Block One - B


  • Chapter 3 - Modelling in the time domain


    the general state space representation *
    applying the state space representation *
    converting a transfer function to state space *
    converting from state space to a transfer function *
    linearisation

    Decomposition of a higher a set of first order ODEs.

    Conversion of a transfer function into state space (matrix) form.



  • 2
    Voiceover

    LRC circuit representations

    \begin{align*} \text{Second Order ODE} \begin{cases}\;\; L \ddot q + R \dot q + \displaystyle \frac{q}{C} &= V(t) \end{cases} \\ \downarrow &\\ (\text{Using } I = \dot q)\\ \downarrow &\\ L \dot I + R I + \frac{q}{C} = V(t) & \\ \downarrow &\\ \text{2 First Order ODES} \begin{cases} \;\; \dot q &= I \\ \;\; \dot I &= \displaystyle \frac{1}{L} \left( V(t) - \displaystyle \frac{q}{C} -R I \right) \end{cases} \end{align*}
    4
    Voiceover

    Mass Spring Damper representations

    \begin{align*} \text{Second Order ODE} \begin{cases}\;\; m \ddot x + f_v \dot x + K x &= F(t) \end{cases} \\ \downarrow &\\ (\text{Using } v = \dot x)\\ \downarrow &\\ m \dot v + f_v v + K x = F(t) & \\ \downarrow &\\ \text{2 First Order ODES} \begin{cases} \;\; \dot x &= v \\ \;\; \dot v &= \displaystyle \frac{1}{m} \left( F(t) - K x - f_v v \right) \end{cases} \end{align*}
    6
    Voiceover

    Decomposition to first order

    \begin{align*} a_4 s^4 \theta + a_3 s^3 \theta + a_2 s^2 \theta + a_1 s \theta + a_0 \theta &= u_1(s) \\ a_4 \ddddot \theta ~+~ a_3 \dddot \theta ~+~ a_2 \ddot \theta ~+~ a_1 \dot \theta + a_0 \theta &= u_1(t) \end{align*} \begin{align*} \textrm{Let}\\\\ x_1 &= \theta \\ x_2 &= \dot \theta = \dot x_1 & \implies && \dot x_1 = x_2 \\ x_3 &= \ddot \theta = \dot x_2 & \implies && \dot x_2 = x_3 \\ x_4 &= \dddot \theta = \dot x_3 & \implies && \dot x_3 = x_4 \end{align*}
    \begin{align*} a_4 \dot x_4 + a_3 x_4 + a_2 x_3 + a_1 x_2 + a_0 x_1 &= u_1(t) \end{align*}
    \begin{align*} \dot x_4 &= \frac{u_1 - a_3 x_4 - a_2 x_3 - a_1 x_2 - a_0 x_1}{a_4} \end{align*}
    8
    Voiceover

    General First Order ODEs
    Click here to see full equation

    \begin{align*} \dot x_1 &= \frac{\partial \dot x_1}{\partial x_1} x_1 + \frac{\partial \dot x_1}{\partial x_2} x_2 + \cdots & + \frac{\partial \dot x_1}{\partial u_1} u_1 + \frac{\partial \dot x_1}{\partial u_2} u_2 + \cdots \\ \dot x_2 &= \frac{\partial \dot x_2}{\partial x_1} x_1 + \frac{\partial \dot x_2}{\partial x_2} x_2 + \cdots & + \frac{\partial \dot x_2}{\partial u_1} u_1 + \frac{\partial \dot x_2}{\partial u_2} u_2 + \cdots \\ &\vdots \\ %y_1 &= \frac{\partial y_1}{\partial x_1} x_1 + \frac{\partial y_1}{\partial x_2} x_2 + \cdots %& + \frac{\partial y_1}{\partial u_1} u_1 + \frac{\partial y_1}{\partial u_2} u_2 + \cdots \\ %y_2 &= \frac{\partial y_2}{\partial x_1} x_1 + \frac{\partial y_2}{\partial x_2} x_2 + \cdots % & + \frac{\partial y_2}{\partial u_1} u_1 + \frac{\partial y_2}{\partial u_2} u_2 + \cdots \\ \end{align*} \begin{align*} \begin{pmatrix} \dot x_1 \\ \dot x_2 \\ \vdots \end{pmatrix} &= \begin{pmatrix} \frac{\partial \dot x_1}{\partial x_1} & \frac{\partial \dot x_1}{\partial x_2} & \cdots \\ \frac{\partial \dot x_2}{\partial x_1} & \frac{\partial \dot x_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix} + \begin{pmatrix} \frac{\partial \dot x_1}{\partial u_1} & \frac{\partial \dot x_1}{\partial u_2} & \cdots \\ \frac{\partial \dot x_2}{\partial u_1} & \frac{\partial \dot x_2}{\partial u_2} & \cdots \\ \vdots & \vdots & \\ \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \end{pmatrix} % \\ \end{align*}
    10
    Voiceover

