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1. Introduction

For functions of a single variable there are two types of integration. The first is indefinite

integration,
= I f(x)ydx = F(x) + C,
which is effectively “differentiation in reverse”, and the second is definite integration,

| = j:f(x)dx - F(b) - F(a).

Before we consider how to integrate functions of two variables, we shall consider the

“construction” of definite integrals and extend this idea to double integrals.

2. Definite Integrals - Functions of a Single Variable

Recall that one interpretation of a definite integral of the form,
b
= J. f (x) dx

is an area between the graph of y = f (X) and the x-axis. Let us examine this

interpretation a little more closely.

If we were looking to determine the area limited by X=a and Xx=Db we might approximate

it first. Let us divide the interval [a,b] into n strips of width dx and form rectangles
whose heights are determined by the function y = f (X) as shown in the following

diagram:



YA

D y = f(x)

OX

v

The area of a typical rectangle (shaded grey) is given by,
oA = f(x)ox
where f (X ) is the height of the rectangle and OX is its width.

The total area is approximated by summing the areas of all n rectangles,

A= Zn: f(x,)ox . [1]

i=1

If we take a smaller o0X (larger n) the approximation should improve. Taking the

limit as 0X — 0 (equivalently letting n — o), it can be shown that,

A=j:f(x)dx. 2]



3. Double Integrals Over Rectangqular Regions

Suppose we have a function of two variables, z = f (X,Yy) defined over a rectangular

region, R, whose sides are parallel with the coordinate axes in the Xy — plane, i.e.
R={(x,y):a< x<b, ¢ <y < d}asshown in the figure below.

Consider partitioning R into small rectangles R;;, where 1 < i < nand1 < j < m. Each
small rectangle has area 0A = OX0Yy. Here we have partitioned the interval @ < X < b
into N subintervals of width dXand the interval ¢ < y < d into msubintervals of

width Oy, as shown below.

YA
d _____
.<__’_//" (X| ayj)
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Choose an arbitrary point (X ,Y;) inrectangle R;; and project the rectangle up to the

function surface to form a “cuboidal” volume element of height f ( x,Yy;) , as shown:




The volume of this column is given by f (X ,y;)0A = f(x,y,)0xdy. This value will be an

approximation to the exact volume above the small rectangular area 0A since the height of the

column varies over the small rectangular area.

The volume above the entire region Rin the Xy — plane and under the surface z = f(X,y),

shown in the figure below, can be approximated by summing the volumes of all the cuboids, i.e.

n m n m

Vo= 3 D f(xy)0A =3 > T(X,Y;)dydx.

<

By taking the limit as dy,0X — 0 ( m, N — < ) we obtain the double integral, i.c.

=

lim m
5%, 5y - 0£i=1 JZ::I f(&ayj)5y5XJ = J;! f(x,y)dA = J'J f(x,y) dy dx.

Referring to the above figure we can write V. = ” f (X,y) dy dx as the iterated integral
R

L:b Iyy:cd f(X,y)dydx = I::Uyy:: f(x,y)dy)dx.

This integral is calculated from the ‘inside out’. First we integrate f (X,Y) with respect to Y,
treating x asa constant, and evaluate from y = ¢ to y = d. This calculation gives
a function of X only, which is then integrated from x = a to x = b. Now watch the following:

https://www.youtube.com/watch?v=m08xkaVIHIY
https://www.youtube.com/watch?v=twT-WZCh{Z8




We now illustrate the process by means of an example.

Example 1

Determine the volume of the solid that lies under the plane z = 5 — X — Yy and above the

rectangular region, R = {(X, y):0 < x <2, 0£yc< 1}.

Solution

Here f(X,y) = 5 — X — Yy and, from above, V = ” (5 — x — y)dyadx.
R

The limits a = 0, b = 2, ¢ = 0, d = 1 for the region R are inserted to give,
X=2 y=1
V = .[x=0 J-y=0 (5 — x — y)dydx.

