Spectral Analysis

In particular — how the sampling process affects the
frequency spectrum
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The Fourier Theorem

A mathematical theorem stating that a periodic
function f(x) which is reasonably continuous may be
expressed as the sum of a series of sine or cosine
terms (called the Fourier series), each of which has

specific amplitude and phase coefficients known as
Fourier coefficients.
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Fourier Series

e Fourier Analysis involves resolving a function
into its series of Fourier coefficients.

e Fourier Synthesis involves constructing a
function from a series of Fourier coefficients.
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Fourier Synthesis — a Square Wave
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Fourier Series
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Fourier Series

e Consider the waveform
w(t) =7 — 10cos(40nt-60°)+4sin120 nt

* We can sketch the one sided (positive)
frequency spectrum
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One Sided (Positive) Spectrum
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Two Sided Frequency Spectrum

Recall the trigonometric identity

Acos(ot+d) = YA e v e iot + 1HA g 0 g ot

So a real cosine wave can be represented as a
pair of conjugate exponential functions.

These can be shown on a phasor diagram.

Note the negative(!) frequencies
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Interpretation of negative frequencies

When w > 0 the real part of the function leads
the imaginary part
e/®t = coswt + j sin wt

When w < 0 the real part of the function lags
the imaginary part
e /9t = cos(—wt) + j sin(—wt)
e /¥t = coswt — j sin wt
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Conjugate Phasors
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+ve and —ve phasors appear to rotate in opposite directions.
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Two Sided Frequency Spectrum
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Fourier Transforms

Transform

V()= )= [vitp ot

Inverse Transform

vty = FV ()= _Tv(f SE
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Some Fourier Transform Theorems

Time shift theorem

Fve-t, )=V (e
Hequency translation theorem
Flvt)e ¢ |=v(f - 1)
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Sampling
* Let the sampled signal be x (t) = X(t)s(t) where

S(t) is a sampling function with period f..
* 5(t) can be written as a Fourier series.

s(t) =c, + ) 2c, cosnm,t
=1
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Sampling

* X, can then be written as an expansion:

X, (t) = c x(t) + 2¢c,x(t) cos w.t
+2¢,X(t)cos2m t +---
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Sampling

Using trigonometic identity

ACOS(Wt) — ?ejmt _|_§e—joot

and the frequency translation theorem
Flve |=v(f - 1,)
we can work out the sampled spectrum
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Sampling

 The Fourier transform of the sampled signal is:
X, =CX(f)+c[X(f-1)+X(f+f)]
+C, [ X(f =2 )+ X(f+2f)]+--

* So the sampled spectrum contains higher frequency

copies of the original signal. Aliasing occurs when the
copies overlap.
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signal spectrum
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signal spectrum
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Spectral Analysis

Take a vector of N data points y = [y, v, ... y,]; we call this data set a
time series because transform methods are so often used in signal
analysis. The data set is evenly spaced in time, so t;,, = 7], where z
IS the sampling interval, that is, the time increment between data
points, and | =0, ... N-1.

We define the vector Y, the discrete Fourier transform of y, as
Vi = _Z yj+192ﬂijk/N

wherei= ¥1 and k =0,...N - 1. The inverse transform is

N -1 -
Yo = 2 Yjue "
j=0 @U
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Discrete Fourier Transform

Each point Y,,, of the transform has an associated
frequency,

ka:L where 0<k<N-1
N

The lowest (nonzero) frequency is f, = 1N < I/T,
where T is the length of the time series. To measu
very low frequencies, we need to analyze long time
series.

The highest frequency @ (N-1)/ =N so to
measure very high freq les we need 10 use a
short sampling rate.

What is the resolution of the frequency spectrum? (GCU
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Discrete FT - example

Measure at 1 kHz for 1 second

T=0.001 sec

T=1sec

N = 1000

Range of DFT is 0,1,2....999 Hz

So the resolution is 1 Hz.