    General State Space Representation


    1
    Voiceover

    LRC circuit representations


    \begin{align*} Z(s) &= \frac{V}{I}(s) = L s + R + \frac{1}{C s} \end{align*} \begin{align*} L \dot I + R I + \int \displaystyle \frac{I}{C} {\mathrm d}t &= V(t) \\ &\\ L \ddot q + R \dot q + \displaystyle \frac{q}{C} &= V(t) \end{align*}
    3
    Voiceover

    Mass Spring Damper representations


    \begin{align*} Z(s) &= \frac{F}{x}(s) = m s^2 + f_v s + K \end{align*} \begin{align*} m \ddot x + f_v \dot x + K x &= F(t) \end{align*}
    5
    Voiceover

    General 4th order system


    A system is defined in the $s$ domain by the transfer function
    \begin{align*} \frac{\theta}{u_1}(s) &= \frac{1}{ a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0} \end{align*}
    Convert it into a set of 4 first order ODEs and hence represent it in matrix form.
    7
    Voiceover

    Matrix representation


    \begin{align*} \begin{matrix} \dot x_1 &=& 0 x_1 &+ 1 x_2 &+ 0 x_3 &+ 0 x_4 &+ 0 u_1 \\ \dot x_2 &=& 0 x_1 &+ 0 x_2 &+ 1 x_3 &+ 0 x_4 &+ 0 u_1 \\ \dot x_3 &=& 0 x_1 &+ 0 x_2 &+ 0 x_3 &+ 1 x_4 &+ 0 u_1 \\ \dot x_4 &=& \frac{-a_0}{a_4} x_1 &+ \frac{-a_1}{a_4} x_2 &+ \frac{-a_2}{a_4} x_3 &+ \frac{-a_3}{a_4} x_4 &+ \frac{1}{a_4} u_1 \end{matrix} \end{align*}
    \begin{align*} \begin{pmatrix} \dot x_1 \\ \dot x_2 \\ \dot x_3 \\ \dot x_4 \end{pmatrix} &= \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{a_0}{a_4} & -\frac{a_1}{a_4} & -\frac{a_2}{a_4} & -\frac{a_3}{a_4} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{a_4} \end{pmatrix} u_1 \end{align*}
    9
    Voiceover

    Vector representation


  • 12
    Voiceover

    tf2ss
    Create a transfer function to represent a system $G(s)$, convert it to state space and compare the responses to a unit step input using $\text {MATLAB} ^1.$

    $G(s) = \large \frac{1}{2 s^2 + 3 s + 4}$

    num = 1
    den = [2, 3, 4]
    G1 = tf(num, den)
    G2 = ss(G1);
    [A,B,C,D] = tf2ss(num, den)
    G3 = ss(A,B,C,D);
    figure(1); step(G1)
    figure(2); step(G2)
    figure(3); step(G3)

    MATLAB1
    14
    Voiceover

    ss2tf (zero initial conditions)


    16
    Voiceover

    ss2tf (non-zero initial conditions)