First evaluate the inner integral, treating X as a constant,

-1 1
[ = x—-ydy = [Sy - Xy - —yz}
y=0 2

The value, 7, represents the volume of the solid that lies under the plane z = 5 — X — vy

and above the rectangular region, R = {(x, y):0 < x <2, 0 <y <1},

In the next example we investigate what happens when the order in which the integrations are
performed, over a rectangular region R, is changed. We first integrate the function in
Example 1 with respect to X, treating Yy as a constant, and then integrate the resulting function

of'y only with respect to V.



Example 2

Changing the order in which the iterated integral in Example 1 is evaluated gives:
y=1 px=2
V = J-y=0 Ix:O (5 = x — y)dxdy.

Solution

First evaluate the inner integral, treating Yy as a constant,

x=0

i 1 x=2
'[ (5—x—y)dx:{5x—5x2—yx}

= (10 =2 —2y) — (0) = 8 — 2y.

Now evaluate the outer integral,

[[s-2ndy=[sy -y =6-1-0=1

The value of 7 represents the volume of the solid below the surface z = 5 — X — y and
above the rectangular region R = {(x, y):0 < x < 2, 0 < y < 1}. This result agrees

with the value obtained in Example 1. Hence, we have shown that

” (5 - x - y)dydx = ” (5 - x — y)dxady.

In general, when the region we are integrating over is rectangular the order of integration

does not matter and both integrals evaluate to the same value (volume).

Note: The result ” f(x,y)dydx = J-J. f (X,y) dx dy is always true provided f (X,Y) is
R R

a continuous function.

Now watch the following:  https://www.youtube.com/watch?v=TdLD2Zh-nUQ
https://www.youtube.com/watch?v=z28BM6cHifPA

The evaluation of double integrals using iterated integrals is now considered over regions of

integration which are not rectangular.



4. DoubleIntegrals Over General Regions

In the previous section we looked at double integrals over rectangular regions. However,

most regions are not rectangular and we therefore need to consider integrals of the form

” f(x,y) dA

where Ris any region. Here we consider two types of planar regions identified as Type 1

and Type 2.

A planar region Ris said to be of TYPE 1 if it lies between the graphs of two continuous
functions of X, thatis, R = {(x, y):a < x < b, I(x) < y < u(x) }. Hence, as shown
in the figure below, y ranges from the function y = |(X) up to the function y = u(Xx) while x

ranges between the constant values x = a and X = b.

y
y = u(x)
R
y=1()
X
O a b

A region is of Type 1 if any VERTICAL SCANNING LINE, x = k, in the interval
a < X < Db, intersects the boundary of R in at most two points. Type 1 regions are also

known as vertically smpleregions.

If f(X,y) is continuous on a Type 1 region R, then the double integral ” f(x, y)dA can
R

be described by the iterated integral

x=b y=u(x) b u(x)
j {j f(x,y)dy}dx or as J J f(x,y)dydx.
x=a y=1(x) a J1(x)



As before, the inner integral is evaluated first. The integration of f (X,Y) is carried out with

respect to Y, treating x asa constant. The inner integral will produce an expression in X only.

The value of the double integral is then obtained by integrating this expression with respect to X.

A planar region Ris said to be of TYPE 2 if it lies between the graphs of two continuous
functions of y, that is, R = {(X, y):L(y) £ x<U(y), c<y<d } Hence, X ranges
from the function X= L(Y) up to the function Xx= U(y) while y ranges between the constant

values y = cand y = d.

x=U(y)

A region is of Type 2 if any HORIZONTAL SCANNING LINE, y = Kk, in the interval
C < Yy < d, intersects the boundary of R in at most two points. Type 2 regions are also

known as horizontally smpleregions.

If f(Xx,y) is continuous on a Type 2 region R, then the double integral ” f(x, y)dA can be
R

described by the iterated integral

y=d x=U (y) d u(y)
j {J f(x,y)dx}dy or as J. j f(x,y)dxdy.
y=c X=L(y) c L(y)



As before the inner integral is evaluated first. The integration of f (X,Y) is carried out with

respect to X treating y asa constant. The inner integral will produce an expression in Yy only.

