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1.  Introduction  

For functions of a single variable there are two types of integration.  The first is indefinite  

integration, 

 

CxFdxxfI +==  )()(  ,  

 

which is effectively “differentiation in reverse”, and the second is definite integration,  

 

)()()( aFbFdxxfI
b

a
−==   . 

 

Before we consider how to integrate functions of two variables, we shall consider the  

“construction” of definite integrals and extend this idea to double integrals.  

 

 

 

2.  Definite Integrals - Functions of a Single Variable 

Recall that one interpretation of a definite integral of the form,  

 

    =
b

a
dxxfI )(   

 

is an area between the graph of  )( xfy =   and the x-axis.  Let us examine this  

interpretation a little more closely. 

 

If we were looking to determine the area limited by  x = a  and  x = b  we might approximate  

it first.  Let us divide the interval  ],[ ba  into  n  strips of width  xδ  and form rectangles  

whose heights are determined by the function )( xfy =  as shown in the following  

diagram: 



 

2 
 

  y 

 O 
 x 

 a bix

)( xfy =  )( ixf  

xδ

 

 
 
The area of a typical rectangle (shaded grey) is given by,  

 

    xxfA i δδ )(=   

 

where )( ixf  is the height of the rectangle and xδ  is its width.   

 

The total area is approximated by summing the areas of all  n  rectangles,  

 

    
=

≈
n

i
i xxfA

1

)( δ  . [1] 

 

If we take a smaller  xδ   ( larger  n ) the approximation should improve.  Taking the  

limit as  0→xδ  (equivalently letting ∞→n ), it can be shown that,  

 

    =
b

a
xdxfA )(  . [2] 
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3.  Double Integrals Over Rectangular Regions 

Suppose we have a function of two variables, ),( yxfz =  defined over a rectangular  

region, R, whose sides are parallel with the coordinate axes in the xy – plane, i.e.  

{ }dycbxayxR ≤≤≤≤= ,:),(  as shown in the figure below.   

 

Consider partitioning R into small rectangles jiR , where ni ≤≤1  and mj ≤≤1 .  Each  

small rectangle has area yxA δδδ = .  Here we have partitioned the interval bxa ≤≤   

into n subintervals of width xδ and the interval dyc ≤≤  into m subintervals of  

width yδ , as shown below.   

 

 

 

 

 

 

 

 

 

 

 

Choose an arbitrary point ),( ji yx  in rectangle jiR  and project the rectangle up to the  

function surface to form a “cuboidal” volume element of height ),( ji yxf , as shown:  

 

 

x 

y 

dx 

dy dA 

b a 

c 

d 

),( ji yx  
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The volume of this column is given by yxyxfAyxf jiji δδδ ),(),( = .  This value will be an  

approximation to the exact volume above the small rectangular area Aδ  since the height of the  

column varies over the small rectangular area.  

 

The volume above the entire region R in the xy - plane and under the surface ),( yxfz = ,  

shown in the figure below, can be approximated by summing the volumes of all the cuboids, i.e.  

 

     
= == =

=≈
n

i

m

j
ji

n

i

m

j
ji xyyxfAyxfV

1 11 1

),(),( δδδ .   

 

By taking the limit as 0, →xy δδ  ( ∞→nm ,  ) we obtain the double integral, i.e.  

 

   ==







→ = = RR

n

i

m

j
ji dxdyyxfdAyxfxyyxf

yx
),(),(),(

0,

lim

1 1

δδ
δδ

. 

 

Referring to the above figure we can write =
R

dxdyyxfV ),(  as the iterated integral   

 

dxdyyxfdxdyyxf
bx

ax

dy

cy

bx

ax

dy

cy   
=

=

=

=

=

=

=

=





= ),(),( .  

 

This integral is calculated from the ‘inside out’.  First we integrate ),( yxf  with respect to y,  

treating x as a constant, and evaluate from cy =   to  dy = .  This calculation gives  

a function of x only, which is then integrated from ax =  to  bx = .  Now watch the following:  

https://www.youtube.com/watch?v=m08xkaVIHIY  

https://www.youtube.com/watch?v=twT-WZChfZ8 
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We now illustrate the process by means of an example.  

 

Example 1  

Determine the volume of the solid that lies under the plane yxz −−= 5  and above the  

rectangular region, { }10,20:),( ≤≤≤≤= yxyxR . 

 

Solution  

Here yxyxf −−= 5),(  and, from above,  −−=
R

dxdyyxV )5( .  

 

The limits 1,0,2,0 ==== dcba  for the region R  are inserted to give,  

 

  
=

=

=

=
−−=

1

0

2

0
)5(

y

y

x

x
dxdyyxV . 

 

First evaluate the inner integral, treating x as a constant,  

 

  
1

0

21

0 2

1
5)5(

=

=

=

= 



 −−=−−

y

y

y

y
yyxydyyx  

 

     xx −=−





 −−=

2

9
0

2

1
5 .  

