Block One - B
-
Chapter 3 - Modelling in the time domain
- the general state space representation *
- applying the state space representation *
- converting a transfer function to state space *
- converting from state space to a transfer function *
- linearisation
Decomposition of a higher a set of first order ODEs.
Conversion of a transfer function into state space (matrix) form.
-
2
- LRC circuit representations
Second Order ODE{L¨q+R˙q+qC=V(t)↓(Using I=˙q)↓L˙I+RI+qC=V(t)↓2 First Order ODES{˙q=I˙I=1L(V(t)−qC−RI)
4- Mass Spring Damper representations
Second Order ODE{m¨x+fv˙x+Kx=F(t)↓(Using v=˙x)↓m˙v+fvv+Kx=F(t)↓2 First Order ODES{˙x=v˙v=1m(F(t)−Kx−fvv)
6- Decomposition to first order
a4s4θ+a3s3θ+a2s2θ+a1sθ+a0θ=u1(s)a4⃜θ + a3⃛θ + a2¨θ + a1˙θ+a0θ=u1(t) Letx1=θx2=˙θ=˙x1⟹˙x1=x2x3=¨θ=˙x2⟹˙x2=x3x4=⃛θ=˙x3⟹˙x3=x4
a4˙x4+a3x4+a2x3+a1x2+a0x1=u1(t)
˙x4=u1−a3x4−a2x3−a1x2−a0x1a48- General First Order ODEs
Click here to see full equationGeneral First Order ODEs
General First Order ODEs ˙x1=∂˙x1∂x1x1+∂˙x1∂x2x2+⋯+∂˙x1∂u1u1+∂˙x1∂u2u2+⋯˙x2=∂˙x2∂x1x1+∂˙x2∂x2x2+⋯+∂˙x2∂u1u1+∂˙x2∂u2u2+⋯⋮ (˙x1˙x2⋮)=(∂˙x1∂x1∂˙x1∂x2⋯∂˙x2∂x1∂˙x2∂x2⋯⋮⋮)(x1x2⋮)+(∂˙x1∂u1∂˙x1∂u2⋯∂˙x2∂u1∂˙x2∂u2⋯⋮⋮)(u1u2⋮)
˙x1=∂˙x1∂x1x1+∂˙x1∂x2x2+⋯+∂˙x1∂u1u1+∂˙x1∂u2u2+⋯˙x2=∂˙x2∂x1x1+∂˙x2∂x2x2+⋯+∂˙x2∂u1u1+∂˙x2∂u2u2+⋯⋮ (˙x1˙x2⋮)=(∂˙x1∂x1∂˙x1∂x2⋯∂˙x2∂x1∂˙x2∂x2⋯⋮⋮)(x1x2⋮)+(∂˙x1∂u1∂˙x1∂u2⋯∂˙x2∂u1∂˙x2∂u2⋯⋮⋮)(u1u2⋮)
1- LRC circuit representations
Z(s)=VI(s)=Ls+R+1Cs L˙I+RI+∫ICdt=V(t)L¨q+R˙q+qC=V(t)
3- Mass Spring Damper representations
Z(s)=Fx(s)=ms2+fvs+K m¨x+fv˙x+Kx=F(t)
5- General 4th order system
A system is defined in the s domain by the transfer function
θu1(s)=1a4s4+a3s3+a2s2+a1s+a0
Convert it into a set of 4 first order ODEs and hence represent it in matrix form.
7- Matrix representation
˙x1=0x1+1x2+0x3+0x4+0u1˙x2=0x1+0x2+1x3+0x4+0u1˙x3=0x1+0x2+0x3+1x4+0u1˙x4=−a0a4x1+−a1a4x2+−a2a4x3+−a3a4x4+1a4u1
(˙x1˙x2˙x3˙x4)=(010000100001−a0a4−a1a4−a2a4−a3a4)(x1x2x3x4)+(0001a4)u1
- LRC circuit representations
-
12
- tf2ss
Create a transfer function to represent a system G(s), convert it to state space and compare the responses to a unit step input using MATLAB1.
G(s)=12s2+3s+4
num = 1
den = [2, 3, 4]
G1 = tf(num, den)
G2 = ss(G1);
[A,B,C,D] = tf2ss(num, den)
G3 = ss(A,B,C,D);
figure(1); step(G1)
figure(2); step(G2)
figure(3); step(G3)
MATLAB118- Eigenvalues and eigenvectors
Note the similarity of form of the characteristic equation |sI−A|=0
and eigenvalue formulation Ax∼=λx∼(λI−A)x∼=0⟹x∼=0 or|λI−A|=0 Poles in Matlab: eig(A)
Chapter 3 Summary
- Listen to the summary in the voiceover.