    18
    Voiceover

    Eigenvalues and eigenvectors

    Note the similarity of form of the characteristic equation \begin{align*} | s \mathrm{I} - \mathrm{A} | &= 0 \qquad\qquad\qquad\qquad\qquad\qquad \end{align*}
    and eigenvalue formulation \begin{align*} \mathrm{A}\underset{\sim}{x} &= \lambda \underset{\sim}{x} \\ (\lambda \mathrm{I} - \mathrm{A}) \underset{\sim}{x} &= 0 \\ \implies & \underset{\sim}{x} = 0 \qquad \text{ or} \qquad |\lambda \mathrm{I} - \mathrm{A}| = 0 \end{align*} Poles in Matlab: eig(A)
    20
    Voiceover

    Signals


     
    Voiceover

    Chapter 3 Summary


    Listen to the summary in the voiceover.
    11
    Voiceover

    General State Space Representation


    13
    Voiceover

    Conversion of a State Space Representation into a Transfer Function (SISO) or Transfer Functions (MIMO).


    15
    Voiceover

    ss2tf (zero initial conditions)


    17
    Voiceover

    Characteristic Equation


    19
    Voiceover

    ss2tf
    Create a state space system $A,B,C,D$ and convert to transfer function form $G(s)$ using $\text {MATLAB} ^2.$
    \begin{align*} \mathrm{A} &= \begin{pmatrix}~0,~1\\-2,-3\end{pmatrix} & \mathrm{B} &= \begin{pmatrix}~0,~1\\~5,~0\end{pmatrix}\\ \mathrm{C} &= \begin{pmatrix}~1,~0\\~0,~1\end{pmatrix} & \mathrm{D} &= \begin{pmatrix}~0,~0\\~0,~0\end{pmatrix} \qquad\qquad\qquad\qquad \end{align*}
    A = [ 0, 1; -2, -3 ]
    B = [ 0, 1; 5, 0 ]
    C = eye(2);
    D = zeros(2,2)
    G = ss(A,B,C,D)
    [numU1, denU1] = ss2tf(A, B, C, D, 1)
    [numU2, denU2] = ss2tf(A, B, C, D, 2)

    MATLAB2
    21
    Voiceover

    Mesh or Nodal analysis?


  • 23
    Voiceover

    Decomposition

    Pole location


    Every high order ODE, of order n, can be decomposed into a series of $n$ first order ODEs, as represented in a state space model.
    A high order ODE can be represented as a polynomial in $s$.
    Every high order polynomial can be represented as the product of first and second order terms with real coefficients.

    Thus all systems can be considered as combinations of first and second order subsystems.
    25
    Voiceover

    Underdamped response


    27
    Voiceover

    Overshoot


    29
    Voiceover

    Poles


    31
    Voiceover




    22
    Voiceover

    Chapter 4 - Time response

    Time Response

    Chapter 4.
    poles, zeros and system response *
    Laplace transform solution of state equations *
    time domain solution of state equations *

    24
    Voiceover

    Damping


    26
    Voiceover

    Rise, peak & settling time


    28
    Voiceover

    Rise time


    30
    Voiceover

    s-plane


  • 33
    Voiceover

    Output


    35
    Voiceover




    37
    Voiceover




    32
    Voiceover

    Zeros


    34
    Voiceover




    36
    Voiceover




    38
    Voiceover

    MATLAB

    Generation of a pole-zero map and step response using MATLAB $^{123}$ for a system with unity negative feedback and open loop transfer function $G(s)$.