 

Now evaluate the outer integral to obtain the required volume, i.e.  

 

  ( ) 7)0(29
2

1

2

9

2

9
2

0

22

0
=−−=



 −=






 −=

=

=

=

=
x

x

x

x
xxxdxV .  

 

The value, 7, represents the volume of the solid that lies under the plane yxz −−= 5   

and above the rectangular region, { }10,20:),( ≤≤≤≤= yxyxR .  

 

In the next example we investigate what happens when the order in which the integrations are  

performed, over a rectangular region R, is changed.  We first integrate the function in  

Example 1 with respect to x, treating y as a constant, and then integrate the resulting function  

of y only with respect to y.  
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Example 2  

Changing the order in which the iterated integral in Example 1 is evaluated gives:  

 

    
=

=

=

=
−−=

1

0

2

0
)5(

y

y

x

x
dydxyxV .  

 

Solution  

First evaluate the inner integral, treating y as a constant,  

   
2

0

22

0 2

1
5)5(

=

=

=

= 



 −−=−−

x

x

x

x
xyxxdxyx  

 

    ( ) yy 28)0(2210 −=−−−= .  

 

Now evaluate the outer integral,  

 

   [ ] ( )
=

=

=
= =−−=−=−

1

0

1

0
2 7)0(188)28(

y

y

y

yyydyy .  

 

The value of 7 represents the volume of the solid below the surface yxz −−= 5  and  

above the rectangular region { }10,20:),( ≤≤≤≤= yxyxR .  This result agrees  

with the value obtained in Example 1.  Hence, we have shown that  

 

    −−=−−
RR

dydxyxdxdyyx )5()5( .  

 

In general, when the region we are integrating over is rectangular the order of integration  

does not matter and both integrals evaluate to the same value (volume).   

 

Note: The result   =
RR

dydxyxfdxdyyxf ),(),(  is always true provided ),( yxf  is  

a continuous function.  

 

Now watch the following: https://www.youtube.com/watch?v=TdLD2Zh-nUQ  
https://www.youtube.com/watch?v=z8BM6cHifPA 

 

The evaluation of double integrals using iterated integrals is now considered over regions of  

integration which are not rectangular.   
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4.  Double Integrals Over General Regions 

In the previous section we looked at double integrals over rectangular regions.  However,  

most regions are not rectangular and we therefore need to consider integrals of the form  

 

   
R

dAyxf ),(   

 

where R is any region.  Here we consider two types of planar regions identified as Type 1  

and Type 2.  

 

A planar region R is said to be of TYPE 1 if it lies between the graphs of two continuous  

functions of x, that is, { })()(,:),( xuyxlbxayxR ≤≤≤≤= .  Hence, as shown  

in the figure below, y ranges from the function )( xly =  up to the function )( xuy =  while x  

ranges between the constant values ax =  and bx = .  

y

O
x

R

y = u(x)

y = l(x)

a b

 

 

A region is of Type 1 if any VERTICAL SCANNING LINE, kx = , in the interval  

bxa << , intersects the boundary of R in at most two points.  Type 1 regions are also  

known as vertically simple regions.  

 

If  ),( yxf  is continuous on a Type 1 region R, then the double integral 
R

Adyxf ),(  can  

be described by the iterated integral 

 

dxdyyxf
xuy

xly

bx

ax 








=

=

=

=

)(

)(

),(    or   as   dxdyyxf
xu

xl

b

a 
)(

)(

),( .  
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As before, the inner integral is evaluated first.  The integration of ),( yxf  is carried out with  

respect to y, treating  x as a constant.  The inner integral will produce an expression in x only.   

The value of the double integral is then obtained by integrating this expression with respect to x.   

 

 

A planar region R is said to be of TYPE 2 if it lies between the graphs of two continuous  

functions of y, that is, { }dycyUxyLyxR ≤≤≤≤= ,)()(:),( .  Hence, x ranges  

from the function )( yLx =  up to the function )( yUx =  while y ranges between the constant  

values cy =  and dy = .  

 

y

O
x

d

c

R
x = U(y)

x = L(y)

 

 

A region is of Type 2 if any HORIZONTAL SCANNING LINE, ky = , in the interval  

dyc << , intersects the boundary of R in at most two points.  Type 2 regions are also  

known as horizontally simple regions.  

 

 

If  ),( yxf  is continuous on a Type 2 region R, then the double integral 
R

Adyxf ),(  can be 

described by the iterated integral  

 

dydxyxf
yUx

yLx

dy

cy 








=

=

=

=

)(

)(

),(    or   as   dydxyxf
yU

yL

d

c 
)(

)(

),( .   
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As before the inner integral is evaluated first.  The integration of ),( yxf  is carried out with  

respect to x treating  y as a constant.  The inner integral will produce an expression in y only.   

The value of the double integral is then obtained by integrating this expression with respect to y. 

