]])(sin)(cos[
~

])(sin)(cos[
~ xjxBxjxAey x ββββα −++=   

 

or  

   [ ])(sin)(cos xBxAey x ββα +=   [9] 

 

where )
~~

( BAA +=   and  )
~~

( BAjB −= .   

 

Equation [9] provides us with a template solution when the auxiliary equation yields complex  

conjugate roots.  
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Case (iii) 042 =− cab  

In this case the roots of the auxiliary equation are real and equal, i.e.  

 

  0λλ =   . 

 

Both roots give the same solution  

 

  
xey 0λ= .   

 

However, we need to find two linearly independent solutions to the ODE in order to determine  

the general solution.  

 

In this special case it can be shown that  

 

   
xey 0λ=      [10] 

 

and 

 

   
xexy 0λ=     [11] 

 

are both linearly independent solutions of the ODE and so taking a linear combination of [10]  

and [11] gives us the general solution  

 

   
xx exBeAy 00 λλ +=   

 

or 

 

   
xexBAy 0)(

λ+=   .  

 

Now watch the following: https://www.youtube.com/watch?v=cszjWPRqP_Q 
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Summary 

To solve the ODE:  0
2

2

=++ yc
dx
dyb

dx
yda   : 

 

(I). form the auxiliary equation    02 =++ cba λλ   ; 

 

(II). solve the auxiliary equation; 

 

(III). write down the general solution of the ODE, depending on the nature of the solution of the  

 auxiliary equation:  

 

 Two real distinct roots:  
xx eBeAy 21 λλ +=  

 

 Two complex roots:  [ ])(sin)(cos xBxAey x ββα +=  

 

 Two real equal roots:  
xexBAy 0)(

λ+=   . 

 

 

Examples 

E10. Determine the general solution of the ODE, 02
2

2

=−− y
dx
dy

dx
yd

.  

 

 Auxiliary equation: 

 

    022 =−− λλ  

 

    0)1()2( =+− λλ  

 

    1,2 −== λλ  

 

 Two real and distinct roots so the general solution is:  xx eBeAy −+= 2 .   

 

 

Now watch the following: https://www.youtube.com/watch?v=4PGYVPUpCFc   ( Real distinct roots )  
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E11. Determine the general solution of the ODE, 0
2

2

=++ y
dx
dy

dx
yd

  

 

 Auxiliary equation: 

 

    012 =++ λλ  

 

    
2

31 −±−
=λ   

 

     
2

3

2

1 j±−= ,   
2

3
,

2

1 =−= βα  

 

 Complex roots, so the general solution is: 

 

    





















+










=

−
xBxAey

x

2

3
sin

2

3
cos2

1

 . 

 

Now watch the following: https://www.youtube.com/watch?v=2ig5MG5IacY (Complex roots)  
 

 

E12. Determine the general solution of the ODE, 02
2

2

=++ y
dx
dy

dx
yd

.  

 

 Auxiliary equation: 

 

    0122 =++ λλ  

 

    0)1()1( =++ λλ  

 

    1−=λ  ( twice ).  

 

 Equal ( repeated ) roots, so the general solution is:  xexBAy −+= )(  .  

 

Now watch the following: https://www.youtube.com/watch?v=LOZcexdamUY (Repeated roots) 
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6.1.1. Homogeneous ODEs with Initial Conditions  

Since the general solution of a 2nd order ODE has two arbitrary constants we require two initial  

conditions to obtain a particular solution.  These conditions may be given in the form  

 

   0)( cay =   1)( ca
xd
yd =   

 

where the second condition is applied to the derivative of the general solution.  In general, we will  

obtain two simultaneous equations which are solved for  A  and  B to completely solve the ODE.   

This type of problem, when all the constraints are specified at the same value of the independent  

variable (x), is known as an initial value problem (IVP).   

 

 

E13. Consider the spring-mass-dashpot system at the start of the section.  Set 1=m , 1=c  and  

 1=k .  Determine the motion of the mass if it is initially displaced by an amount  h and then  

 released from rest.  