The value of the double integral is then obtained by integrating this expression with respect to Y.

In some cases, such as for rectangular regions, we can describe the region R as either Type 1 or

Type 2, so that ,

JI focyyaa = 7 f e yrdyax = 70" f(x yydxdy.

1(x) L(y)

Example 3
Describe the double integral I J. x>y dA where Ris the triangular region in the Xy — plane
R

bounded by the lines X = 0, y = 1 and y = X as an iterated integral and hence evaluate.

Solution

Consider Ras a Type 1 region, with a vertical scanning line, as shown below.

y]k

1.2 y — 1

1
R

o
o y=x
0.4 =
0.2
0.2 0.4 0.6 0.8 1 1.2 X
From the direction of the arrow we see that the vertical scanning line starts at the line y = X,

giving the lower limit of integration, and ends at the line y = 1, giving the upper limit of

integration. Vertical scanning lines are summed over Rfrom X = 0 to X = 1. Hence,

yrangesfrom y = Xtoy = 1 and

Xranges from X = 0 to X = 1.



The integral is then given by

” x*ydA =

R

which we evaluate as follows:

[nner integral
| 1 x*ydy

Outer Integral

.[X:l _[y:lxzy dy dx

X=0

y=X

(along the vertical scanning line, X is constant )

X4
?.

x*. X 'S
2 2

_ (1) _ 1
_(6 10} (0) 15

1 .
The value of — represents the volume under the surface z = x* y and above the triangular

region, R

10



Example 4

Evaluate the integral in Example 3 by considering the region of integration, R, as a Type 2 region.

Solution

Consider Ras a Type 2 region, with horizontal scanning lines, as shown below:

y

I Y
1.2

1

A J

12 X

From the direction of the arrow we see that the horizontal scanning line starts at the line X = 0,
giving the lower limit of integration, and ends at the line X = Yy, giving the upper limit of

integration. Horizontal scanning lines are summed over Rfrom y = 0 to y = 1. Hence,

Xranges from X = 0 to X = Yy and

y ranges from Yy Otoy = 1.

The integral is then given by

” x>y dA = Iyy:Ol IXX:Oy x*y dxdy

R

which we evaluate as follows:

Inner_integral

xX=Yy . . . .
J. x>y dx ( along the horizontal scanning line, Y is constant )

3 X=Yy 3 4
_| Xy (¥Yy) _ oy
g e RUEES

11



Quter Integral
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This result agrees with the answer obtained in Example 3. Now watch the following :

https://www.youtube.com/watch?v=hr[PO8mQqtw

https://www.youtube.com/watch?v=0pv0QtOi518

NOTES
(). The outside limits of integration are ALWAY S constant values — they are NEVER

variable limits.
(if). The limits of integration for the iterated integral are found from a sketch of the
region, R. ALWAYSSKETCH THE REGION, R.

Sometimes, as shown in the following example, the order in which we perform the integration,
i.e. whether we consider the region as Type 1 or Type 2 can save us a considerable amount of
work and thereby reduce the likelihood of errors. It is therefore essential to produce a sketch

to help identify the most efficient approach.

Example 5
Determine ” (X + y)dA where Ris the region enclosedby y = x> and y = X + 2.
R

Solution

To determine the limits of integration we must first sketch the region R.

The parabola y = X’ andtheline y = X + 2 intersect when,
X =X+ 2
X =x=-2=0
(X + I)(x =—2)y=20

X =-1,x = 2.

Points of intersection of the parabola and line are, (-1, 1) and (2, 4).

12



Method 1

Suppose we consider Ras a Type 1 region, with a vertical scanning line, as shown below:

ylk

x
The vertical scanning line startsat y = X* andendsat y = X + 2 giving the lower and
upper limits of integration respectively. Also, X ranges from X = —1to X = 2.
The integral is therefore given by
” (x + y)dA = Ixzz Iy:X:2 (X + y)dydx.
g x=-1 y=x
[nner integral
'[ " X;z (X + y)dy (along the vertical scanning line, X is constant)
y =X

= {xy + lyz}yzm = (x(x +2) + l(x + 2)2j —~ £x3 + lx“j
2 2 2

:—%x4—x3+éx2+4x+2.