 

 

In some cases, such as for rectangular regions, we can describe the region R as either Type 1 or  

Type 2, so that ,  

 

     ==
b

a

d

c

yU

yL

xu

xl
R

dyxdyxfdxdyyxfdAyxf .),(),(),(
)(

)(

)(

)(
 

 

 

Example 3 

Describe the double integral 
R

Adyx 2  where R is the triangular region in the xy - plane  

bounded by the lines 0=x , 1=y  and xy =  as an iterated integral and hence evaluate. 

 

Solution  

Consider R as a Type 1 region, with a vertical scanning line, as shown below.  

 

 

From the direction of the arrow we see that the vertical scanning line starts at the line xy = ,  

giving the lower limit of integration, and ends at the line 1=y , giving the upper limit of  

integration.  Vertical scanning lines are summed over R from 0=x  to 1=x .  Hence,  

 

  y ranges from xy =  to 1=y  and  

  x ranges from 0=x  to 1=x .  
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The integral is then given by  

 

   dxdyyxAdyx
y

xy

x

x
R


=

=

=

=
=

1 21

0

2   

 

which we evaluate as follows:  

 

 

Inner integral  

  
=

=

1 2y

xy
ydyx   ( along the vertical scanning line,  x is constant )  

 

  
122

2

=

=








=

y

xy

yx
  








−








=

2

.

2

1. 2222 xxx
  

22

42 xx −= .   

 

 

Outer Integral  

   dx
xxx

x 







−

=

= 22

421

0
   

1

0

53

106

=

=








−=

x

x

xx
.   

 

     
15

1
)0(

10

1

6

1 =−





 −= .  

 

The value of 
15

1
 represents the volume under the surface yxz 2=  and above the triangular  

region,  R. 
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Example 4  

Evaluate the integral in Example 3 by considering the region of integration, R, as a Type 2 region.  

 

Solution 

Consider R as a Type 2 region, with horizontal scanning lines, as shown below:  

 

 

From the direction of the arrow we see that the horizontal scanning line starts at the line 0=x , 

giving the lower limit of integration, and ends at the line yx = , giving the upper limit of  

integration.  Horizontal scanning lines are summed over R from 0=y  to 1=y .  Hence,  

 

   x ranges from 0=x  to yx =  and  

   y ranges from 0=y  to 1=y . 

 

The integral is then given by  

 

   ydxdyxAdyx
yx

x

y

y
R


=

=

=

=
=

0

21

0

2   

 

which we evaluate as follows: 

 

 

Inner integral  

   
=

=

yx

x
xdyx

0

2   ( along the horizontal scanning line,  y is constant )  

 

   
yx

x

yx
=

=








=

0

3

3
 

3
)0(

3

43 yyy =−







= .   
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Outer Integral  

yd
yy

y 3

41

0
=

=
 

15

1
0

15

1

15

1

0

5

=−=







=

=

=

y

y

y
.   

 

This result agrees with the answer obtained in Example 3.  Now watch the following :  

https://www.youtube.com/watch?v=hrIPO8mQqtw  

https://www.youtube.com/watch?v=0pv0QtOi5l8 

 

NOTES 

(i). The outside limits of integration are ALWAYS constant values – they are NEVER  

 variable limits.  

(ii).  The limits of integration for the iterated integral are found from a sketch of the  

 region, R.  ALWAYS SKETCH THE REGION, R. 

 

 

Sometimes, as shown in the following example, the order in which we perform the integration,  

i.e. whether we consider the region as Type 1 or Type 2 can save us a considerable amount of  

work and thereby reduce the likelihood of errors.  It is therefore essential to produce a sketch  

to help identify the most efficient approach.   

 

 

Example 5 

Determine  +
R

Adyx )(  where R is the region enclosed by 2xy =  and 2+= xy . 

 

Solution  

To determine the limits of integration we must first sketch the region R.  

 

The parabola 2xy =  and the line 2+= xy  intersect when,  

   22 += xx   

   022 =−− xx   

   0)2()1( =−+ xx  

   1−=x  , 2=x . 

 

Points of intersection of the parabola and line are, )1,1( −  and )4,2( .   
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Method 1 

Suppose we consider R as a Type 1 region, with a vertical scanning line, as shown below:  

 
The vertical scanning line starts at 2xy =  and ends at 2+= xy  giving the lower and  

upper limits of integration respectively.  Also, x ranges from 1−=x  to 2=x . 

 

The integral is therefore given by  

 

   xdydyxAdyx
xy

xy

x

x
R


+=

=

=

−=
+=+

22

1 2
)()( .   

 

 

Inner integral 

   
+=

=
+

2

2
)(

xy

xy
dyyx   (along the vertical scanning line, x is constant) 

 

   





 +−






 +++=



 +=

+=

=

432
2

2

2

1
)2(

2

1
)2(

2

1

2

xxxxxyyx
xy

xy

  

 

     24
2

3

2

1 234 +++−−= xxxx .   
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Outer Integral  

   xdxxxx
x

x






 +++−−

=

−=
24

2

3

2

1 2342

1
 

 

   
2

1

2345 22
2

1

4

1

10

1 =

−=




 +++−−=

x

x

xxxxx  

 

   
20

189
22

2

1

4

1

10

1
4844

10

32 =





 −+−−−






 +++−−= .  