 

 ODE:   0
2

2

=++ x
td
xd

dt
xd

 

 

 Initial displacement: hx =)0(   

 Initial velocity: 0)0( =
td
xd

  

 

 The ODE is just that from Example 11 with y and x replaced by x and t respectively. 

 

 Hence, the GS is  

    ( ) ( )[ ]tBtAex
t

2
3

2
32

1

sincos +=
−

 . 

 

 Apply first condition, hx =)0( : 

 

    ( ) ( )[ ]0.sin0.cos 2
3

2
30

2

1

BAeh +=
×−

  

 

    hA =  .  
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 Substitute for A in the GS  

 

    ( ) ( )[ ]tBthex
t

2
3

2
32

1

sincos +=
−

 . 

 

 Before we can apply the second condition, we must determine the derivative of x.  Applying  

 the Product Rule gives 

 

   
( ) ( )[ ]

( ) ( )[ ] .cossin

sincos

2
3

2
3

2
3

2
32

1

2
3

2
32

1

2

1

tBthe

tBthe
dt
dx

t

t

+−+

+−=

−

−

 

 

 

 Now apply the second condition, 0)0( =
dt
dx

:  

 

 ( ) ( )[ ]0.sin0.cos0 2
3

2
30

2

1

2

1 Bhe +−=
×−

 

   ( ) ( )[ ]0.cos0.sin 2
3

2
3

2
3

2
30

2

1

Bhe +−+
×−

 

 

   Bh 2

3

2
10 +−=   

 

   
3

hB =  . 

 

 

 Substitute this value to give the final form for the displacement, x: 

 

    ( ) ( )











+=

−
ththex

t

2
3

2
32

1

sin
3

cos  

 

or  

    ( ) ( )











+=

−
t

h
thex

t

2
3

2
32

1

sin
3

3
cos  .   
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E14. Solve 04
2

2

=+ y
xd
yd

 subject to, 1)0( =y  and 4)0( =
xd
yd

  . 

 

 Auxiliary equation:  042 =+λ  

 

      42 −=λ   

 

      j20 ±=λ    ( complex roots ) 

 

      0=α      2=β   

 

 General solution:   [ ])(sin)(cos xBxAey x ββα +=  

 

      [ ])2(sin)2(cos0 xBxAey x +=  

 

      )2(sin)2(cos xBxAy +=  

 

 Apply the first condition:  1)0( =y : )02(sin)02(cos1 ×+×= BA  

 

       1=A  . 

 

 Before we can apply the second condition we must differentiate the general solution: 

 

      )2(cos2)2(sin2 xBxA
dx
dy +−=  . 

 

Apply the second condition: 4)0( =
dx

yd
: 

 

      )02(cos2)02(sin24 ×+×−= BA   

 

      B204 +=   

 

      2=B .  
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 Substituting for A and B into the general solution gives the particular solution:  

 

   )2(sin2)2(cos xxy += .  

 

 

 

6.2.  Non-Homogeneous Equations 

 In this section we look at how to solve second order, linear, non-homogeneous ODEs with  

 constant coefficients, i.e. equations of the form  

 

   )(
2

2

xfyc
dx
dyb

dx
yda =++    [12] 

 

 where  a ,  b  and  c  are constants 

 

 The general solution of a non-homogeneous ODE of the form [12] is found as follows: 

 

 STEP I Determine the general solution of the corresponding homogeneous ODE (i.e.  

   initially set the RHS, )( xf , to zero).  In this context, we call the solution the  

   complementary function (CF) and denote it )( xyc . 

 

 STEP II Determine a particular integral (PS), which is any solution of the full  

   non-homogeneous ODE, by the method of undetermined coefficients  

   (see below) and denote it )( xy p . 