13



Quter Integral

Method 2

1 5 1 4 1 3 2 x=2
-——X - =X + =X + 2X + 2X
10 4 2

—2—4+4+8+4j—(L—l—l+2—2j:@
10 2

20

Suppose we now consider Ras a Type 2 region, with a horizontal scanning line. This approach

however, involves considerably more effort on our part as we are required to evaluate two iterated

integrals. As shown in the figure below the region R has to be split into sub-regions, R and R,,

due to a horizontal scanning line starting on different curves in the two regions.

In region R, where 0

inregion R,, where 1

< y < 1, the scanning line starts on X = — \/_y (i.e. y = x*) while

< y < 4, thescanning linestartson X = y — 2 (ie. Yy = X + 2).

The integral needs to be evaluated over each sub-region and the results added together.

14



The double integral ” (X + y)dxdy overregion R, is described by the iterated integral,

R

I, = J'y:l J'XX:% (X + y)dxdy .

y=0

The double integral ” (X + y)dxdy over the region R, is described by the iterated integral

R

=4 =Jy
l, = J.izl J' yz(x + y)dxdy .

X=y-

We leave you to show that when evaluated, |, = 4 and |, = %

Hence, using horizontal scanning lines
” (X + y)dxdy =1, + 1, = 4 + 173 = 189 , as obtained earlier.
: 5720 0 20

Note that in this case a sketch has helped us identify that calculations are made significantly
easier by using a Type 1 region, resulting in a ‘dydx integral’, as opposed to a Type 2 region,
giving a ‘dxdy integral’. In the next section we look at changing the order of integration a

useful technique when integrating in a given order is complicated or even impossible to carry

out directly. One of the main challenges in such situations is identifying the limits of integration

and so it is essential to sketch the region to enable calculations to be performed in the most

efficient manner.

15



5. Chanaging the Order of | ntegration

In some problems an iterated integral may be cumbersome to evaluate (as in Example 5 with

horizontal scanning lines) or, in other cases, even impossible to evaluate. In these instances it will

be worthwhile to consider the other iterated integral — this technique is called CHANGING THE

ORDER OF INTEGRATION.

Example 6

=1 =1 2
By changing the order of integration, evaluate, | = jy . j e dxdy.
y=0 Ix=y

Solution

The change of order is necessary here since Iexzdx cannot be evaluated.

The procedure is to first sketch the region R from the limits on the given iterated integral.

In this case we have the following limits:

Il
—_

X:  ranges from X = Yy to X

Il
—_

y:  ranges from Yy 0toy
The inner integral is with respect to X (Type 2 region) so that the scanning line is horizontal

starting on the line X = y (or Yy = X) and finishing on the line X = 1 as shown below.

Ya

1.2
1

0.8

\ 4

1.2 X

As noted above however it is not possible to evaluate the iterated integral as a Type 2 and so we

are going to change (reverse) the order of integration to describe the region as Type 1 and

integrate with respect to Y first, followed by an integration with respect to X.

16



As we are now considering Ras a Type 1 region we use vertical scanning lines.

Y4
1.2

L

1

0.8
0.6
=1
0.4
0.2
1.2 :x
In this case we have the following limits:
y: rangesfromy = 0Otoy = X
X:  ranges from X = 0 to X = 1.
. y=1 px=1 2 . . x=1 y=X 2
The mtegral.[ J- e dxdy with the order reversed is therefore, | = I I e’ dydx.
y=0 Jx=y x=0 Jy=0

Evaluating the integral gives,

Inner_integral
y=x 2 P y=x P 2
I exdyz[exy] = xe* - 0 = xe* .
y=0 y=0 o
QOuter integral
J'lxex2 dx
0
o ) du du
Use the substitution, u = X° = dx = 2X = du = 2xdx = By = xdX.
X

At the lower limit of integration X = 0 = u = 0> = 0.