 
 
Method 2 

Suppose we now consider R as a Type 2 region, with a horizontal scanning line.  This approach  

however, involves considerably more effort on our part as we are required to evaluate two iterated  

integrals.  As shown in the figure below the region R has to be split into sub-regions, 1R  and 2R ,  

due to a horizontal scanning line starting on different curves in the two regions.  

 

In region 1R  where 10 ≤≤ y , the scanning line starts on yx −=  (i.e. 2xy = ) while  

in region 2R , where 41 ≤≤ y , the scanning line starts on 2−= yx  (i.e. 2+= xy ).   

The integral needs to be evaluated over each sub-region and the results added together. 
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The double integral   +
R

dydxyx )(  over region 1R  is described by the iterated integral,  

 

   dydxyxI
y

y

yx

yx 
=

=

=

−=
+=

1

01 )(  . 

 
 

The double integral    +
R

dydxyx )(  over the region 2R  is described by the iterated integral  

 

   dydxyxI
y

y

yx

yx 
=

=

=

−=
+=

4

1 22 )(  . 

 
 

We leave you to show that when evaluated,  
5

4
1 =I  and 

20

173
2 =I .  

 
 
Hence, using horizontal scanning lines   
 

 
20

189

20

173

5

4
)( 21 =+=+=+ IIdydxyx

R

, as obtained earlier.    

 
 
 
Note that in this case a sketch has helped us identify that calculations are made significantly  

easier by using a Type 1 region, resulting in  a ‘ xdyd integral’, as opposed to a Type 2 region,  

giving a ‘ ydxd integral’.  In the next section we look at changing the order of integration a  

useful technique when integrating in a given order is complicated or even impossible to carry  

out directly.  One of the main challenges in such situations is identifying the limits of integration   

and so it is essential to sketch the region to enable calculations to be performed in the most  

efficient manner. 
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5.  Changing the Order of Integration 

In some problems an iterated integral may be cumbersome to evaluate (as in Example 5 with  

horizontal scanning lines) or, in other cases, even impossible to evaluate.  In these instances it will  

be worthwhile to consider the other iterated integral – this technique is called CHANGING THE  

ORDER OF INTEGRATION. 

 

 

Example 6 

By changing the order of integration, evaluate,  
=

=

=

=
=

11

0

2x

yx

xy

y
dydxeI . 

 

Solution  

The change of order is necessary here since  dxe x 2

 cannot be evaluated.  

 

The procedure is to first sketch the region R from the limits on the given iterated integral.   

 

In this case we have the following limits:   

 

  x: ranges from yx =  to 1=x   

  y: ranges from 0=y  to 1=y .   

 

The inner integral is with respect to x (Type 2 region) so that the scanning line is horizontal  

starting on the line yx =  (or xy = ) and finishing on the line 1=x  as shown below.  

 

 
 
As noted above however it is not possible to evaluate the iterated integral as a Type 2 and so we  

are going to change (reverse) the order of integration to describe the region as Type 1 and  

integrate with respect to y first, followed by an integration with respect to x.   
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As we are now considering R as a Type 1 region we use vertical scanning lines.   

 

 

In this case we have the following limits:   

 

  y: ranges from 0=y  to xy =   

  x: ranges from 0=x  to 1=x .   

 

The integral 
=

=

=

=

11

0

2x

yx

xy

y
dydxe  with the order reversed is therefore, 

=

=

=

=
=

xy

y

xx

x
dxdyeI

0

1

0

2

.   

 

Evaluating the integral gives,  

 

Inner integral 

  
=

=

xy

y

x dye
0

2

 [ ] 222

0
0

xx
xy

y

x exexye =−==
=

=
.  

 

Outer integral 

  
1

0

2

xdex x  

 

Use the substitution, 2xu =  x
xd

ud
2=  xdxud 2=  xdx

ud =
2

. 

At the lower limit of integration 0=x  002 == u . 

At the upper limit of integration 1=x  112 == u . 
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Hence,  

 

 ( ) )1(
2

1

2

1
][

2

1

2

1

2

1
. 011

0

1

0

1

0

1

0

2

−=−====  
=

=
eeeedueudexdex uu

u

uux .   

 
 

The process is actually quite tricky until you get the hang of it!   

 

Note: It is essential to draw the region R and from the sketch the limits for the iterated integral,  

with the order reversed, can be determined.  

 

We illustrate the method with another example.  

 

Example 7 

By changing the order of integration evaluate,   






 +1 31

0 2

1
sin

x
xdyd

y
. 

