
Temperature Measurement
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Temperature Measurement

• Resistive Temperature sensors
• Thermoelectric Sensing Elements
• Semiconductor Junction Temperature 

Transducers
• Radiation Thermometers
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Metallic Resistance Thermometer
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The resistivity of a metal is proportional to the temperature. 
This provides the physical basis for a temperature sensor. This 
can me called either:
 Metallic Resistance Thermometer
 Resistive Temperature Detector (RTD)



Resistivity of Metals
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The most common type uses 
Platinum, with 
α= 0.0039 °C-1 and
Ro = 100 Ω @ 0°C

This is called a PT100

Over a reasonable range of 
temperature, the response of 
an RTD is linear with 
temperature.



RTD construction
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Strain free design – wire is free to move/expand within hard-fired  
ceramic oxide tube. Bores filled with fine powder to provide 
thermal conductivity.



RTD operation using Bridge Circuit
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Metallic Resistance Thermometer
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This arrangement compensates for the effect of the 
resistance of the connecting leads. RTD are frequently 
manufactured as a 3-wire package.



Resistance of NTC Thermistor
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A Negative Temperature Coefficient (NTC) 
thermistor is made from a semiconductor 
material. The resistivity of a semiconductor 
falls exponentially with rising temperature. The 
relationship is:

𝑅𝑅 𝑇𝑇 = 𝐴𝐴 exp
𝐵𝐵
𝑇𝑇

The temperature T must be quoted in kelvin 
degrees (K).

A is constant (Ω)
B is characteristic temperature (2000-4000 K)



NTC thermistor 
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𝑅𝑅 𝑇𝑇 = 𝐴𝐴 exp
𝐵𝐵
𝑇𝑇

Define reference resistance at reference temperature. Ro @ 
To = 298 K

𝑅𝑅𝑜𝑜 = 𝐴𝐴 exp
𝐵𝐵
𝑇𝑇𝑜𝑜

Substitute this into the general equation to get an alternative 
expression:

𝑅𝑅 𝑇𝑇 = 𝑅𝑅𝑜𝑜 exp 𝐵𝐵
1
𝑇𝑇
−

1
𝑇𝑇0



Bridge Circuit to for Thermistor
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𝑅𝑅𝑇𝑇

𝑅𝑅𝑇𝑇 + 𝑅𝑅1
−

𝑅𝑅3
𝑅𝑅3 + 𝑅𝑅2

 The o/p of this circuit may be highly non-linear,
 maybe you don’t care, as long as it is reproducible,
 or maybe you need a linear output.



 Condition Monitoring -
Instrumentation 11

We can design a thermistor – bridge combination to produce a linear output 
over a finite temperature range. 30 -70 degrees in this example.

1.26kΩ1kΩ

3kΩ

For this particular thermistor:

𝑅𝑅 𝑇𝑇 = 4730 exp 3780
1
𝑇𝑇
−

1
298

Ω



We can design a thermistor – bridge combination to produce a linear output over a 
finite temperature range. 30 -70 degrees in this example.
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Assorted Thermistors
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One issue to watch with Thermistors: Self Heating

• Any resistive temperature sensor needs to be supplied with a 
current, so that its resistance can be measured.

• But the applied current produces Ohmic heating P = I2R!
• Which could heat up the temperature sensor, causing a self-

heating error.
• This is unlikely to be a problem with a RTD, since they always 

have a low resistance and a significant mass. ∆T = ∆Q/(c M)
• But could well be a problem in thermistor installations where 

the resistance can vary considerably and the mass might be 
very small.
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(Thermoelectric) Seebeck Effect

• If two different conductors A and B are joined
together, there is a difference in electrical
potential across the junction called contact
potential.

• The contact potential depends on
temperature and so forms the basis of a
temperature measurement system.
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(Thermoelectric) Seebeck Effect
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E = a T + a T + a T + a T +...T
AB

1 2
2

3
3

4
4

The contact potential depends on the metals A and B 
and the temperature T0C of the junction, and can be 
described by a power series of the form:

The constants ai depend on the metal.



(Thermoelectric) Seebeck Effect
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( ) ( ) ( ) ( ) V T1.335x10+T8.567x10-T3.043x10+T5.037x10=E 4-73-52-21
T µ

The constants ai depend on the metal. e.g. for an 
iron vs. constantan (copper nickel alloy) junction:

Note that the higher order terms are a lot smaller than 
the leading term so this relationship  between E and T 
is  very close to linear.



Thermocouples
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A Thermocouple is a closed circuit of two junctions,
at different temperatures T1 and T2

0C. If a high
impedance voltmeter is introduced into the circuit, so
that the current flow is negligible, then the measured
emf is:

To measure T2, we must accurately know T1
(reference temperature). Thermocouple tables are 
based on a reference temperature of 00C.

( ) ( ) ( )E = E - E = a T -T + a T -T + a T -T +...T ,T
AB

T
AB

T
AB

1 1 2 2 1
2

2
2

3 1
3

2
3

1 2 1 2



Thermocouples

 Condition Monitoring -
Instrumentation 20

AB
TTE

21

This notation represents the EMF of a thermocouple 
comprising A and B wires with junction temperatures T1
and T2.

Note that the thermocouple has an electric polarity, 
like a battery. 

 EAB = - EBA
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Standard thermocouple plug is asymmetric to
prevent the thermocouple being inserted with the
wrong polarity.



Thermocouples
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This is a ‘classical’
thermocouple
installation with a
realisation of a 0°C
reference temperature.

This is seldom
practical outside of a
laboratory!



