Revision topic: Trigonometric Functions

Objectives:

\diamond Learn about names of sides of right-angled triangles, Pythagoras' theorem, and the definitions of sin, cos and tan of angles
\diamond Solve real world problems using trigonometry

Key points:

Try to get comfortable with knowing when to use sin, cos and tan to work out angles or side lengths in diagrams with right-angled triangles. The famous SOH-CAH-TOA acronym is useful for this.

Try lots of examples to get practice and comfortable in knowing when to use sin or cos or tan.
Also try and develop a good understanding of what the sin and cos curves look like. Remember \sin starts at 0 and moves upwards, and cos starts at 1 and moves downwards. Both functions take 360° to do a full cycle, before they repeat forever. There are useful acronyms for this too like CAST.

For most angles the value of \sin and cos can only be evaluated with a calculator. But for certain specific angles the values of sin and cos are fairly nice, these are $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$ and all angles that are multiples of 90° away from these. Examples include:

$$
\sin \left(30^{\circ}\right)=\cos \left(60^{\circ}\right)=1 / 2, \quad \cos \left(30^{\circ}\right)=\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2} \approx 0.866
$$

Once you understand the curves you can work out values like $\sin \left(120^{\circ}\right)$. You'll know that sin after 90° is a mirror image of the behaviour until 90° so you will know that $\sin \left(120^{\circ}\right)=\sin \left(60^{\circ}\right)$ because 120 is 30 after 90 , whereas 60 was 30 before 90 , i.e.

$$
\sin \left(120^{\circ}\right)=\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2}, \quad \text { indeed } \sin \left(90^{\circ}+x\right)=\sin \left(90^{\circ}-x\right) \text { for any } x!
$$

In more advanced maths we use radians rather than degrees to measure angles. This is just a change of units, like using metres rather than feet for lengths. The conversion is that there are 2π radians in a full circle $\left(360^{\circ}\right)$. For example, 60° is $1 / 6$ th of 360°, so 60° in radians is $1 / 6$ th of 2π, i.e. $2 \pi / 6=\pi / 3$ radians. It's also fine to just multiply by $2 \pi / 360$ to convert degrees to radians.

Recommended links:

Highly recommended: HELM notes (introduction to right-angled triangles), HELM notes (introduction to radians, and sketching functions)