 

Solution  

As in Example 6, if we tried to evaluate the integral using the current order of integration  

we would run into difficulties with the integration.  

 

At the moment the region is of Type 1 with vertical scanning lines.  We now describe the  

region R as a Type 2 region by taking horizontal scanning lines.  

 
The horizontal scanning line starts at 0=x  and finishes on the parabola 2yx =  ( xy =  ).   

These horizontal lines are then summed over R from 0=y  to 1=y .   
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Hence, the integral  

 

   
=

=

=

= 






 +1 31

0 2

1
sin

y

xy

x

x
xdyd

y
  

 

on changing the order of integration becomes   

 

   
=

=

=

= 






 +2

0

31

0 2

1
sin

yx

x

y

y
ydxd

y
.  

 

Evaluating this integral we have,  

 

 

Inner integral  

   
=

= 






 +2

0

3

2

1
sin

yx

x
xd

y
 







 +=














 +=
=

=
2

1
sin

2

1
sin

3
2

0

3
2

y
y

y
x

yx

x

.   

 

 

Outer Integral  

   dy
y

y
y

y 






 +


=

= 2

1
sin

3
21

0
 

 

Use the substitution,  

 

   13 += yu  23 y
yd

ud =  ydyud 23=  ydyud 2

3

1 = .  

 

At the lower limit of integration 0=y  110 3 =+= u . 

 

At the upper limit of integration 1=y  2113 =+= u . 
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Hence, 
=

=

=

=






=







 + 2

1

3
21

0 3

1
.

2
sin

2

1
sin

u

u

y

y
du

u
dy

y
y   

 

  
=

=






=

2

1 2
sin

3

1 u

u
du

u
 

 

     
2

1
2

1
cos2

3

1
=

=














−=

u

u

u  
2

1
2

1
cos

3

2
=

=














−=

u

u

u   

 

       













−−=

2

1
cos)1(cos

3

2
 

 

       






 −





= )1(cos

2

1
cos

3

2
.   

 

 

Now watch the following:  
 
https://www.youtube.com/watch?v=NETmfwOAKpQ 
 
https://www.youtube.com/watch?v=rkvwEkM5RVo 
 
https://www.youtube.com/watch?v=LcG5gvRwYdY  
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6.  Double Integration in Polar Coordinates  

As we have seen, in order to evaluate a definite integral  
b

a
xdxgf ))((  it is often necessary to  

use a substitution )( xgu = .  The integral is then written in terms of u and hopefully the  

resulting integral becomes easier to integrate.  

 

This idea of changing the variable is now extended to double integrals. 

 

Instead of using Cartesian coordinates ),( yx  to locate a point P in the plane, we can use polar  

coordinates ),( θr .  The value of r measures the distance from the origin to P and the angle  

θ  (in radians) locates the position (measured anti-clockwise) relative to the positive direction  

of the x-axis.  For example, the point P with polar coordinates )4/,1( π , lies on a circle  

with radius 1 and at an angle of 4/π  from the x – axis as shown below. 

 

 
 

For a general point P, the relationship between Cartesian and polar coordinates is given by the  

equations,  

 

    θcosrx =  and θsinry = .   

P 
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These equations are obvious from the following diagram using basic trigonometry: 

 

As shown earlier, the double integral 
R

ydxdyxf ),(  can be thought of as the volume under the  

surface ),( yxfz =  and above the region R in the xy - plane.  In Cartesian coordinates the region  

R, was partitioned into small rectangles, jiR , whose sides, of length xδ  and yδ , were parallel to  

the x and y axes respectively.  In the construction of the integral, ),( yxf  represents the height of a  

cuboidal element whose base area is yxA δδδ =  - refer to the diagram in Section 3.   

 

In polar coordinates the plane is partitioned using rays (radial lines) and circles as shown below.  

Consider a typical element ( ABCD ) which is almost, but not quite, a rectangle.  The element is  

formed by circles of radius r and rr δ+ , and rays making angles θ  and δθθ +  with the  

positive x axis.  

 

Now assume that our mesh is so small that the arcs AB and CD are approximately equal in length,  

i.e. of length θδr .  If we consider ABCD as approximately rectangular with sides of length  θδr   

and rδ  its area satisfies θδδδ rrA ≈ .  ( in the limit as rδ , 0→θδ we have that  

θdrdrAd =  ).  Then  
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   
R

Adyxf ),(   =
R

ydxdyxf ),(   

 

     







→

= 
R

rrrrf
r all

)sin,cos(
0,

lim
θδδθθ

θδδ
  

 

     =
R

ddrrrrf θθθ )sin,cos( .   

 

NOTE: dx dy changes to r dr dθ  in polar coordinates. 

 

A double integral is often easier to evaluate by changing to polar coordinates when the region R is  

circular or segments of a circle.   

 

Now watch the following up to 3:32: https://www.youtube.com/watch?v=5ixPVUNBi88  
 

 

Example 8 

Determine the volume of the solid bounded by 222 yxaz −−=  and the plane 0=z .    