At the upper limit of integration X = 1 = u = 1> = 1.

17



Hence,

The process is actually quite tricky until you get the hang of it!

Note: It is essential to draw the region R and from the sketch the limits for the iterated integral,

with the order reversed, can be determined.

We illustrate the method with another example.

Example 7
y' + 1
2

By changing the order of integration evaluate, j (l) j fl sin( J dydx.

Solution
As in Example 6, if we tried to evaluate the integral using the current order of integration

we would run into difficulties with the integration.

At the moment the region is of Type 1 with vertical scanning lines. We now describe the

region Ras a Type 2 region by taking horizontal scanning lines.

SR J

0.2 0.4 0.6 0.8 1 1.

The horizontal scanning line starts at X = 0 and finishes on the parabola X = y’

These horizontal lines are then summed over Rfromy = O toy = 1.

(y = Jx).

18



Hence, the integral

A

3
y 2+ lj dydx

on changing the order of integration becomes

y=1px=y> . [y’ +1
Jy:OL:O s1n( 5 jdxdy.

Evaluating this integral we have,

[nner integral

Outer Integral

y=1 5, [y +1
.[y:O y sm( 5 de
Use the substitution,

= du = 3y’dy = %du= y’dy.

At the lower limit of integration y = 0 = u =0 + 1 = 1.

At the upper limit of integration y =1 => u =1 + 1 = 2.

19



y=1

Hence, j
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Now watch the following:

https://www.youtube.com/watch?v=NETm{wOAKpQ

https://www.youtube.com/watch?v=rkvwEKM5RVo

https://www.youtube.com/watch?v=LcG5gvRwYdY

—%[cos(l) - cos(%D
%(cos(%j - cos(l)].

20



6. Double Integration in Polar Coordinates

b
As we have seen, in order to evaluate a definite integral j f ( g(x))dx itis often necessary to
a

use a substitution U = g(X). The integral is then written in terms of U and hopefully the

resulting integral becomes easier to integrate.
This idea of changing the variable is now extended to double integrals.

Instead of using Cartesian coordinates (X, Yy) to locate a point P in the plane, we can use polar
coordinates (I, 8 ). The value of r measures the distance from the origin to P and the angle
@ (in radians) locates the position (measured anti-clockwise) relative to the positive direction
of the x-axis. For example, the point P with polar coordinates (1, z/4), lies on a circle

with radius 1 and at an angle of 7 /4 from the X — axis as shown below.

Va

/4

Y

-1

For a general point P, the relationship between Cartesian and polar coordinates is given by the

equations,

X = rcosd and y = rsiné.

21



These equations are obvious from the following diagram using basic trigonometry:

Y4

— < —>

< x

As shown earlier, the double integral ” f(X, y) dxdy can be thought of as the volume under the
R

surface z = f(X,Y) and above the region Rin the Xy — plane. In Cartesian coordinates the region

R, was partitioned into small rectangles, R, ., whose sides, of length dX and Oy, were parallel to

ijo
the X and Yy axes respectively. In the construction of the integral, f (X,Yy) represents the height of a

cuboidal element whose base area is A = 0X0y — refer to the diagram in Section 3.

In polar coordinates the plane is partitioned using rays (radial lines) and circles as shown below.
Consider a typical element ( ABCD ) which is almost, but not quite, a rectangle. The element is

formed by circles of radius r and r + or , and rays making angles € and 8 + 6 with the

positive X axis.

W

T J""/
ff// 7

Wy, 7,
f////

//
ol
<
\IIW%’/,
»

X

Now assume that our mesh is so small that the arcs AB and CD are approximately equal in length,
i.e. of length r 0@ . If we consider ABCD as approximately rectangular with sides of length r 66
and Or its area satisfies A= rord6. (in the limitas or, 660 — 0 we have that
dA= rdrdé@ ). Then

22



JJf(x y)da J] f(x y) dxdy

;
IS £ (reosd, rsin@)r o 56
5|’,§9%0 all R

” f(rcos@, rsin@)rdrdo.
R

NOTE: dx dy changestor dr d@ in polar coordinates.

