

GLASGOW CALEDONIAN UNIVERSITY

ENGINEERING MATHS II - TOPIC SUMMARY

University for the Common Good

Revision topic: Trigonometric Functions

Objectives:

- ♦ Learn about names of sides of right-angled triangles, Pythagoras' theorem, and the definitions of sin, cos and tan of angles
- Solve real world problems using trigonometry

Key points:

Try to get comfortable with knowing when to use sin, cos and tan to work out angles or side lengths in diagrams with right-angled triangles. The famous **SOH-CAH-TOA** acronym is useful for this.

Try lots of examples to get practice and comfortable in knowing when to use sin or cos or tan.

Also try and develop a good understanding of what the sin and cos curves look like. Remember sin starts at 0 and moves upwards, and cos starts at 1 and moves downwards. Both functions take 360° to do a full cycle, before they repeat forever. There are useful acronyms for this too like CAST.

For most angles the value of sin and cos can only be evaluated with a calculator. But for certain specific angles the values of sin and cos are fairly nice, these are 0° , 30° , 45° , 60° , 90° and all angles that are multiples of 90° away from these. Examples include:

$$\sin(30^\circ) = \cos(60^\circ) = 1/2$$
, $\cos(30^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2} \approx 0.866$

Once you understand the curves you can work out values like $\sin(120^\circ)$. You'll know that sin after 90° is a mirror image of the behaviour until 90° so you will know that $\sin(120^\circ) = \sin(60^\circ)$ because 120 is 30 after 90, whereas 60 was 30 before 90, i.e.

$$\sin(120^{\circ}) = \sin(60^{\circ}) = \frac{\sqrt{3}}{2}$$
, indeed $\sin(90^{\circ} + x) = \sin(90^{\circ} - x)$ for any $x!$

In more advanced maths we use **radians** rather than **degrees** to measure angles. This is just a change of units, like using metres rather than feet for lengths. The conversion is that there are 2π radians in a full circle (360°). For example, 60° is 1/6th of 360°, so 60° in radians is 1/6th of 2π , i.e. $2\pi/6 = \pi/3$ radians. It's also fine to just multiply by $2\pi/360$ to convert degrees to radians.

Recommended links:

Highly recommended: HELM notes (introduction to right-angled triangles), HELM notes (introduction to radians, and sketching functions)

Rev.: Trig. funcs 2020