 

Solution  

Firstly observe that 222 yxaz −−+=  represents an upper hemisphere of radius a.   

Hence, the region R is a circle of radius a in the xy ‒ plane, shaded in the figure below.   
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The volume of the upper hemisphere is given by, 

 

    −−=
R

dydxyxaV 222 .   

 

    { }222222 :),(,)( ayxyxRdydxyxa
R

≤+=+−=  .   

 

In polar coordinates , 222 ryx =+  and  ydxd changes to θdrdr  , so  

 

    −=
R

drdrraV θ22 . 

 

We now determine the limits of integration.  

 

In polar coordinates we integrate along the radial direction first ( regarding θ  as constant )  

and then sweep out the region R by varying θ .   

 

Here the radial scanning line starts at 0=r  and finishes at ar = .  The full circle is swept  

out by varying θ  from 0=θ  to πθ 2= .  Hence,   

 

    
=

=

=

=
−=

πθ

θ
θ

2

0 0

22ar

r
ddrrraV .  

 

 

Inner integral  


=

=
−

ar

r
drrra

0

22 . 

 

Use integration by substitution.  

Let 22 rau −=  so that  rdrdu 2−=  or  rdrdu =−
2

1
. 

At the lower limit of integration  0=r   2au = . 

At the upper limit of integration  ar =   0= u . 
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Hence,  
=

=
−

ar

r
rdrra

0

22   
=

=
−=

0

2

2
1

2

1 u

au
udu   

 

   

 [ ] [ ] 32
00

3

1
)()0(

3

1

3

1

3

2

2

1
2

3
2

3

2
2

3

2

2
3

aauu
a

u

au

=−−=−=



−=

=

=

.    

 

 

Outer Integral  

 

[ ]
3

2

3

1
1

3

1

3

1 3
2
0

32

0

2

0

33 a
adadaV

πθθθ ππθ

θ

πθ

θ
====  

=

=

=

=
.   

 

 

NOTE: It is straightforward to check our answer as the volume of a sphere of radius  a is  

3

4 3aπ
 and so the hemisphere’s area will be half this value, which is the answer we obtained.   

 

Now watch the following: https://www.youtube.com/watch?v=5ixPVUNBi88&t=212s  
 

 

 

Example 9  

Consider the double integral,  

 

   −
+

2

2

)(

0

22 xdydyxx
xf

  where  24)( xxf −= .  

 

 (i). Sketch the region of integration.  

 

 (ii). Express the integral in terms of polar coordinates r and θ .  

 

 (iii). Using your answer to part (ii) evaluate the double integral.  
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Solution  

(i). From the limits given in the integral we have that,  

 

  x ranges from 2−=x  to 2=x   

  y ranges from 0=y  to 24 xy −=  . 

 

 

 Now, 24 xy −+=  represents the upper half of a circle of radius, 2=r  as shown  

 in the diagram below.  

 

 
 
 
ii). θcosrx = ,   θsinry =  ,  222 ryx =+ ,  θddrrdxdy → .  
 
 
 The radial scanning line, shown in red, starts at 0=r  and finishes at 2=r .   

 The region R is swept out by varying θ  from  0=θ  to πθ = .  

 

 Expressing the integral in polar coordinates we have,  

 

  −
+=

2

2

)(

0

22 dxdyyxxI
xf

  where  24)( xxf −=  

 

  =
2

0

2

0
..cos θθ

π
ddrrrr   

 

  =
2

0

3

0
cos θθ

π
ddrr  .  
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(iii).  Evaluating the integral,  

 

 Inner Integral  

 

 
2

0

3 cos drr θ   
2

0

4

cos
4

=

=








=

r

r

r θ  0cos4 −= θ   θcos4= .   

 

 

 Outer Integral  

 

 
π

θθ
0

cos4 d  [ ] πθ 0)(sin4=  [ ])0(sin)(sin4 −= π   

 

    [ ]004 −=  0= .   

 

Now watch the following: https://www.youtube.com/watch?v=YQfta_poP1k&   
 

 

 

Example 10  

By converting to polar coordinates, evaluate 
R

dydxy  where R is the region in the first  

quadrant that lies between the circles 422 =+ yx  and  xyx 222 =+ . 

 

 

Solution  

The equation 422 =+ yx  represents a circle, of radius 2, centred on the origin.  

The equation 0222 =−+ xyx  can be written as 222 1)1( =+− yx  and so  

represents a circle of radius 1 centred at the point )0,1( .   
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The region R is shown shaded in the figure below.  

 

In polar coordinates 
R

dydxy  becomes  θθθθ  =
RR

ddrrddrrr sin.sin 2 . 

 

The circle 422 =+ yx  has polar equation  42 =r  2= r  ( since r is positive ). 

The circle xyx 222 =+  has polar equation  θcos22 rr =  or  θcos2=r . 