What do you change to improve resolution?
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Discrete FT - example

e Choose high sampling rate: 10 kHz

e T=0.0001sec, T=1sec, N=10000

e FFT runs from0,1,2,...9999 Hz

 Same resolution but wider frequency range
OR

 Choose longer sampling time: 10 seconds

e T=0.001sec, T=10sec, N=10000

e FFT runs from 0,0.1,0.2,...999.9 Hz

e Better resolution in the same frequency rangeC
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Fast Fourier Transform (FFT)

A fast Fourier transform (FFT) is an algorithm to
compute the discrete Fourier transform (DFT) and its
Inverse. Fourier analysis converts time (or space) to
frequency and vice versa; an FFT rapidly computes such
transformations by factorizing the DFT matrix into a
product of sparse (mostly zero) factors.
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FFT vs DFT

The use of the FFT redudes the number of
calculations required to compute the DFT
transform from O(N2) to O(N log, N).

As a result, fast Fourier transforms are widely
used for many applications In engineering,
science, and mathematics.
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FFT Example

As an example, consider a time series constructed as follows:
Yiia = Sln(anS JT+ ¢y )

This signal is a sine wave of frequency f; and phase ¢ . Note
that although y is real, Y is complex, so we separately consider
its real and imaginary parts. Note that the sampling frequency is
implicitly 1 Hz and so the Nyquist frequency is 0.5 Hz.
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FFT Example

time series: ¢$=0 fourier transfarm
1 T T - - 25 T r r J,
real I
08 i A0r — — —imaginary ll-, i
0.6 j 8 15+ J!I 1
l
04 - 10} i ;
I
02t g ar 4 1
2 £ &
= T o T
= : &
o A |
02r 8 At ) q
I
I
04t - 0} h -
I
I
06} 1 51 *|| |
I
|
&t . 20t I 1
|
_1 1 1 | | _25 1 1 1
a 10 20 30 40 50 0 0z 0.4 0B 0.8 1
time frequency

Time series and FFT for n = 50, f, = 0.2 and phase ¢, =0.
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FFT Example

time series: ¢= w2 fourier transfarm
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Time series and FFT for n = 50, f, = 0.2 and phase ¢, = n/2

; Glasgow Caledonian
Spectral Analysis University



0a8p

06F

04r

02f

amplitude
[}

0.2

0.4

0.6

0.8

FFT of Aliased Signal

time series: F_ =08, ¢=10

THHE

/

fourier transform

28

20r

168+

10+

real

— — —imaginary |7

transform
=

10 F

A5

20F

10

20

time

30

40

-25
50 1]

02

0.4 0.6
frequency

Time series and FFT for n = 50, f, = 0.8 and phase ¢, = 0.

(Compare with earlier FFT for f,=0.2.)
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Reconstructed Signal and Alias

sampling period T=1 s

amplitude

lllustration of aliasing. The two sine waves have f, = 0.2 and f, = 0.8;
The former is shifted by ¢, = n. When the sampling intervalist =1
the two data sets (circles) are identical.
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FFT Example: Spectral Leakage

time series: fS =0.M23 fourier transform
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Time series and FFT for n = 50, f, = 0.2123 and phase ¢, =0.
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Power Spectrum

The power spectral density of the signal is given by
the square of the modulus of the Fourier spectrum.

Syy = V(DI = Y (HY(f)

This tells us where the power lies in the frequency
spectrum. For measurement purposes, this is often
the most useful information.
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FFT Example: Power Spectrum showing effects
of Spectral Leakage

time series: f, = 0.2123 3 power spectrum (unnormalised)
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Time Series and Power Spectrum for n = 50, f, = 0.2123 and
phase ¢, = 0, compare with earlier FFT.
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Spectral Leakage

The Fourier Theorem applies to periodic functions.

The FFT treats our signal sample as one period of a
periodic function.

But in this last case the beginning and end of the sample
don’t join up smoothly

The discontinuity at the ends Introduces extra
frequencies into the spectrum.
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Spectral Leakage and Windowing

 Real data samples will always have discontinuities at the
ends and so will exhibit spectral leakage.

« We cant just cut off the problematic ends as we would
still have two ends!

 Instead we apply a sampling window function which
gradually reduces the amplitude of the signal near the
ends of the data set and forces them to join up.
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Windowing

 Need window to eliminate spectral leakage.
e Many choices:

— Hanning: Good general purpose choice, often start
here.

— Flat Top: choose where amplitude measurements are
Important.

— Kaiser Bessel: Good dynamic range, separate similar
tones of widely differing amplitude.

— etlc.
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