A double integral is often easier to evaluate by changing to polar coordinates when the region Ris

circular or segments of a circle.

Now watch the following up to 3:32: https://www.youtube.com/watch?v=5ixPVUNBi88

Example 8

Determine the volume of the solid bounded by z = \/ a’> — x> — y?> andtheplane z = 0.

Solution

Firstly observe that z = + \/ a’ — xX* — y’ represents an upper hemisphere of radius a.

Hence, the region Ris a circle of radius a in the Xy — plane, shaded in the figure below.

Y A

23



The volume of the upper hemisphere is given by,

V = J‘RJ'\/a2 - X — y® dxdy.

= I\/az—(X2+y2)dXdy, R:{(Xay):xz-i_yzgaz}'
R

In polar coordinates , X* + y*> = r” and dxdychangesto rdrdé ,so
V = J'J‘ Jya — r? rdrdé.
R

We now determine the limits of integration.

In polar coordinates we integrate along the radial direction first ( regarding & as constant )

and then sweep out the region R by varying 6.

Here the radial scanning line starts at r = 0 and finishesat r = a. The full circle is swept

out by varying 8 from 8 = 0 to & = 2x. Hence,

V = J'::OZ” jrr:oa Jai — r’rdrde.

[nner integral
r=a
J' a — r’rdr.
r=0
Use integration by substitution.

2

Letu = a> — r?’sothat du = =2rdr or —%du = rdr.

q
Il

At the lower limit of integration 0 = u = a.
0.

,
Il

At the upper limit of integration a = u =

24



—
L.J

} = Aw]= oy - @] =

_ 12 1
2137 |,_.: 3 2
Outer Integral
=2 3
_.[92 la3d9:la3j'az 1d921a3[9]§7r:27[a
60 3 3

NOTE: It is straightforward to check our answer as the volume of a sphere of radius ais

3
4ra and so the hemisphere’s area will be half this value, which is the answer we obtained

Now watch the following: https://www.youtube.com/watch?v=5ixPVUNBIi88&t=212s

Example 9

Consider the double integral,
2 f(x)
Iiz IO X+ X> + y> dydx where f(x)

Sketch the region of integration.

=44 - x.

OF

(ii). Express the integral in terms of polar coordinates r and &

(iii). Using your answer to part (ii) evaluate the double integral

25



Solution

(i). From the limits given in the integral we have that,

Xranges from X = -2 to X = 2

yrangesfromy = O toy = 4/4 — X

Now, Y = ++4 — x* represents the upper half of a circle of radius, r = 2 as shown

in the diagram below.

ii). X = rcosé, y = rsin@, X +y =r’, dydx — rdr dé.

The radial scanning line, shown in red, startsat r = 0 and finishesat r = 2.

The region Ris swept out by varying 6 from 8 = 0to 8 = x.

Expressing the integral in polar coordinates we have,

| = J': jof(x)xw/ x> + y dydx where f(x) = {4 — X’
I: I02 rcosé?.\/?.r dr do

j: '[02 r’cos@ dr do .

26



(iii). Evaluating the integral,

Inner Integral

r=2
joz r’cos@ dr = [%cos&} = 4cosf@ — 0 = 4cosé .

Outer Integral

4[0” cos® do = 4[sin(8) |7 = 4[sin(x) — sin(0)]

4lo-0] =o0.

Now watch the following: https://www.youtube.com/watch?v=YQfta_poPlk&

Example 10

By converting to polar coordinates, evaluate ” y dx dy where Ris the region in the first
R

quadrant that lies between the circles X> + y* = 4 and X° + y* = 2X.

Solution
The equation X> + y°> = 4 represents a circle, of radius 2, centred on the origin.
The equation X*> + y> — 2X = 0 canbe writtenas (X — 1)° + y> = 1° and so

represents a circle of radius 1 centred at the point ( 1, 0).