 

The figure below zooms in on the first quadrant in the above diagram.  Integrate first along the  

radial direction at a fixed value of θ .  The radial scanning line starts at θcos2=r  and finishes  

at 2=r  as shown below.  The region R is swept out by varying θ  from  0=θ  to 
2

πθ = . 

 

 

Hence, θθ
R

ddrr sin2   =   
=

=

=

=

2

0

2

cos2

2 sin
πθ

θ θ
θθ

r

r
drdr .   
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Inner integral  


=

=

2

cos2

2 sin
r

r
rdr

θ
θ   ( regard θ  as a constant )  

 

)sincossin(
3

8
sincos

3

8
sin

3

8
sin

3

1 33
2

cos2

3 θθθθθθθ
θ

−=−=



=

=

=

r

r

r .   

 

 

 

Outer Integral 

θθθθ
πθ

θ
d)sincossin(

3

8 3

0

2 −
=

=
  

 

   
2

0

4cos
4

1
cos

3

8
π

θθ 



 +−=    (see Note 1 below)  

 

   





 +−−














+






−= )0(cos

4

1
)0(cos

3

8

2
cos

4

1

2
cos

3

8 44 ππ
  

 

   





 +−−+=

4

1
1

3

8
)00(

3

8
  

 

   2
3

2

3

8 =−= .   
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NOTES  

 

1. θθθ
πθ

θ
dsincos 3

0

2


=

=
 can be evaluated by using the substitution, )(cos θ=u . 

 

 

2. We could have used Cartesian coordinates to evaluate 
R

dxdyy . 

 

 Taking a vertical scanning line  

 

 
−=

−=

=

=
=

2

2

4

2

2

0

xy

xxy

x

x
R

xdydydxdyy . 

 

 We leave you to show that this will give an answer of 2 as obtained above using polar  

 coordinates.  

 

 

 

Summary  

In this unit we have extended the concept of the definite integral of a function of a single variable  

to double integrals involving functions of two variables.  You should now be able to: 

 

• understand the application of double integration to computing volumes.  

• evaluate a double integral over a rectangular region in the xy – plane by writing it as an  

 iterated integral.  

• evaluate double integrals over general regions in the xy – plane.  

• identify when it is advantageous to change (reverse) the order of integration.  Determine and  

 evaluate the resulting integral.  

• convert double integrals from Cartesian to polar coordinates.  

 

The next unit introduces Laplace transforms and describes their application to solving ordinary  

differential equations which are either very difficult, or even impossible, to solve using the  

methods we have previously encountered.  
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7.  Applications (NON-EXAMINABLE)  

 
(a).  Pressure Distributions 

Consider a pressure distribution acting on some planar surface of finite dimensions.  Pressure is  

defined as Force per unit area.  If pressure is constant over the whole surface then 

 

Total Force = Pressure ×  Area of surface . 

 

If the pressure varies from point to point on the surface then we can use a double integral to  

calculate the total force. 

 

Suppose the surface is represented by a region R in the xy ‒ plane as shown below. 

 
 

δx 
δy 

x 

y 

xi O 

yj 

R 

 
Denote the pressure distribution by ),( yxp .  The force acting on a small rectangle at ),( ji yx   

is approximately xyyxp ji δδ),( . 

 

Therefore the total force over all R is approximately   
= =

=
n

i

m

j
ji xyyxpF

1 1

),(ˆ δδ  

and exactly     =F 
R

dxdyyxp ),(  
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(b). Density Distributions 

A prismatic solid is one with a uniform cross-section, such as the shape R shown below.  For  

certain purposes we may regard such solids as two-dimensional.  We can, without loss of  

generality, assume the third dimension to have length 1 (i.e the height of the solid is 1 unit) 

 
 

δx 
δy 

x 

y 

xi O 

yj 

R 

 
 
The above diagram represents the view from above of a 2-dimensional prismatic solid. 
 
Density is defined as Mass per unit Volume.  If the density distribution is constant, say 0ρ , then 

Total Mass = 0ρ  ×  Volume. 

 
In a prismatic solid, suppose density varies with position over the cross-section; denote this by 

),( yxρ . 
 
For a small cuboid through the solid defined by a small rectangle on the cross-section at ),( ji yx , 

the volume is  xyxy δδδδ =1 . 
 
The mass of that cuboid is approximately  xyyx ji δδρ ),(  and so the total mass is approximately  


= =

=
n

i

im

j

ji xyyxM
1

)(

1

),(ˆ δδρ  

 

and exactly   =M 
R

dxdyyx ),(ρ  
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(c). Centre of Mass of a 2-Dimensional Prismatic Solid 
 

 

δx 
δy 

C 

x 

y 

xi O 

yj 

x  

y  

R

 
The above diagram represents the view from above of a 2-dimensional prismatic solid with a  

density distribution denoted by ),( yxρ .  The 2-dimensional solid has a centre of mass at C, the  

point of balance of the solid. 