    $G(s) = \large \frac{4(s+1)}{s(s+2)(s+3)}$

    G = zpk(-1,[0,-2,-3],4)
    Gc = feedback(G, 1)
    figure(1); pzmap(Gc)
    figure(2); step(Gc)

    MATLAB1
    MATLAB2
    MATLAB3
  • 40
    Voiceover

    State transition matrix

    \begin{align*} \underset{\sim}{x}(t) &= e^{\mathrm{A}t}\underset{\sim}{x}(0) &+& \int_0^t e^{\mathrm{A}(t-\tau)}\mathrm{B}\underset{\sim}{u}(\tau) {\mathrm d}\tau \\ &&&\\ \underset{\sim}{x}(t) &= \Phi(t)\underset{\sim}{x}(0) &+& \int_0^t \Phi(t-\tau)\mathrm{B}\underset{\sim}{u}(\tau) {\mathrm d}\tau \\ \end{align*} $$\Phi(t)$$ is the state transition matrix and describes how states evolve in response to inputs (forced dynamics) and their current state (free, or natural, dynamics).
    Free dynamics: \begin{align*} \mathcal{L}\left[\mathrm{x}(t)\right] &= \mathcal{L}\left[\Phi(t)\mathrm{x}(0)\right] &= \left(s\mathrm{I}-\mathrm{A}\right)^{-1}\mathrm{x}(0) \end{align*}
    42
    Voiceover

    Find $\phi(t)$

    \begin{align*} \phi(t) = \mathcal{L}^{-1}\left[\Phi(s)\right] \\ \;\; \Phi(s) = \left(s\mathrm{I}-\mathrm{A}\right)^{-1} \\ \\ s, \mathrm{I} \; \textrm{and} \; \mathrm{A} \textrm{ are known.} \end{align*} $$\textrm{Procedure:} \qquad\qquad\qquad\qquad \\ \textrm{1. Find } \Phi(s) = \left(s\mathrm{I}-\mathrm{A}\right)^{-1}\\ \textrm{2. Find } \phi(t) = \mathcal{L}^{-1}\left[\Phi(s)\right] $$
    44
    Voiceover

    Find $\phi(t) = \mathcal{L}^{-1}[\Phi(s)]$

    \begin{align*} \Phi(s) = (s\mathrm{I}-\mathrm{A})^{-1} &= \frac{\begin{pmatrix} s+3 & 1 \\ -2 & s \end{pmatrix}}{s^2 + 3 s + 2} \\ &= \frac{\begin{pmatrix} s+3 & 1 \\ -2 & s \end{pmatrix}}{(s + 1)(s + 2)} \\ &= \begin{pmatrix} \frac{s+3}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ \frac{-2}{(s+1)(s+2)} & \frac{s}{(s+1)(s+2)} \end{pmatrix}\\ \end{align*} We need to use partial fractions.

    46
    Voiceover

    Partial fractions

    \begin{align*} \frac{s+3}{(s+1)(s+2)} &= \frac{ 2}{s+1} - \frac{1}{s+2} \\ \frac{ 1}{(s+1)(s+2)} &= \frac{ 1}{s+1} - \frac{1}{s+2} \\ \frac{ -2}{(s+1)(s+2)} &= \frac{-2}{s+1} + \frac{2}{s+2} \\ \frac{s }{(s+1)(s+2)} &= \frac{-1}{s+1} + \frac{2}{s+2} \end{align*}

    48
    Voiceover

    Outputs: $t$-domain

    \begin{align*} \phi(t) &= \begin{pmatrix} 2\,e^{-t}- e^{-2\,t} & e^{-t}- e^{-2\,t} \\ -2\,e^{-t}+2\,e^{-2\,t} & -e^{-t}+2\,e^{-2\,t} \end{pmatrix} \\ \end{align*}
    \begin{align*} \underset{\sim}{y}(t) &= \mathrm{A} \underset{\sim}{x}(t) + \mathrm{B} \underset{\sim}{u}(t) \\ \underset{\sim}{x}(t) &= \phi(t)\underset{\sim}{x}(0) + \int_0^t \phi(t-\tau)\mathrm{B}\underset{\sim}{u}(\tau) \mathrm{d}\tau \end{align*}

     
    Voiceover

    Chapter 4 Summary


    Listen to the summary in the voiceover.
    39
    Voiceover

    Chapter 4 - State Space

    Time domain solution of state space


    41
    Voiceover

    Example problem

    Given the following state space model \begin{align*} \mathrm{A} &= \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} & \mathrm{B} &= \begin{pmatrix} 0 \\ 0.5 \end{pmatrix} & \underset{\sim}{x}(0) &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \mathrm{C} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \mathrm{D} &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} &&\\ \end{align*}
    1. Find the state transition matrix $\Phi(s)$ and $\phi(t)$
    2. Sketch the response of output $y_1$ to a unit step input
    43
    Voiceover