 

 STEP III The general solution of the full, non-homogeneous equation is then given by  

 

    )()()( xyxyxy pc +=  . 
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6.2.1. The Method of Undetermined Coefficients 

The method enables the derivation of a particular integral, )( xy p , based on the form of the non- 

homogeneous term, )( xf , in the ODE.  While the method only works for a limited set of )( xf   

terms ( polynomials, exponentials, sines and cosines and combinations of these functions ) it is  

relatively straightforward to use and only involves algebra and basic differentiation.  The method  

is best illustrated by an example.  Consider the ODE:   

 

   42 2
2

2

+=−− xy
dx
dy

dx
yd

 .   [13] 

 

Step I:  Calculate the complementary function: 

 

  AE:  022 =−− λλ   

 

    0)1()2( =+− λλ   

 

    12 −== λλ  . 

 

  Two real distinct roots, so the complementary function is,  

 

    xx
c eBeAxy −+= 2)(  . 

 

Step II:  The aim is to determine a particular integral of the full, non-homogeneous equation.   

  Its format depends on the type of function, )( xf , on the RHS of the ODE.  Looking at  

  the RHS above we see (in this case) a quadratic.  It is therefore reasonable to assume  

  (make an ‘educated guess’) that a particular integral will be of a similar form, namely a  

  quadratic.  We therefore write down the most general form that a quadratic can take,  

 

    cxbxay p ++= 2   ,   [14] 

 

  where  a ,  b  and  c  are the, as yet, undetermined coefficients.  Our task is now to  

  calculate the values of  a ,  b  and  c  that make [14] a solution of ODE [13].  To do this  

  substitute the general form [14], and its first and second derivatives, into the LHS of  

  ODE [13] and force this new LHS to equal the given RHS.   
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We have  

   bxa
dx
yd p += 2    [15] 

 

   a
dx

yd p 2
2

2

=   .    [16] 

 

Substituting [14], [15] and [16] into the LHS of [13] we get  

 

   4][2]2[]2[ 22 +=++−+− xcxbxabxaa   . 

 

 Collecting together the powers of  x  on the LHS gives  

 

  42)22()22( 22 +=−+−−− xxaxbacba   .  [17] 

 

 If [14] is to be a solution of [13] then we must determine  a ,  b  and  c  so that the LHS  

 of [17] equals the RHS.  Equating the coefficients of the powers of  x  on both sides yields  

 three equations in a ,  b  and  c : 

 

  coefficients of  x2 :                   12 =− a  

 

  coefficients of  x :  0)22( =+− ba  

 

  constant term :  422 =−− cba   . 

 

 

 Solving these equations gives  

 

   
4

11
,

2

1
,

2

1 −==−= cba   . 

 

 

 A particular integral is therefore  

 

   
4

11

2

1

2

1
)( 2 −+−= xxxyp   . 
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Step III:  We can now write down the general solution of ODE [13] by adding together the  

  complementary function, )( xyc , and the particular integral, )( xyp  i.e.  

 

   )()()( xyxyxy pc +=   

 

  so that  

 

   
4

11

2

1

2

1
)( 22 −+−+= − xxeBeAxy xx  . 

 

 

 

For other types of RHS functions, )( xf , we look for particular integrals which are similar in  

form and the table on the next page gives the trial function (‘educated guess’) for )( xy p   

corresponding to various RHS functions.  The method can run into difficulty however if the non- 

homogeneous term, )( xf , forms part of the complementary function.  This situation is addressed in  

Example 16. 

 

 

 

Examples 

See Examples (15) – (16) after the table of   yp  starting forms. 
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Table of Trial Functions for Particular Integrals 

of Non-homogeneous ODEs 
 
 
 
 

RHS function )( xf  Trial function for  )( xy p  

 
Any constant term ( e.g. 4  , −3 ) 

 

 
a 

 
Any linear term ( e.g.  2 x  ,  5 x  −  8 ) 

 

 
a x   +   b 

 
Any quadratic term ( e.g.  3 x2  +  2 x  −  6 ) 

 

 
a x2   +   b x   +   c  

 
RHS contains an exponential of the form  xke  

(where  k  is not a root of the AE) 
 

 
xkea  

 
RHS contains an exponential of the form  xke  

(where  k  is one of two distinct roots of the AE) 
 

 
xkexa  

 
 

 
RHS contains an exponential of the form  xke  

(where  k  is a repeated root of the AE) 
 

 
xkexa 2  

 
RHS contains  )(cos xk   or  )(sin xk   or  both 

 
 
 

 
)(sin)(cos xkbxka +  

or 
])(sin)(cos[ xkbxkax +  ∗ 

 
∗ This only occurs with ODEs of the form 

 

bothor )(sinor)(cos containing RHS2
2

2

xkxkyk
dx

yd =+ . 
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Examples 

E15(a). Determine the general solution of the ODE, xey
xd
yd

xd
yd 3
2

2

12352 =−+  . 