 
The mass of a typical volume element is given by xyyx ji δδρ ),( . 

 
The distance of the element from the line xx =   is  )( xxi −  . 

 
The distance of the element from the line yy =   is  )( yy j −  . 

 
For  C  to be the centre of mass (point of balance) we require  
 
    =−

i j
jii xyyxxx 0),()( δδρ  

and 
    =−

i j
jij xyyxyy 0),()( δδρ   . 

 
Letting  δx  and  δy  tend to zero we obtain the balance conditions 
 

    =−
R

dxdyyxxx 0),()( ρ  

and 

    =−
R

dxdyyxyy 0),()( ρ  . 
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Since x  and y  are constants, these equations can be rearranged to give formulae for the 
coordinates of the centre of mass: 
 
 

    
M

I

dxdyyx

dxdyyxx

x x

R

R ==



),(

),(

ρ

ρ
 

and 
   
 

                                      
M

I

dxdyyx

dxdyyxy

y y

R

R ==



),(

),(

ρ

ρ
  . 

 
 
 
where M is the total mass of the solid. 
 
 
 
 
 
(d). Moment of Inertia of a Prismatic Solid 
 
The moment of inertia of a prismatic solid about a point ),( 00 yx  is defined to be  

 

( ) dxdyyxyyxxI

R

),()()( 2
0

2
0 ρ −+−=  

where ),( yxρ  is the density distribution function for the solid. 
 
If the density is uniform (i.e constant, say 0ρ ) and the moment of inertia is taken about the origin, 

then 
 

( ) ( ) dxdyyxdxdyyxI

RR
 +=+= 22

00
22 ρρ  
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Double Integration - Tutorial Exercises 

 

Q1. Evaluate the following integrals: 

 

 (i).  
2

0

1

0

2 dxdyyx   (ii).   −

2

1

3

1

32 dydxyx   

 

 (iii).   +
2

0 0

22 )(
x

dxdyyx   (iv).   +
1

0

2

0
)32(

y
dydxyx   

 

 (v).   +
1

0

2
)(

x

x
dxdyyx .  

 

 

 

Q2.  In each of the following the order of integration has been changed and the integral  

 expressed in an equivalent form where a and b are constants.  Determine the values of a  

 and b in each case. 

 

(i).   =
2

0

2

1 ),(
y

ydxdyxfI      =
a x

b
xdydyxfI

01 ),(   

 

(ii).   =
2

0

1

22 ),(
x

xdydyxfI      =
a y

b
ydxdyxfI

0

2

2 ),(   

 

(iii).   =
2

0 03 ),(
Y

xdydyxfI      =
2

3 ),(
a

b

x
ydxdyxfI   

 

(iv).   =
3

0

9

4 2
),(

x
xdydyxfI      =

a y

b
ydxdyxfI

04 ),( .   

 

 

 

Q3. By changing the order of integration, evaluate the following integrals: 

 

 (i).   +
1

0

1 3 1
y

dydxx  (ii).  
1

0

1 33
2

)(sin
x

dxdyyx  
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Q4. Sketch the region R which is defined by the following integrals in polar coordinates and  

 evaluate the integral: 

 

 (i).  
π

θθ
2

0

6

0

2 sin3 ddrr  (ii).   −
2 2

0

3

0

π

θddrer r  

 

 (iii).  −

2

2

4

0

2 cos
π

π
θθ ddrr .   

 

 

 

 

Q5. Consider the following integral  

 

     +

R

yx dydxe
22

  

 

 where { }0,1:),( 22 ≥≤+= yyxyxR .   

 

 (i).  Sketch the region of integration and express the integral in polar coordinates.  

 (ii).  Evaluate the integral found in part (i).  

 

 

 

 

Q6.  Consider the double integral  

 

 −
+=

2

2

)(

0

22 dxdyyxyI
xf

  where  24)( xxf −=  . 

 

 (i). Sketch the region of integration and express the integral in polar coordinates.   

 (ii).  Evaluate the integral found in part (i).  
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Double Integration - Tutorial Answers 

A1. (i) 
3

2
   (ii). 

2

65
  (iii). 

3

16
  

 (iv). 
3

10
  (v). 

6

5
.  

 
 
 
A2.  (i).  0,2 == ba    (ii).  0,1 == ba   
 
 (iii).  2,0 == ba    (iii).  0,9 == ba  
 
 
 

A3. (i). ]12[
9

2
2

3 −   (ii). ])1(cos1[
12

1 −  

 
 
 
A4. (i). Value = 0 

 
 
 

(ii). Value = 
4

)1( 9−− eπ
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#(iii).Value =  
3

128
 

 
 
 
 

A5.  (i).   =
π

θ
0

1

0

2

drderI r   

 

  
 
 

 (ii).  
2

)1( −eπ
.   

 
 
 

A6.  (i).   =
π

θθ
0

2

0

3 )(sin drdrI  

  
 
 
 (ii).  8.  