27



The region Ris shown shaded in the figure below.

y

In polar coordinates ” y dx dy becomes J‘J. rsind.r drdé = ” r’sin@ drdé.
R R R

The circle X> + y* = 4 haspolarequation r> = 4 = r = 2 (sincer is positive ).

The circle X> + y° 2 X has polar equation r*> = 2rcos@ or r = 2cosé.

The figure below zooms in on the first quadrant in the above diagram. Integrate first along the

radial direction at a fixed value of 8. The radial scanning line starts at r = 2cosé@ and finishes

at r = 2 asshown below. The region Ris swept out by varying 8 from € = 0 to 8 = %

- %

=0

r=2
j r’sin@drdé.

r=2cosé

Hence, ” r’sin@ drdd = J.H
R
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[nner integral

Ir - r’sin@dr (regard @ as a constant )

r=2cosé

1 - 8 8 8
= {Eﬁsine} = Esin@ -~ Ecos30sin0 = 5( sin@ — cos’@sinf).

r =2cosé

Outer Integral

%J.:% (sin@ — cos’@sind)dé

=0

A
= §[—cos0 + lcos“H}
3 4

0

(see Note 1 below)

- §(—cos(£j + 10084(£D - §(—cos(0) + lcos“(O)j
3 2 4 2 3 4

=§(0+0)—§(—1+l

Il

W | 0
|

w N
Il
118
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NOTES

1 _[ :_:;% cos’ @ sin@dé can be evaluated by using the substitution, U = cos(8).

2. We could have used Cartesian coordinates to evaluate ” y dy dx.
R

Taking a vertical scanning line

” ydydx = I J'Y_Jiz ydydx.

We leave you to show that this will give an answer of 2 as obtained above using polar

coordinates.

Summary
In this unit we have extended the concept of the definite integral of a function of a single variable

to double integrals involving functions of two variables. You should now be able to:

¢ understand the application of double integration to computing volumes.

e evaluate a double integral over a rectangular region in the Xy — plane by writing it as an
iterated integral.

e evaluate double integrals over general regions in the Xy — plane.

e identify when it is advantageous to change (reverse) the order of integration. Determine and
evaluate the resulting integral.

e convert double integrals from Cartesian to polar coordinates.
The next unit introduces Laplace transforms and describes their application to solving ordinary

differential equations which are either very difficult, or even impossible, to solve using the

methods we have previously encountered.
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7. Applications (NON-EXAMINABL E)

(a). Pressure Distributions
Consider a pressure distribution acting on some planar surface of finite dimensions. Pressure is
defined as Force per unit area. If pressure is constant over the whole surface then

Total Force = Pressure x Area of surface.

If the pressure varies from point to point on the surface then we can use a double integral to

calculate the total force.

Suppose the surface is represented by a region R in the Xy — plane as shown below.

yA

. HE:"
Y,
J X
» X
O Xi

Denote the pressure distribution by p(X,Y). The force acting on a small rectangle at (X, Y; )
is approximately p(X;,Y,;)dydX.

Therefore the total force over all Ris approximately F = Z Z P(X,Y,;)dy K

i=1 j=1

and exactly | F = JJ' p(x,y) dy dx
R
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(b). Density Distributions
A prismatic solid is one with a uniform cross-section, such as the shape R shown below. For
certain purposes we may regard such solids as two-dimensional. We can, without loss of

generality, assume the third dimension to have length 1 (i.e the height of the solid is 1 unit)

YA
. R K
/ OX
» X
@) Xi

The above diagram represents the view from above of a 2-dimensional prismatic solid.

Density is defined as Mass per unit Volume. If the density distribution is constant, say p,, then
Total Mass= p, x Volume.

In a prismatic solid, suppose density varies with position over the cross-section; denote this by
P(XY).

For a small cuboid through the solid defined by a small rectangle on the cross-section at (X ,Y; ),
the volume is 1dy X = dyX.