 

Step I:  Calculate the complementary function: 

 

  AE:  03522 =−+ λλ  

 

    0)5()7( =−+ λλ  

 

    57 =−= λλ   . 

 

  Two real distinct roots, so the complementary function is:  

 

   xx
c eBeAxy 57)( += − . 

 

 

Step II: Determine a particular integral:  

  Firstly, we note that when )( xf  is an exponential function of the form xkea  the nature  

  of the particular integral is determined by whether or not the coefficient ( k ), appearing  

  in the exponent, is a root of the auxiliary equation.  

 

  In this case xexf 312)( =  so that 3=k  and the roots of the AE were found at Step I  

  to be 7−  and 5.  Hence, k is not equal to either root and so the table gives that we try  

 

   x
p eay 3= .  

 

  Differentiate: 

   x
p eay 33=′  

   x
p eay 39=′′  

 

Note:  In Example 16(a) we look at how to determine the particular integral when the  

  coefficient ( k ), in the exponent, equals one of the roots of the auxiliary equation.  
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Substitute pp yy ′,  and py ′′  into the ODE and solve for the coefficient, a:  

 

  xxxx eeaeaea 3333 12)(35)3(29 =−+   

 

  xxxx eeaeaea 3333 123569 =−+   

 

  
5

3

20

12
1220 33 −=−==− aeea xx   

 

 A particular integral is therefore  

 

   x
p ey 3

5

3−= .  

 

Step III: Write down the GS of the full, non-homogeneous ODE:  

 

   xxx eeBeAy 357

5

3−+= − .  

 

 

 

E15(b).  Determine the general solution of the ODE, 465
2

2

+=++ xy
dx
dy

dx
yd

.  

 

Step I:  Calculate the complementary function: 

 

  AE:  0652 =++ λλ  

 

    0)3()2( =++ λλ  

 

    3,2 −=−= λλ  

 

  CF:  xx
c eBeAy 32 −− +=  . 
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Step II: Determine a particular integral:  

  Since the RHS of the ODE is a linear function we select ( see the above table ) 

 

    bxay p += .  

 

  Differentiate  

    ay p =′   

 

    0=′′py .   

 

  Substitute pp yy ′,  and py ′′  into the ODE: 

 

    4)(650 +=+++ xbxaa .  

 

  Gather like terms: 

 

    4)65(6 +=++ xbaxa .  

 

  Equate coefficients: 

   x terms: 16 =a  

   constant terms: 465 =+ ba .   

 

  Solve for a and b and substitute into py : 

 

    
6

1=a ,  
36

19=b  . 

 

    
36

19

6

1 += xyp .  

 

 

Step III: Write down the GS of the full, non-homogeneous ODE:  

 

    
36

19

6

132 +++= −− xeBeAy xx .  
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E15(c). Determine the general solution of the ODE, )2(sin
2

2

xy
dx

yd =+ .  

 

Step I:  Calculate the complementary function: 

  AE:  012 =+λ   

 

    12 −=λ   

 

    jj ±==±= 0λ .     ( 1,0 == βα  ) 

 

  CF:  xBxAyc sincos +=  .  

 

 

Step II: Determine a particular integral:  

  From the table we select  

 

    )2(sin)2(cos xbxay p += .  

 

  Note: If the RHS of the ODE contains either sin or cos terms we must have that both  

   sin and cos appear in py , at the same frequency, which in this case is 2.    