13
Conversion of a State Space Representation into a Transfer Function (SISO) or Transfer Functions (MIMO).
19- ss2tf
Create a state space system A,B,C,D and convert to transfer function form G(s) using MATLAB2.
A=( 0, 1−2,−3)B=( 0, 1 5, 0)C=( 1, 0 0, 1)D=( 0, 0 0, 0)
A = [ 0, 1; -2, -3 ]
B = [ 0, 1; 5, 0 ]
C = eye(2);
D = zeros(2,2)
G = ss(A,B,C,D)
[numU1, denU1] = ss2tf(A, B, C, D, 1)
[numU2, denU2] = ss2tf(A, B, C, D, 2)
MATLAB2
- tf2ss
-
23
- Decomposition
Pole location
Every high order ODE, of order n, can be decomposed into a series of n first order ODEs, as represented in a state space model.A high order ODE can be represented as a polynomial in s.Every high order polynomial can be represented as the product of first and second order terms with real coefficients.
Thus all systems can be considered as combinations of first and second order subsystems.
- Decomposition
-
-
40
- State transition matrix
x∼(t)=eAtx∼(0)+∫t0eA(t−τ)Bu∼(τ)dτx∼(t)=Φ(t)x∼(0)+∫t0Φ(t−τ)Bu∼(τ)dτ Φ(t) is the state transition matrix and describes how states evolve in response to inputs (forced dynamics) and their current state (free, or natural, dynamics).
Free dynamics: L[x(t)]=L[Φ(t)x(0)]=(sI−A)−1x(0)42- Find ϕ(t)
ϕ(t)=L−1[Φ(s)]Φ(s)=(sI−A)−1s,IandA are known. Procedure:1. Find Φ(s)=(sI−A)−12. Find ϕ(t)=L−1[Φ(s)]
44- Find ϕ(t)=L−1[Φ(s)]
Φ(s)=(sI−A)−1=(s+31−2s)s2+3s+2=(s+31−2s)(s+1)(s+2)=(s+3(s+1)(s+2)1(s+1)(s+2)−2(s+1)(s+2)s(s+1)(s+2)) We need to use partial fractions.
46- Partial fractions
s+3(s+1)(s+2)=2s+1−1s+21(s+1)(s+2)=1s+1−1s+2−2(s+1)(s+2)=−2s+1+2s+2s(s+1)(s+2)=−1s+1+2s+2
48- Outputs: t-domain
ϕ(t)=(2e−t−e−2te−t−e−2t−2e−t+2e−2t−e−t+2e−2t)
y∼(t)=Ax∼(t)+Bu∼(t)x∼(t)=ϕ(t)x∼(0)+∫t0ϕ(t−τ)Bu∼(τ)dτ
Chapter 4 Summary
- Listen to the summary in the voiceover.
41- Example problem
Given the following state space model A=(01−2−3)B=(00.5)x∼(0)=(00)C=(1001)D=(00)
1. Find the state transition matrix Φ(s) and ϕ(t)
2. Sketch the response of output y1 to a unit step input43- Find Φ(s)=(sI−A)−1
A=(01−2−3)sI−A=s(1001)−(01−2−3)=(s00s)−(01−2−3)=(s−12s+3)(sI−A)−1=Adj(sI−A)|sI−A|Adj(sI−A)=CT=(s+3−21s)T=(s+31−2s)|sI−A|=(s)(s+3)−(−1)(2)=s2+3s+245- Partial fractions
as+b(s+1)(s+2)=As+1+Bs+2
as+b=A(s+2)+B(s+1)=(A+B)s+(2A+B)A+B=a2A+B=bA=b−aB=b−2A=b−2(b−a)=2a−b
47- Φ(s) as partial fractions
Φ(s)=(s+3(s+1)(s+2)1(s+1)(s+2)−2(s+1)(s+2)s(s+1)(s+2))=(2s+1−1s+21s+1−1s+2−2s+1+2s+2−1s+1+2s+2)) The outputs can be solved in the t or s domain.
49- Outputs: s-domain
Y∼(s)=(Cϕ(s)B+D)U∼(s)=((1001)(s+3(s+1)(s+2)1(s+1)(s+2)−2(s+1)(s+2)s(s+1)(s+2))(00.5)+(00))(1s)=(1(s+1)(s+2)s(s+1)(s+2))×0.5s=(14(1s−2s+1+1s+2)12(1s+1−1s+2))y1(t)=0.25−0.5e−t+0.25e−2ty2(t)=0.5e−t−0.5e−2t
- State transition matrix