    Find $\Phi(s) = \left(s\mathrm{I}-\mathrm{A}\right)^{-1}$

    \begin{align*} \mathrm{A} &= \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \\ s \mathrm{I} - \mathrm{A} &= s\begin{pmatrix}1&0\\0&1\end{pmatrix}-\begin{pmatrix}0&1\\-2&-3\end{pmatrix} \\ &= \begin{pmatrix}s&0\\0&s\end{pmatrix}-\begin{pmatrix}0&1\\-2&-3\end{pmatrix} \\ &= \begin{pmatrix} s & -1 \\ 2 & s+3 \end{pmatrix} \\ \left(s \mathrm{I} - \mathrm{A}\right)^{-1} &= \frac{Adj(s \mathrm{I} - \mathrm{A})}{|s \mathrm{I} - \mathrm{A}|} \\ Adj(s\mathrm{I}-\mathrm{A}) = C^T &= \begin{pmatrix} s+3 & -2 \\ 1 & s \end{pmatrix}^T = \begin{pmatrix} s+3 & 1 \\ -2 & s \end{pmatrix} \\ |s\mathrm{I}-\mathrm{A}| &= (s)(s+3) - (-1)(2) = s^2 + 3 s + 2 \\ \end{align*}
    45
    Voiceover

    Partial fractions

    \begin{align*} \frac{a s + b}{(s+1)(s+2)} &= \frac{A}{s+1} + \frac{B}{s+2} \end{align*}
    \begin{align*} a s + b &= A(s+2) + B(s+1) \\ &= (A+B) s + (2A+B) \\ & \\ A+B &= a \\ 2A+B & = b \\ &\\ A &= b-a \\ B &= b- 2A = b-2(b-a) = 2a-b \end{align*}
    47
    Voiceover

    $\Phi(s)$ as partial fractions

    \begin{align*} \Phi(s) &= \begin{pmatrix} \frac{s+3}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ &\\ \frac{ -2}{(s+1)(s+2)} & \frac{s}{(s+1)(s+2)} \end{pmatrix} \\ &\\ &= \begin{pmatrix} \frac{ 2}{s+1}-\frac{1}{s+2} & \frac{ 1}{s+1}-\frac{1}{s+2} \\ &\\ \frac{-2}{s+1}+\frac{2}{s+2} & \frac{-1}{s+1}+\frac{2}{s+2)} \end{pmatrix} \end{align*} The outputs can be solved in the $t$ or $s$ domain.

    49
    Voiceover

    Outputs: $s$-domain

    \begin{align*} \underset{\sim}{Y}(s) &= \left(\mathrm{C} \mathrm{\phi}(s) \mathrm{B} + \mathrm{D}\right) \underset{\sim}{U}(s) \\ &\\ &= \left( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{s+3}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ \frac{ -2}{(s+1)(s+2)} & \frac{s}{(s+1)(s+2)} \end{pmatrix} \begin{pmatrix} 0 \\ 0.5 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) \left( \frac{1}{s} \right) \\ &= \begin{pmatrix} \frac{1}{(s+1)(s+2)} \\ \frac{s}{(s+1)(s+2)} \end{pmatrix} \times \frac{0.5}{s} &\\ &= \begin{pmatrix} \frac{1}{4} \left(\frac{1}{s}-\frac{2}{s+1}+\frac{1}{s+2}\right) \\ \frac{1}{2} \left(\frac{1}{s+1}-\frac{1}{s+2}\right) \end{pmatrix} &\\ y_1(t) &= 0.25 - 0.5\,e^{-t} + 0.25\,e^{-2\,t} \\ y_2(t) &= 0.5\,e^{-t}-0.5\,e^{-2\,t} \end{align*}