 

  Differentiate: 

    )2(cos2)2(sin2 xbxay p +−=′  

    )2(sin4)2(cos4 xbxay p −−=′′  

 

  Substitute pp yy ′,  and py ′′  into the ODE: 

 

  )2(sin])2(sin)2(cos[])2(sin4)2(cos4[ xxbxaxbxa =++−−  . 

 

  Collect like terms: 

 

    )2(sin)2(sin3)2(cos3 xxbxa =−− .  
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 Equate coefficients and solve for a and b: 

 

   cosine terms: 003 ==− aa   

   sine terms:  
3

1
13 −==− bb  .  

 

 A particular integral is therefore  

 

   )2(sin
3

1 xyp −= . 

 

 

Step III: Write down the GS of the full, non-homogeneous ODE:  

 

   )2(sin
3

1
sincos xxBxAy −+= .  

 

 

Now watch the following:  
 
https://www.youtube.com/watch?v=st8sU-0cgGw ( Constant function on RHS of ODE ) 
 
https://www.youtube.com/watch?v=iTxiBnbDwRE ( Linear function on RHS of ODE ) 
 
https://www.youtube.com/watch?v=coC-msZupHE ( Quadratic function on RHS of ODE ) 
 
https://www.youtube.com/watch?v=oLSaWZ80aKc&t=64s  (Exp function on RHS of ODE) 
 
https://www.youtube.com/watch?v=sZaYXEAUPWY ( Trig function on RHS of ODE ) 
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If the non-homogeneous term )( xf  appears in the complementary function the method described  

above will fail.  The following examples demonstrate how to overcome this problem.  

 

E16(a). Determine the general solution of the ODE, xey
dx
dy

dx
yd 5
2

2

6107 =+− .  

 

Step I:  Calculate the complementary function: 

 

  AE: 01072 =+− λλ  

 

   0)5()2( =−− λλ  

 

   5,2 == λλ  

 

  CF:  xx
c eBeAy 52 +=  .  

 

 

Step II: Determine a particular integral: ( c.f. Example 15(a) ) 

  The RHS of the ODE contains xe 5  which has a 5 in the exponent and 5 is one  

  of the two distinct roots of the auxiliary equation.  Hence, we choose  

 

   x
p exay 5=    ( see the ‘Table of Trial Functions’ )  

 

  ( Alternatively, note that the RHS of the ODE contains xe 5  which appears in the CF ) 

 

 

 Differentiate: 

   ]5[])5(.1[ 5555 xxxx
p exeaexeay +=+=′   

 

   ]2510[])255(5[ 55555 xxxxx
p exeaexeeay +=++=′′ .  
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 Substitute pp yy ′,  and py ′′  into the ODE and solve for the coefficient, a:  

 

   xxxxxx eexaexeaexea 555555 610]5[7]2510[ =++−+   

 

   xxxxxx eexaexaeaexaea 555555 6103572510 =+−−+  

 

   xx eea 55 63 =  

 

   2=a  

 

 A particular integral is therefore  

 

    x
p exy 52=  . 

 

 

Step III: Write down the GS of the full, non-homogeneous ODE:  

 

    xxx exeBeAy 552 2++= .  

 
Now watch the following: https://www.youtube.com/watch?v=PPRLsNQCw_w  
 

 

 

E16(b). Determine the general solution of the ODE, xey
dx
dy

dx
yd 5
2

2

62510 =+− .  

 

Step I:  Calculate the complementary function: 

  AE: 025102 =+− λλ  

 

   0)5()5( =−− λλ  

 

   5=λ  (twice) 

 

  CF: x
c exBAy 5)( +=  . 
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Step II: Determine a particular integral: ( c.f. Examples 15(a) and 16(a) ) 

  The RHS of the ODE contains xe 5  which has a 5 in the exponent and equals  

  the repeated root of the auxiliary equation.  Hence, we choose  

 

   x
p exay 52=    ( see the ‘Table of Trial Functions’ )  

 

  ( Alternatively, the RHS of the ODE contains xe 5  which appears twice in the CF )  

 

 

 Exercise:  Try to complete this example to show that the particular integral is  

 

   x
p exy 523=   and that the general solution is  

 

   xx exexBAy 525 3)( ++=  .  