The mass of that cuboid is approximately p(X;,Y;)dy X and so the total mass is approximately
n m(i)

M = Z Zp(xi,y,-)éyéx

i=1 =1

and exactly | M = jj p(X,y) dy dx
R

32



(c). Centreof Massof a2-Dimensional Prismatic Solid

y A

y [y
/ X
y C
o] X Xi - X

The above diagram represents the view from above of a 2-dimensional prismatic solid with a
density distribution denoted by p(X,Y). The 2-dimensional solid has a centre of mass at C, the

point of balance of the solid.

The mass of a typical volume element is given by p(X;,Y;)dy .
The distance of the element from the line x =X is (X —X) .
The distance of the element from the line y=Y is (y, - Y) .

For C to be the centre of mass (point of balance) we require

2.2 (X =X)p(%,y) &K = 0
and

YUY - VAX.Y)FXK = 0 .
i

Letting X and dy tend to zero we obtain the balance conditions

J..[(X_X)P(Xay)dydx =0
and "

[[(y=91pxy)ydydx = 0.
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Since X and Yy are constants, these equations can be rearranged to give formulae for the

coordinates of the centre of mass:

J.J.xp(x, y)dydx
X = R 'S
[[pxyydyax M
and
- Lfyp(x,y)dydx 0
- M

[[p(x, y)dyadx

where M is the total mass of the solid.

(d). Moment of Inertia of a Prismatic Solid

The moment of inertia of a prismatic solid about a point (X, ,Y, ) is defined to be

| = jj((x — %)? F (Y = ¥o)?)p(x, y)dydx

R

where p(X,Y) is the density distribution function for the solid.

If the density is uniform (i.e constant, say p,) and the moment of inertia is taken about the origin,

then

R

| = II(XZ + v )p,dydx = p, '”(xz + y* )dydx

R
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Double I ntegration - Tutorial Exercises

Q1. Evaluate the following integrals:
. 2 01 ) B 2 03 5 4
(). jojo Xy* dydx (ii). L jl X“y’ dxdy
(iii). jozjox(ﬁ + y?) dydx (iv). j; j;y (2% + 3y) dxdy
1 p2x
(V). IO J'X (X + y) dydx.

Q2. In each of the following the order of integration has been changed and the integral

expressed in an equivalent form where a and b are constants. Determine the values of a

and b in each case.

@M. 1 = jozjyzf(x, y)dx dy o= ] f(x y)dydx
i). 1, = jozjxl/z f(x, y)dy dx o= [T fx y)dxdy
(i), 1, =[] f(xy)dydx = 7 fox y)dxdy
iv). 1, = j: j9 f(x y)dy dx I, = jojf f(x y)dxdy.

Q3. By changing the order of integration, evaluate the following integrals:

(). j;j% JX + 1dxdy (ii). jo'j' x*sin (y* ) dydx
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Q4. Sketch the region R which is defined by the following integrals in polar coordinates and

Q5.

Q6.

evaluate the integral:

27 06 7 w3 ,
(i), I I 3r’sin@ dr dé (ii). j j re drde
0 0 0 0

Y
(iii). I J' r2 cos6 drdé.
_% 0

Consider the following integral

” e Y dx dy
R

where R = {(x,y) X+ Yy <1,y 2 0}.

(i). Sketch the region of integration and express the integral in polar coordinates.

(i1). Evaluate the integral found in part (i).

Consider the double integral

| = J‘_zz J‘Of(x) yi x> + y'dydx where f(x) = {4 — x* .

(i). Sketch the region of integration and express the integral in polar coordinates.

(i1). Evaluate the integral found in part (i).
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Double I ntegration - Tutorial Answers

: 2

Al (i) 3
. 10
(@iv). 3

A2. (). a
(ii). a

A3. (i). %[2% — 1]

A4. (i). Value=0

(if). Value=

(1l - ¢e”’)

4

(ii).

(V).

(ii).
(iii).

(ii).

65 ... 16
— i. —
2 (i) 3
>

.

a=1, b=0

a=9 b=0

1
o [1 — cos(1)]
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#(iii).Value = %

A5 (). | =" jol re” drdé
1 ANY
R
.
O 1
.. r(e — 1)
(i). -
A6. (). 1 =[ [ risin(6)drde
- Q +2
(i). 8.
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