Thermocouples
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Thermocouples are manufactured from various combinations of the 
base metals as in the following examples;

Copper and iron,

 the base-metal alloys of

 alumel (Ni/NMn/Al/Si),
 chromel (Ni/Cr), 
constantan (Cu/Ni),
 nicrosil (Ni/Cr/Si) 
and nisil (Ni/Si/Mn),

 the noble metals platinum and tungsten,

and the noble-metal alloys of platinum/rhodium and tungsten/rhenium.





Thermocouples

• Various standard thermocouple types are defined.

• The cheaper, base metal types are less suitable for 
hostile, oxidizing environments.

• The more expensive, noble metal types tend to have  
lower sensitivity.

• Some types are limited by the melting points of the 
brazing materials used at the joints. (?)
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Thermocouple Types

26 Condition Monitoring -
Instrumentation



Thermocouple Characteristics
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Five Rules of Thermocouple Behaviour (1)

• The emf of a thermocouple depends only on
the temperature of the junctions and is
independent of the temperature of the wires
connecting the junctions.

• comment – well it wouldn’t be any use
otherwise!
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Five Rules of Thermocouple Behaviour (2)

• If a third metal is introduced into one arm of
the thermocouple, then, provided the two
new junctions are at the same temperature,
the emf is unchanged.

• comment – this means that you can put a
voltmeter into the thermocouple circuit
without affecting its performance.
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Five Rules of Thermocouple Behaviour (3)

• If a third metal is introduced at one junction,
then, provided the two new junctions are at
the same temperature, the emf is unchanged.

• Comment - can braze the two metals together
at the measuring junction without changing
emf.
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Five Rules of Thermocouple Behaviour (4)

• ‘Law of Intermediate metals’

• Consequence - can deduce EMF for an unknown 
thermocouple from data on known thermocouple 
pairs.
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Five Rules of Thermocouple Behaviour (5)

• Law of Intermediate Temperatures

• Consequence - can interpret EMFs as 
temperatures using standard tables given in
terms of a reference temperature.
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Cold Junction Compensation

• Whilst thermocouple tables are calibrated assuming a zero
reference junction temperature, it is not always possible in
real applications to maintain such a low reference
temperature.

• In many practical applications of thermocouples, it is
necessary to locate the reference junction in a variable ‘room
temperature’ environment.

• Correction for this different (variable) reference junction
temperature then has to be made using the law of
intermediate temperatures.
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Cold Junction Compensation

• Need to provide an EMF equal to ET,Tref. Then:
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Cold Junction Compensation

• Can use various electric temperature sensors to provide the
cold junction compensation (CJC).

• One convenient system is the thermocouple amplifier. This
provides a high gain for the small thermocouple signal + CJC.

• Eg. AD595. This provides CJC for type K thermocouple and
gives a convenient output of 10 mV/°C
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AD595 Thermocouple Amplifier
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Thermocouple Construction
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Simplest form: two bare wires with their ends soldered or
welded to form a junction. Can also put wires and junction
into a metal sheath.

•use mineral insulation (e.g. magnesium oxide) between
wires and sheath. Therefore called “mineral insulated
thermocouple probe”.

•sheath protects thermocouple from corrosion, abrasion,
etc.

•Sheathed thermocouple will have significantly slower
response time than bare thermocouple.



Extension Wires
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•In order to make a thermocouple conform to some precisely defined
e.m.f-temperature characteristic described by standard tables, it is
necessary that all metals used are refined to a high degree of
pureness and all alloys are manufactured to an exact specification.

•This makes the materials used expensive, and consequently
thermocouples are typically only a few centimetres long.

•This raises the problem of where to put the reference junction.



Extension Wires
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•The reference junction will be at the point where the thermocouple 
joins the wires leading to the meter.

•To make the reference junction close to the meter, we need to use 
extension leads made from the same material as the thermocouple -
or at least materials with same temperature characteristics as 
thermocouple wires over specified temperature range.

•For base metal thermocouples – use extension leads made from 
the same metal as the higher grade thermocouple material.

•For platinum thermocouples, use copper alloy with the same 
thermoelectric behaviour, at least over a narrow, defined, 
temperature range.



Use of Extension Wires
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Junction Semiconductor Temperature Sensors
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Junction Semiconductor Temperature Sensors
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LM35 temperature sensor IC
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LM35 is a 3 pin IC package. Powered by 5-30 Vdc, 
produces output 10 mV/°C.
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Dynamic Response of Thermal Sensors

47

•The thermal sensors we have discussed operate by
being placed in contact with the system whose
temperature is to be measured.

•The sensor must reach thermal equilibrium with the
system.

•Heat must flow in or out.

•This takes time. The time depends on the heat
capacity of the sensor, the effective area through
which heat can flow and the heat transfer coefficient
across the surface.



Dynamic Response of Thermal Sensors

48

The heat transfer is driven by the temperature difference 
across the surface.

W = U A (Text – T)

Where 

W is the rate of heat transfer (Watts)
U is the heat transfer coefficient (Watts m-2 °C-1)
A is the effective area for heat transfer (m2)
Text is the external temperature



Dynamic Response of Thermal Sensors

49

W is the rate of increase of thermal energy of the 
sensor:

dt
dTcm

dt
dQW ==

Where:

Q = thermal energy (Joules)
c = specific heat capacity of sensor 
material (J kg-1 C-1 )
m = mass of sensor (kg)



Dynamic Response of Thermal Sensors
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Equating the two expressions:
( ) ( )( )

( ) ( )( )
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where

or

τ is the time constant 
of the sensor.

This is a first order differential equation. 
Temperature sensors such as this are first order 
systems because their dynamics are governed by 
a first order equation.



Step Function Response

51

Imagine taking a cold thermocouple and plunging it
suddenly into hot water. This is a good approximation to a
step function input. The solution of the previous equation,
corresponding to a temperature step function input, from
initial temperature Ti to final temperature Tf is:

( ) ( )

TempOffset 1
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First Order Step Response
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