 

 

E16(c). Determine the general solution of the ODE, )3(sin9
2

2

xy
xd
yd =+ .  

 

Step I:  Calculate the complementary function: 

  AE:  092 =+λ   

 

    92 −=λ  

 

    j3±=λ  j30 ±=    ( 3,0 == βα  ) 

 

  CF:  )3(sin)3(cos xBxAyc +=  

 

 

Step II: Determine a particular integral:  

  The table gives that we should try   

 

    ])3(sin)3(cos[ xbxaxyp +=  .  ( see note at end ) 
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 Exercise: Try to complete this example to show that that the particular integral is  

 

   )3(cos
6

1 xxyp −=   and that the general solution is  

 

   )3(cos
6

1
)3(sin)3(cos xxxBxAy −+= .  

 

 

 Note: In this case as the frequency ( 3 ) of the trig function on the RHS of the ODE  matches  

  exactly the frequency ( 3 ) of the trig functions in the complementary function.   

  Hence, we must try a particular integral of the form selected above.  

 

 

 

6.2.2. Non-Homogeneous ODE with Initial Conditions 

Note that if we are given an ODE with initial conditions we can calculate the values of A and B  

and completely solve the ODE.  This type of problem, when all the constraints are specified at  

the same value of the independent variable (x), is known as an initial value problem (IVP).  In this  

case we must derive the full general solution before applying the initial conditions to find A and B. 

 

E17.  Solve the IVP, 0)0(,2)0(,12352 3
2

2

=′==−+ yyey
xd
yd

xd
yd x  . 

 

 We obtained the general solution in Example 15(a) as,  

 

  xxx eeBeAy 357

5

3−+= − .   

 You should check that applying the specified conditions gives 
15

14=A  and 
3

5=B  so that  

 the full solution is,  

 

  xxx eeey 357

5

3

3

5

15

14 −+= − .  

 

Now watch the following: https://www.youtube.com/watch?v=QvOk8CgUuXk&t=54s  
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Summary  

This unit has introduced the concept of an ordinary differential equation (ODE).  You should  

now be able to: 

 

• classify differential equations according to their order and linearity.  
• solve differential equations by direct integration.  
• solve first order separable differential equations.   
• solve first order linear differential equations using the integrating factor method.  
• solve second-order linear constant coefficient differential equations with standard forcing.  
 functions using the method of undetermined coefficients. 

 
In the next unit we extend ideas from integration of a function of a single variable to  

integrating functions of two variables.  We look at the interpretation of a double integral as a  

volume, changing the order of integration and converting from Cartesian to polar coordinates.  
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Tutorial Exercises  

 

First Order ODEs – Separable 

 

Q1. Determine the general solution of each of the following ODEs: 

 (i). 02 =− y
dx
dy

   (ii). 04 2 =+ y
dx
dy

 

 

 (iii). 42 =− y
dx
dy

   (iv). 0=+ y
dx
dyx  

 

 (v). 02 =+ ye
dx
dy x    (vi). 12 1 −= − yx

dx
dy

.  

 

 

Q2. Determine the particular integral of each of the following ODEs:  

 (i). y
dx
dyx 2)1( =+   ,  1)0( =y   

 

 (ii). 022 =+ ye
dx
dy x   ,  1)0( −=y   

 

 (iii). x
dt
dxt 32 =    ,  4)1( =x .  

 

 

First Order ODEs – Integrating Factors 

 

Q3. Determine the general solution of each of the following ODEs: 

 (i). 3=− y
dx
dy

  (ii). xey
dx
dy

62 =+   

 

 (iii). 
2

2 xexyx
dx
dy −=+   (iv). xyx

dx
dy

22 =+   

 

 (v). 3xxy
dx
dyx +=+   (vi). 2)1( ++= xy

dx
dyx .  
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Q4.  Determine the particular integral of each of the following ODEs: 

 

 (i). xey
dx
dy −=+   ,   1)0( =y  

 

 (ii). )cos(
2 2 xxy
xdx

dy =−   ,  23)( ππ =y .  

 

 

 

Second Order ODEs – Linear, Constant Coefficients (Homogeneous) 

 

Q5. Determine the general solution of each of the following ODEs: 

 

 (i). 06
2

2

=−− y
dx
dy

dx
yd

  (ii). 0252
2

2

=+− y
dx
dy

dx
yd

 

 

 (iii). 096
2

2

=+− y
dx
dy

dx
yd

  (iv). 09124
2

2

=+− y
dx
dy

dx
yd

  

 

 (v). 042
2

2

=+− y
dx
dy

dx
yd

  (vi). 022
2

2

=++ y
dx
dy

dx
yd

  

 

 (vii). 09
2

2

=− y
dx

yd
  (viii). 09

2

2

=+ y
dx

yd
.  

 

 

 

Q6. Determine the particular integral of each of the following ODEs:  

 

 (i). 082
2

2

=−− y
dx
dy

dx
yd

 , 6)0(0)0( =′= yy  

 

 (ii). 0136
2

2

=++ y
dx
dy

dx
yd

 , 0)0(2)0( =′= yy .  
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Second Order ODEs – Linear, Constant Coefficients (Non-Homogeneous) 

 

Q7. Determine the general solution of each of the following ODEs: 

 

 (i). 801610
2

2

=++ y
dx
dy

dx
yd

  (ii). 3365
2

2

+=+− xy
dx
dy

dx
yd

 

 

 (iii). 6843
2

2

−−=−+ xy
dx
dy

dx
yd

  (iv).  xey
dx
dy

dx
yd 2

2

2

223 =++ .  

 

 

 

 

Q8. Determine the particular integral of each of the following ODEs: 

 

 (i). xey
dx

yd
dx

yd 2
2

2

632 =−−   , 10)0(0)0( =′= yy  

 

 (ii). 2
2

2

=− y
dx

yd
  ,  0)0(0)0( =′= yy .  

 

 

 

 

Tutorial Answers 

A1. (i). xeAy 2=  (ii). 
)4(

1

Cx
y

−
=   

 

 (iii). 22 −= xeAy  (iv). 
x
Ay =   

 

 (v). 
Ce

y x −
= 1

 (vi). 1]ln[ 2 ++= Cxy .  
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A2. (i). 2)1( += xy     (ii). 
3

2
2 −

= xe
y   

 

 (iii). 32 16 tx = .  

 

 

 

A3. (i). xexr −=)(    3−= xeAy  

 

 (ii). xexr 2)( =    xx eAey 22 −+=  

 

 (iii). 
2

)( xexr =    
2

)( 2
2
1 xeCxy −+=  

 

 (iv). 
2

)( xexr =    
2

1 xeAy −+=  

 

 (v). xxr =)(    
x
Axxy ++= 3

4
1

2
1  

 

 (vi). 
x

xr 1
)( =    1ln22 −++= xAxxxy .  

 

 

 

A4. (i). xexr =)(    xexy −+= )1(  

 

 (ii). 2)( −= xxr    22 3)sin( xxxy += .  

 

 

 

A5. (i). xx eBeAy 23 −+=     (ii). xx eBeAy 25.0 +=  

 

 (iii). xexBAy 3)( +=     (iv). xexBAy 5.1)( +=  

 

 (v). ])3(sin)3(cos[ xBxAey x +=   
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 (vi). ])(sin)(cos[ xBxAey x += −   (vii). xx eBeAy 33 −+=  

 

 (viii). )3(sin)3(cos xBxAy += .  

 

 

A6. (i). xx eey 24 −−=    (ii). ])2(sin3)2(cos2[3 xxey x += − .  

 

 

 

 

A7. (i). 528 ++= −− xx eBeAy   

 

(ii). 
12

11

2

132 +++= xeBeAy xx   

 

 (iii). 324 +++= − xeBeAy xx   

 

(iv). xxx eeBeAy 22

6

1++= −− .  

 

 

 

 

A8. (i). xxx eeey 23 224 −−= −  

 

 (ii). 2−+= − xx eey .  

 


